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Neural network architectures
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* Full connectivity is a problem for image inputs

* Scalability: 200x200x3 images imply 120,000 weights per neuron in first
hidden layer

* Overfitting: Too many parameters would lead to overfitting



Convolutional Neural Networks [Lecun 1989]

 Specialized to the case whereinputs are images (more generally, data
with a grid-like topology)

e Sparse connections, parameter sharing
* Efficient to train
* Avoid overfitting

* Generalize across spatial translations of input
* By sliding “filters” that learn distinct patterns (edges, blobs of color etc.)



Key idea

* Replace matrix multiplication in neural networks with convolution

* Everything else remains the same



Edge detection by convolution
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2D Convolution
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Sparse connectivity
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Growing receptive fields
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Parameter sharing
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Convolutional Neural Networks
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* A ConvNet is made up of Layers

* Every Layer transforms an input 3D volume to an output 3D volume with
some differentiable function that may or may not have parameters

 Neurons in a layer will only be connected to a small region of the layer
before it



Example ConvNet architecture
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Layers: CONV, RELU, POOL, FC



Convolutional layer
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e An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example
volume of neurons in the first Convolutional layer.

e Each neuron in the convolutional layer is connected only to a local region in the input
volume spatially, but to the full depth (i.e. all color channels).

* If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will
have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 =75 weights
(and +1 bias parameter).

* There are multiple neurons (5 in this example) along the depth, all looking at the same
region in the input; these are part of different filters.
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Spatial arrangement

e Output volume dependson
* Depth (Number of filters) K

» Spatial extent of filters (receptive field) F
e Stride S

* Amount of zero-padding P



Spatial arrangement

* One spatial dimension (x-axis), one neuron with a receptive field size of F = 3, the
input size is W = 5, and there is zero paddingof P =1

o Left: stride = 1; center: stride =2

* Right: neuron weights shared across all yellow neurons in the same depth slice
(parameter sharing)

* Number of output neurons = (W-F+2P)/S+1
» Often P=(F-1)/2 when S=1; ensures number of output neurons = W



Spatial arrangement

* Depth
* Number of filters

* Each filter learns to look for a pattern in the input (e.g., first CONV layer filters
may activate in the presence of differently oriented edges or blobs of color)



Spatial arrangement

e Stride
* With which we slide the filters

* When the stride is 1 then we move the filters one pixel at a time. When the
stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a time
as we slide them around



Spatial arrangement

e Zero-padding
e Pad the input volume with zeros around the border
* Allows us to control the spatial size of the output volumes



Parameter sharing

* Assumption

* If one feature is useful to compute at some spatial position (x,y), then it
should also be useful to compute at a different position (x2,y2)

* All neuronsin the same depth slice use the same weights and bias



Convolution Demo

e http://cs231n.github.io/convolutional-networks/




Example ConvNet architecture
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Example ConvNet for CIFAR-10

* INPUT [32x32x3] will hold the raw pixel values of the image, in this case an
image of width 32, height 32, and with three color channels R,G,B.

 CONV layer will compute the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume. This may
result in volume such as [32x32x12] if we decided to use 12 filters.

* RELU layer will apply an elementwise activation function, such as
the max(0,x). This leaves the size of the volume unchanged ([32x32x12]).

* POOL layer wiIICFerform a downsampling operation along the spatial
dimensions (width, height), resulting in volume such as [16x16x12].

* FC (i.e. fuIIy-connectedf layer will compute the class scores, resultingin
volume of size [1x1x10], where each of the 10 numbers correspond to a

class score.




Max pooling
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Reduce theamount of parameters and computation in the
network, and hence to also control overfitting
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Real-world example

* The Krizhevsky et al. architecture that won the ImageNet challenge in 2012
accepted images of size [227x227x3].

* On the first Convolutional Layer, it used neurons with receptive field
size F=11, stride S=4 and no zero padding P=0.

 Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96,
the Conv layer output volume had size [55x55x96].

e Each of the 55*55*96 neurons in this volume was connected to a region of
size [11x11x3] in the input volume.

* Moreover, all 96 neurons in each depth column are connected to the same
[11x11x3] region of the input, but of course with different weights.



Real-world example

* Number of parameters

e Without parameter sharing

* 55*55*96 = 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights
and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first
layer of the ConvNet

* With parameter sharing

* The first Conv Layer in our example would now have only 96 unique set of weights (one
for each depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or 34,944
parameters (+96 biases).



Example filters learned by Krizhevsky et al




