Physical-World Attacks on Machine Learning

Mahmood Sharif
PhD Candidate, ECE, CMU

Security and Fairness of Deep Learning
Spring 2019
Today’s Topics

1. Adversarial Machine Learning

2. Misleading Face Recognition Systems
 - "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition," Sharif et al., CCS ’16

3. Misleading Speech Recognition
 - "Hidden Voice Commands," Carlini et al., USENIX Security ’16
 - "DolphinAttack: Inaudible voice commands," Zhang et al., CCS, ’17

Predecessor: "Cocaine Noodles," WOOT ’15
Today’s Topics

1. Adversarial Machine Learning

2. Misleading Face Recognition Systems
 - "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition," Sharif et al., CCS ’16

3. Misleading Speech Recognition
 - "Hidden Voice Commands," Carlini et al., USENIX Security ’16
 - "DolphinAttack: Inaudible voice commands," Zhang et al., CCS, ’17
Machine Learning Is Ubiquitous

- Cancer diagnosis
- Self-driving cars
- Surveillance and access-control
- Anomaly-based NIDS

...
Change input slightly, such that it remains in A, but is classified in B. Examples:
- Malicious packet classified as benign
- Person A confused as person B
Misleading Machine Learning: Poisoning

- Cause classifier to learn wrong concepts by poisoning training data

- Result:
Today’s Topics

1. Adversarial Machine Learning

2. Misleading Face Recognition Systems
 - "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition," Sharif et al., CCS ’16

3. Misleading Speech Recognition
 - "Hidden Voice Commands," Carlini et al., USENIX Security ’16
 - "DolphinAttack: Inaudible voice commands," Zhang et al., CCS, ’17
What Do You See?

Deep Neural Network (DNN)

Lion
(p=0.99)

Race car
(p=0.74)

Traffic light
(p=0.99)

[Chatfield et al., BMVC ’14]
What Do You See Now?

[Image 19x198 to 208x306]

[Image 19x66 to 206x174]

[Image 19x331 to 206x439]

[Image 370x207 to 400x300]

[26x482]Szegedy et al., ICLR ’14

What Do You See Now?

Pelican (p=0.97)

Speed boat (p=0.97)

Jeans (p=0.97)

DNN (same as before)

[LaTeX syntax in place of natural text]

\begin{itemize}
 \item What Do You See Now?
 \item Pelican (p=0.97)
 \item Speed boat (p=0.97)
 \item Jeans (p=0.97)
\end{itemize}
The Difference

10

- Amplify x10
This Work

Physical realizability:
• Attacker can only change own appearance
• Robust to changes in imaging conditions

Inconspicuousness:
• Do not raise (too much) suspicion
• Want to avoid:

[Images of Mahmood and Carson Daly]
What Are the Adversary’s Capabilities?

To generate attacks, attacker needs to know how changing input affects output

White-box setting
Background: Misleading DNNs
(and other classifiers)
What’s a (Deep) Neural Network?

- Idea: simulate how brain cells work
- Basic building block: neuron, a simple computational unit

Classification DNNs are functions from inputs to classes (or probability distribution over classes)
How to Mislead DNNs?

Given DNN and input, find minimal change that causes specific misclassification

\[\downarrow \]

Imperceptible adversarial examples

[Szegedy et al., ICLR ’14]

- Defined as an optimization problem:

\[
\arg\min_r |f(x + r) - c_t| + \kappa \cdot |r|
\]

- Refer to as: distance\((f(x + r), c_t)\)

- Optimization can be solved via gradient descent, L-BFGS, …

- \(x\): input image
- \(f(\cdot)\): classification function (e.g., DNN)
- \(|\cdot|\): norm function (e.g., Euclidean norm)
- \(c_t\): target class
- \(r\): perturbation
- \(\kappa\): tuning parameter
Fooling Face Recognition
(Impersonation & Dodging)
Facial Biometric Systems

Detection and recognition are usually pipelined:
1. Detect the face
2. Recognize the person

Attacks may target detection or recognition
Face Recognition: Our Attacks

Impersonation

I want to break into the Blade Runner filming location

- Targeting a specific subject
- To access specific resources or cause blame to be laid on a target

Dodging

I don’t want to be recognized at Justin Bieber’s concert

- Being recognized incorrectly
- To achieve privacy, or if target doesn’t matter
Deep Face Recognition

We use and build on DNN proposed by Parkhi et al. [BMVC ‘15]:

- Trained to recognize 2622 celebrities

- Evaluated on Labeled Faces in the Wild [Huang et al., ’07]:
 - 13233 face images collected in the wild (uncontrolled conditions)

- Outperforms humans:

<table>
<thead>
<tr>
<th>Accuracy of humans</th>
<th>Accuracy of Parkhi et al.’s DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.53%</td>
<td>98.95%</td>
</tr>
</tbody>
</table>
Strawman Formalization

- Like Szegedy et al., achieve impersonation by:

\[
\arg\min_r \text{distance}(f(x + r), c_t) + \kappa \cdot |r|
\]

- Example of impersonation:

Vicky McClure \(\rightarrow \) 10\% perturbation \(\rightarrow \) Terence Stamp

Caveat: may be hard to control background
Phase #1: Apply Changes to Face Only

- Image segmentation to find the face
- Only change pixels that overlay the face

Caveats:
1. May be hard to realize the perturbations
2. Perturbations are smaller than camera’s sampling error
Phase #2: Apply Changes to Eyeglasses

1. Easier to realize (2D or 3D printing)

2. Wearing eyeglasses isn’t associated with adversarial intent

Vicky McClure

Terence Stamp

Reese Witherspoon

Russell Crowe
Experiments in Digital Environment

- 20 random pairs of attackers + targets
- 92% of impersonation attempts succeeded

Reese Witherspoon
Russell Crowe
Can We Make Attacks Physically Realizable?
Phase #3: Smooth Transitions

- Natural images tend to be smooth:

- We achieve this by minimizing total variations:

\[
TV(r) = \sum_{i,j} \sqrt{(r_{i,j+1} - r_{i,j})^2 + (r_{i+1,j} - r_{i,j})^2}
\]

Sum of differences of neighboring pixels
Phase #4: Printable Eyeglasses

- Challenge: Cannot print all colors
- Find printable colors by printing color palette

Define non-printability score (NPS):
 - NPS is high if colors are not printable, and low otherwise

Generate printable eyeglasses by minimizing NPS
Phase #5: Robust Perturbations

- Two samples of the same face are almost never the same ⇒ attack should generalize beyond one image
- Achieved by finding one attack accessory that leads any image in a set of images to be misclassified:

\[
\arg\min_r \left(\sum_{x \in X} \text{distance}(f(x + r), c_t) \right)
\]

\(X\) is a set of images, e.g., \(X = \)
Putting All the Pieces Together

- Physically realizable impersonation:

\[
\arg\min_r \left(\sum_{x \in X} \text{distance}(f(x + r), c_t) \right) + \kappa_1 \cdot \text{TV}(r) + \kappa_2 \cdot \text{NPS}(r)
\]

- misclassify as \(c_t \) (set of images)
- smoothness
- printability
Does This Work?

To test our approach, we need:

1. People to play role of the attacker
 - Lujo
 - Sruti
 - Mahmood

2. Realize the eyeglasses

3. DNN that recognizes the attackers
A DNN That Recognizes Us

- Hard to train DNN from scratch ⇒ Use standard technique (transfer learning) to retrain DNN from Parkhi et al.'s

- New DNN recognizes 143 subjects:
 - First 3 authors + 140 Celebrities from PubFig dataset

- Accuracy: 96.75%
Experiment: Realized Impersonations

- **Procedure:**
 1. Collect images of attacker
 2. Choose random target
 3. Generate and print eyeglasses
 4. Collect 30 to 50 images of attacker wearing eyeglasses
 5. Classify collected images

- **Success metric:** fraction of collected images misclassified as target

- **Limitation:** small set of variations in lighting
Impersonation Attacks Pose Real Risk!

Lujo

100% success

John Malkovich
Impersonation Attacks Pose Real Risk!

Sruti

16% success

Colin Powell

16% success
Impersonation Attacks Pose Real Risk!

Mahmood

Carson Daly

100% success
More Realized Impersonations

- Against another DNN trained to recognize 10 subjects (including first 3 authors)

Lujo

Milla Jovovich

Sruti

Mahmood

88% success

88% success
Question: How to Formalize Dodging?

- For reference, impersonation is formalized as:

$$\text{argmin}_r \left(\sum_{x \in X} \text{distance}(f(x + r), c_t) \right) + \kappa_1 \cdot \text{TV}(r) + \kappa_2 \cdot \text{NPS}(r)$$

misclassify as c_t
(set of images)

smoothness
printability

- Dodging:

$$\text{argmin}_r \left(\sum_{x \in X} -\text{distance}(f(x + r), c_x) \right) + \kappa_1 \cdot \text{TV}(r) + \kappa_2 \cdot \text{NPS}(r)$$

misclassify as $\sim c_x$
(set of images)

smoothness
printability
Dodging Examples

Not Lujo

Not Sruti

Not Mahmood

Probability assigned to correct classes is low (<0.03 in all cases)
Demo

Ariel
Extensions (vs. Online Re-identification)

- Impersonations against commercial face-recognition (Face++)
 - Threat model: black-box

- Invisibility against Viola-Jones:

 ![Diagram](image)

 Query

 Face Detection

 Viola-Jones

 Impersonations

 Commercial Face Recognition

 (Face++)
(Possible) Defenses

- Ask subjects to remove accessories before recognition
 - Caveats: requires expensive enforcement (e.g., human operator), enforcement isn’t always possible (e.g., surveillance or mobile phones)

- Train a model with provable accuracy guarantees
 - Works mainly for “imperceptible” perturbations 😞

- Show recognition system samples of attacks at training
 - Attacks can still be found at deployment time 😞

- Use machine-learning classifier to detect attacks
 - Detector and recognition system can be simultaneously fooled 😞
Today’s Topics

1. Adversarial Machine Learning

2. Misleading Face Recognition Systems
 - "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition," Sharif et al., CCS ’16

3. Misleading Speech Recognition
 - "Hidden Voice Commands," Carlini et al., USENIX Security ’16
 - "DolphinAttack: Inaudible voice commands," Zhang et al., CCS, ’17
Hidden Voice Commands

Sounds that are hard/impossible for humans to understand, but interpreted as voice commands by speech recognition

Risks?
1. Compromise privacy (e.g., “call …”, “upload contacts …”)
2. Compromise security (e.g., “open malicious.com”, …)
3. Monetary loss (e.g., send premium text message)
What is Being Said?
What is Being Said? (#2)
How Does this Work?

Black-box attack:

1. Normal command
2. Feature Extraction
3. Invert features to degrade signal
4. Play degraded signal
5. Check recognized command
6. Recognized by machine?
7. Recognized by human attacker?
8. Decide if command is intelligible
9. Degrade audio
10. Compute standard features
11. Tweak parameters so command is misinterpreted
12. Obfuscated command
13. Speech recognition system

Flowchart:
- Compute standard features
- Invert features to degrade signal
- Play degraded signal
- Decide if command is intelligible
- Obfuscated command
- Degrade audio
- Tweak parameters so command is misinterpreted
- Check recognized command
White-box Attack

Attacker that knows system’s internals has more power

What is being said?
Recently: Inaudible Voice Commands

Idea: sounds outside of hearing range (20Hz-20KHz) interpreted as commands (by Google Now, Alexa, …)

Command 1:
OK Google, take a picture

(Possible) Defenses

- Perform speaker recognition: only authorized people can issue commands

- Machine-learning classifier that detects attacks
 - Caveat: Can attackers fool both the recognition system and detector?

- Filters:
 - Hidden commands: Sampling input uniformly harms attacks, but does not affect benign commands
 - Inaudible commands: Low pass filters allow only frequencies ≤ 20KHz
Takeaways

- Machine-learning algorithms are not foolproof; practical and stealthy attacks (affecting privacy, security, …) are possible.

- Attacks on machine-learning have different forms. Examples:
 - Physical or digital domain
 - White-box or black-box settings

- These vulnerabilities should be taken into account when designing systems.