
Adversarial Settings in 
Deep Learning

Klas Leino
(slides adapted from Matt Fredrikson)



Machine Learning Pipeline

x
Y

Training
Data

Learning
Algorithm

Trained
Model

Output

Input

Which parts can the 
attacker influence?



Threat: Data privacy

x
Y

Training
Data

Learning
Algorithm

Trained
Model

Output

Input
“Copy” of

training data



Inference attacks

Sensitive Data

Inference

Inference
Attack

Training

Model

What does accessing the model tell us 
about the sensitive training data?



Practical risks: facial recognition models

Surveyed several hundred Mechanical Turkers

Turkers could identify targeted individual up to 95% of the time

Can generate images of people in the training set



What causes leakage

Hypothesis: advantage comes from influence and overfitting
• Influence: how much does partial input affect the model’s output?
• Overfitting: ratio of model’s error on training and test data

Overfitting

Influence



Threat: Data poisoning

x

Training
Data

Learning
Algorithm

Trained
Model

Input

Y
Output

YTargeted



Poisoning by training influence

Koh & Liang 2017, Understanding Black-box Predictions via Influence Functions



Threat: classifier evasion

x
Y

Training
Data

Learning
Algorithm

Trained
Model

Output

Input

YTargeted



Evasion attacks

Find:Given:

Bob

Such that the model 
classifies as Joe

should look as much 
like Bob as possible



Evasion attacks are easy to find

Many methods for 
attack, under varying 

constraints



• Dalvi et al. 2004, Adversarial Classification

• Looked at ML techniques for detecting spam
• Naïve Bayes was tremendously successful
• …but an obvious target for attackers

• Viewed classification as a game between classifier 
and adversary
• Optimal strategy for adversary against unaware classifier
• Optimal strategy for NB classifier against adversary

Before DL: Evading spam detectors



Problem definition

• X = (X1, X2, … Xn) a set of features

• Instance space X. Instance xÎX has feature values xi

• Instances belong to 2 classes:

• Positive (spam) are i.i.d. from P(X|+)

• Negative (benign email) are i.i.d. from P(X|–)

• Training set S, test set T

Slide credit: Nilesh Dalvi



Adversarial Classification Game

• Classifier tries to learn a function

yC = C(x) 

that will correctly predict classes

• Adversary attempts to make Classifier classify positive 
(harmful) instances as negative by modifying an 
instance x:

x’ = A(x)

(note: adversary can not modify negative instances)

Slide credit: Nilesh Dalvi



• For the classifier:
• Vi: cost of measuring feature Xi

• UC(yC, y): utility of classifying instance as yC having 
true class y

• Typically UC(yC, y) > 0 when yC = y, < 0 otherwise

• For the adversary:
• Wi(xi, x’): cost of changing ith feature from xi to xi’
• UA(yC, y): utility of classifying as yc an instance of 

class y
• Typically UA(-,+) > 0, UA(+,+) < 0

Costs and utilities

Slide credit: Nilesh Dalvi



Objectives

• Classifier wants to build C that will maximize expected 
utility taking into account adversary’s actions:

Utility given 
modified data

Cost of observing 
a feature

• Attacker wants to find feature change strategy A that 
will maximize utility given the costs:

Utility given 
modified data

Cost of changing
features



• Assume all parameters are known to each player
• Game operates as follows:

1. Classifier starts assuming data is unaltered
2. Adversary deploys optimal plan A(x) against classifier
3. Classifier deploys optimal classifier C(A(x)) against 

adversary
4. ...iterate until convergence

The Game

Key result: Adversary’s solution can be characterized 
by an integer-linear program

Slide credit: Nilesh Dalvi



Results: Classifier’s Utility

Scenarios:
• AddWords: add 

up to 20 words
• AddLength: add 

up to 200 chars
• Synonmy: 

change up to 20 
synonyms

Slide credit: Nilesh Dalvi



Fast Forward: Evading Deep Learning

Szegedy et al. 2014, Intriguing properties of neural networks

“We describe a way to traverse the manifold represented by the network in an 
efficient way and finding adversarial examples in the input space”

Attacker’s main objective
Still a valid input

Minimize to make “inconspicuous”



Attacking ImageNet

Original
Attacker

Perturbation
ostrich, 

Struthio camelus

Image credit: Szegedy et al., Intriguing Properties of Neural Networks, 2014



Jacobian-based Saliency Map Approach

Papernot et al. 2016, The Limitations of DL in Adversarial Settings

Basic approach: understand how inputs affect outputs
1. Compute forward derivative for each feature
2. Construct saliency map: input perturbations →output variations
3. Modify sample, focusing on most influential feature
4. Iterate, until output label changes



Adversarial Saliency Maps

For a softmax classifier:

Attacker’s target class

Feature moves away from target, 
or towards other labels

Measure how much output moves
toward target



Adversarial Saliency Maps: MNIST



JSMA Greedy Search

Slide credit: adapted from Nicolas Papernot



JSMA on MNIST



JSMA on Malware Classifiers

Grosse et al. 2016, Adversarial Perturbations Against DNNs for Malware

Add constraints to JSMA
• Only add features, i.e. don’t 

remove malicious behavior
• Use manifest features, i.e. 

easy to modify malware

Works well in practice
• Classifier: 98% accuracy
• Evasion successful in 63% 

of attempts

Slide credit: adapted from Nicolas Papernot



Threat taxonomy

Are these attacks
Feasible?



Transferability

Slide credit: adapted from Nicolas Papernot

Samples that evade model A are likely* to evade model B as well

A

B



Cross-model transferability

Image credit: Nicolas Papernot



Black-box attacks

Slide credit: adapted from Nicolas Papernot

Step 1: Query black-box models on inputs of adversary’s choice



Black-box attacks

Slide credit: adapted from Nicolas Papernot

Step 2: Train a local substitute from black-box model’s labels



Black-box attacks

Slide credit: adapted from Nicolas Papernot

Step 3: Augment dataset with samples that approach
the local model’s decision boundary



Black-box attacks

Slide credit: adapted from Nicolas Papernot

Step 4: Transfer attacks from local model to black-box remote



Black-box results

Image credit: Nicolas Papernot



What causes attacks?

Image credit: Nicolas Papernot

Hypothesis: Overfitting



Attacks not explained by overfitting

Szegedy et al., Intriguing Properties of Neural Networks



What causes vulnerability?

Hypothesis: Linearity

Image credit: Ian Goodfellow



Deep nets are piecewise linear

Slide credit: Ian Goodfellow



Fast Gradient Sign Method

Attacker’s perturbation

Training cost functionAttack parameter

Attacker’s target class
Input to the model



Excessive linearity

Goodfellow et al., Explaining and Harnessing Adversarial Examples



Hot research topic: prevent evasion attacks

1. Train on adversarial samples with correct labels

2. Classify using ensembles

3. Compress/de-noise images

4. Train classifiers to detect attacks

5. Smooth gradients around training points

Defenses

None of these work against novel attacks!



Provable Defenses

Goal: Given classifier f, prove that for all x there are no
x’ “near” x where f(x) ≠ f(x’).

Many challenges
1. How to define “near” precisely enough for proof? 
2. State space is large; verification is expensive
3. Evidence so far is that this isn’t ever true
4. …so how to build (and then prove) classifiers with 

this property?



Hardening models: a compromise

New goal: Given classifier f, prove that for all x in the training 
data there are no x’ “near” x where f(x) ≠ f(x’).

Still challenging
1. How to define “near” precisely enough for proof? 
2. State space is (still) large
3. Recent progress on training robust models with 

this property
4. But what about points outside the training data?



Summary

x
Y

Training
Data

Learning
Algorithm

Trained
Model

Output

Input

Attacks exist at each stage of the pipeline
• ML techniques need assumptions to perform well
• When assumptions don’t hold, behavior is often surprising
• Opacity of Deep Learning techniques compounds the problem
• Addressing the gap between attacker capability and needed 

assumptions is an active research topic



• Dalvi et al, “Adversarial classification”. KDD 2004
• Biggio et al, “Poisoning Attacks Against Support Vector 

Machines”. ICML 2012
• Koh et al, “Understanding Black-Box Predictions via Influence 

Functions”. ICML 2017
• Szegedy et al, “Intriguing properties of neural networks”. arXiv TR, 

2013
• Goodfellow et al, “Explaining and harnessing adversarial 

examples”. arXiv TR, 2014
• Tramèr et al, “The Space of Transferable Adversarial Examples”. 

arXiv TR, 2017
• Papernot et al, “Practical Black-Box Attacks against Machine 

Learning”. ASIACCS 2017
• Papernot et al, “The Limitations of Deep Learning in Adversarial 

Settings”, EuroS&P 2016
• Carlini and Wagner, “Towards Evaluating the Robustness of 

Neural Networks”, Oakland 2017
• Carlini and Wagner, “Adversarial Examples Are Not Easily 

Detected: Bypassing Ten Detection Methods”. AISec 2017.

Further reading


