
Deep	Feedforward	Networks
Anupam	Datta

CMU

Spring	2019

Security	 and	Fairness	 of	Deep	Learning

Announcements

• Please	Create	an	Xsede Account	now	(pinned	Piazza	post)
• Will	be	used	for	HW2

• HW2	will	be	released	shortly

Story	so	far

• Image	classification	problem
• Linear	models

• Score	function
• Loss	function
• Learning	

• Learning	as	optimization
• Gradient	descent	(batch,	mini-batch,	stochastic)
• Second-order	methods	(Newton’s	method)	
• Backpropagation

Today

• From	linear	score	functions	to	neural	networks
• Practical	design	choices
• (Some)	justification	of	design	choices

Recall:	Linear	score	function

f(xi,W) = Wxi

For	CIFAR:	

W:	10	x	3072
x:			3072	x	1
10	class	scores

2-Layer	neural	network

• Iterated	construction:	linear	function	followed	by	non-linear	function
• Training	network:	learn	W1,	W2	using	stochastic	gradient	descent;	use	
backpropagation to	compute	gradients

s = W2 max(0,W1x)

For	CIFAR:	

W1:	100	x	3072
W2:			10	x	100
x:	3072	x	1
10	class	scores

Topic	outline

• Setting	up	the	architecture
• Setting	up	the	data	and	the	loss
• Learning	and	evaluation

Neural	network	architecture

Outline

• Modeling	one	neuron
• Single	neuron	as	a	linear	classifier
• Commonly	used	activation	functions

• Neural	Network	architectures
• Layer-wise	organization
• Example	feed-forward	computation
• Representational	 power
• Setting	number	of	layers	and	their	sizes

Single	neuron	as	a	linear	classifier

• Binary	softmax classifier
• Interpret																																	to	be	the	probability	of	one	of	the	classes

• Set	threshold	at	0.5																																																

• Binary	SVM	classifier
• Attach	a	max-margin	hinge	loss	to	the	output	of	the	neuron

�(
X

i

wixi + b)

P (yi = 1 | xi;w)

Commonly	used	activation	functions

• Sigmoid	weaknesses:	
• saturate	and	kill	gradients
• outputs	not	zero-centered

• Tanh outputs	are	zero-centered

Commonly	used	activation	functions

• ReLU is	often	used	in	modern	deep	networks
• Linear,	non-saturating	form	speeds	up	convergence	of	stochastic	gradient	descent;	efficient	
to	compute	(threshold	operation)

• If	learning	rate	is	high,	then	ReLU units	can	die	i.e.,	never	activate	during	subsequent	training	

f(x) = max(0, x)

Commonly	used	activation	functions

• Leaky	ReLU
• Function	has	small	negative	slope	when	x	<	0	to	avoid	dying

• Maxout
• Generalizes	ReLU and	Leaky	ReLU;	advantages	of	both	but	more	parameters

f(x) = I(x < 0)(↵x) + I(x >= 0)(x)

max(wT
1 x+ b1, w

T
2 x+ b2)

Neural	network	architectures

• Neural	network	as	a	directed	acyclic	graph
• Examples	above:	2-layer	NN	and	3-layer	NN
• Fully	connected	layer

Example	feedforward	computation

• Repeated	matrix	multiplications	interwoven	with	activation	function
• x	could	hold	a	batch	of	training	data	evaluated	in	parallel
• Output	layer	neurons	do	not	go	through	non-linear	activation	function

Representational	power

Neural	Networks	with	at	least	one	hidden	layer	are universal	
approximators:

Given	any	continuous	function f(x) and	some ϵ>0,	there	exists	a	Neural	
Network g(x) with	one	hidden	layer	(with	a	reasonable	choice	of	non-

linearity,	e.g.	sigmoid)	such	that∀x,∣f(x)−g(x)∣<ϵ∀x

Representational	power

• Neural	Networks	work	well	in	practice	because	they	compactly	
express	nice,	smooth	functions	that	fit	well	with	the	statistical	
properties	of	data	we	encounter	in	practice,	and	are	also	easy	to	learn	
using	our	optimization	algorithms	(e.g.	gradient	descent).

• The	fact	that	deeper	networks	(with	multiple	hidden	layers)	can	work	
better	than	a	single-hidden-layer	networks	is	an	empirical	
observation,	despite	the	fact	that	their	representational	power	is	
equal.

Setting	number	of	layers	and	their	sizes

With	more	neurons,	we	have	greater	representation	power	but	possibly	
more	overfitting

Setting	number	of	layers	and	their	sizes

Train	large	network;	control	overfitting	with	regularization
The	Loss	Surfaces	of	Multilayer	Networks

Setting	up	the	data	and	the	model

Outline

• Setting	up	the	data	and	the	model
• Data	Preprocessing
• Weight	Initialization
• Regularization

• Loss	functions

Data	preprocessing

• Mean	subtraction
• Subtract	the	mean	across	every	individual feature in	the	data

X -= np.mean(X, axis = 0)

Data matrix X, where we will assume that X is of size [N	x	D]
(N is the number of data, D is their dimensionality)

Data	preprocessing

• Normalization
• Divide	each	zero-centered	feature	by	its	standard	deviation
• Bringing	data	dimensions	 to	same	scale	helps	SGD	converge		

X /= np.std(X, axis = 0)

Outline

• Setting	up	the	data	and	the	model
• Data	Preprocessing
• Weight	Initialization
• Regularization

• Loss	functions

Weight	initialization

• First	attempt
• Initialize	all	weights	to	0
• Not	a	good	idea

• Every	neuron	computes	the	same	output	=>	every	neuron	computes	the	same	gradients	
and	undergoes	the	same	parameter	updates

Weight	initialization

• Important	to	introduce	asymmetry	
• Idea:	Initialize	weights	to	independent	small	random	numbers

• Issue:	Distribution	of	the	outputs	from	a	randomly	initialized	neuron	has	a	
variance	that	grows	with	the	number	of	inputs

W = 0.01* np.random.randn(D,H)

where randn samples from a zero mean, unit standard
deviation gaussian.

Weight	initialization

• Recommended	practice	for	initializing	weights	of	neurons	in	NNs	with	
ReLU units

• Every	neuron’s	weight	vector	is	sampled	from	a	multi-dimensional	 gaussian
normalized	by	its	variance

w = np.random.randn(n) * sqrt(2.0/n)
where n is	the	number	of	its	inputs

Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification

Weight	initialization	(under	simplifying	assumptions)

• Initialize	weights	of	NN	as	follows

• Every	neuron’s	weight	vector	is	sampled	from	a	multi-dimensional	 gaussian
normalized	by	its	variance

w = np.random.randn(n) * sqrt(1.0/n)
where n is	the	number	of	its	inputs

Based on: Understanding the difficulty of training deep feedforward neural networks

Weight	initialization	(under	simplifying	assumptions)

Var(s) = Var(
nX

i

wixi)

=
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi)

= (nVar(w))Var(x)

s =
nX

i

wixi

Simplifying	
assumptions

Zero	mean

Identically	
distributed

Want:		Var(s)	=	Var(x)
Need:		Var(w)	 =	1/n

Var(aX)	=	a^2Var(X)
So,	 draw	w	from	unit	Gaussian	

and	scale	by	1/sqrt(n)

Weight	initialization	(under	simplifying	assumptions)

Var(s) = Var(
nX

i

wixi)

=
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi)

= (nVar(w))Var(x)

s =
nX

i

wixi

Simplifying	
assumptions

Zero	mean

Identically	
distributed

Want:		Var(s)	=	Var(x)
Need:		Var(w)	 =	1/n

Var(aX)	=	a^2Var(X)
So,	 draw	w	from	unit	Gaussian	

and	scale	by	1/sqrt(n)

Bias	initialization

• Initialize	biases	to	0

Outline

• Setting	up	the	data	and	the	model
• Data	Preprocessing
• Weight	Initialization
• Regularization

• Loss	functions

Recall:	loss	function

L =
1

N

X

i

Li

| {z }
data loss

+ �R(W)| {z }
regularization loss

Regularization

• L2	regularization

For	every	weight in	the	network,	we	add	the	term to	the	
objective,	where is	the	regularization	strength

• Encourages	the	network	to	use	all	of	its	inputs	a	little	rather	than	
some	of	its	inputs	a	lot
• During	gradient	descent	parameter	update,	every	weight	is	decayed	
linearly	toward	zero

w
1

2
�w2

�

Regularization

• L1	regularization

For	every	weight in	the	network,	we	add	the	term to	the	
objective,	where is	the	regularization	strength

• Encourages	the	network	to	use	some	of	its	inputs	a	lot	(i.e.	sparse	
weight	vectors)
• If	explicit	feature	selection	is	not	a	goal,	L2	regularization	usually	
performs	better	than	L1	regularization

w
�

�|w|

Regularization

• Dropout
• Sample	a	neural	network	within	the	full	network	and	only	update	its	
parameters	
• Typically	hidden	units	retained	with	p	=	0.5,	input	units	with	p	close	to	1

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Regularization:	Dropout

Regularization:	Dropout

Regularization:	Inverted	Dropout

Regularization	

In	practice

It	is	most	common	to	use	a	single,	global	L2	regularization	strength	that	
is	cross-validated.	It	is	also	common	to	combine	this	with	dropout	
applied	after	all	layers.	The	value	of p=0.5 is	a	reasonable	default,	but	
this	can	be	tuned	on	validation	data.

Outline

• Setting	up	the	data	and	the	model
• Data	Preprocessing
• Weight	Initialization
• Regularization

• Loss	functions

Loss	functions	for	classification

Data	loss

• SVM	loss

• Cross-entropy	loss
Li =

X

j 6=yi

max(0, fj � fyi + 1)

L =
1

N

X

i

Li

Li = � log

efyiP
j e

fj

!

Learning	and	evaluation

Outline

• Gradient	checks
• Monitoring	the	learning	process
• Parameter	updates
• Hyperparameter	Optimization
• Evaluation

• Model	Ensembles

Gradient	checks

• SGD	uses	gradients	that	we	computed	analytically	using	calculus	
• Issue:	How	do	we	check	that	we	did	not	make	errors?
• Compare	analytic	gradient	implementation	to	the	numerical	gradient

df(x)

dx
= lim

h !0

f(x+ h)� f(x)

h

f(x+ h)� f(x)

h
where h ⇡ 10�5

Gradient	checks:	tip

• Use	centered	formula

df(x)

dx
= lim

h !0

f(x+ h)� f(x)

h

df(x)

dx
= lim

h !0

f(x+ h)� f(x� h)

2h

f(x+ h)� f(x� h)

2h
where h ⇡ 10�5

f(x+ h)� f(x)

h
where h ⇡ 10�5

Use	Taylor	expansion	 of f(x+h)	 and f(x−h):	 first	formula	 has	an	error	on	order	of O(h),	while	 the	
second	 formula	 only	 has	error	terms	on	order	of O(h^2)

Gradient	checks:tip

• Use	relative	error
• Analytical	gradient:
• Numerical	gradient:

• In	practice:
• relative	error	>	1e-2	usually	means	the	gradient	is	probably	wrong
• 1e-2	>	relative	error	>	1e-4	should	make	you	feel	uncomfortable
• 1e-4	>	relative	error	is	usually	okay	for	objectives	with	kinks.	But	if	there	are	
no	kinks	(e.g.	use	of	tanh nonlinearities	 and	softmax),	then	1e-4	is	too	high.
• 1e-7	and	less	you	should	be	happy.

| f 0
a � f 0

n |
max(| f 0

a |, | f 0
n |)f 0

a
f 0
n

| f 0
a � f 0

n |

Gradient	computation

• Symbolic	(analytical)	differentiation	available	in	deep	learning	libraries

Monitoring	during	learning

• Loss	function

Monitoring	during	learning

• Train/Val	accuracy

Monitoring	during	learning

• Ratio	of	updates:weights

A	rough	heuristic	is	that	this	ratio	should	be	somewhere	around	1e-3.	

If	it	is	lower	than	this	then	the	learning	rate	might	be	too	low.	If	it	is	higher	then	the	
learning	rate	is	likely	too	high.

Monitoring	during	learning

• Activation	/	Gradient	distributions	per	layer
• plot	activation/gradient	histograms	for	all	layers	of	the	network
• not	a	good	sign	to	see	any	strange	distributions	
• e.g.	with	tanh neurons	we	would	like	to	see	a	distribution	of	neuron	
activations	between	the	full	range	of	[-1,1],	instead	of	seeing	all	neurons	
outputting	zero,	or	all	neurons	being	completely	saturated	at	either	 -1	or	1.

Annealing	the	learning	rate

• Step	decay	
• Reduce	the	learning	rate	by	some	factor	every	few	epochs.	
• Typical	values	might	be	reducing	the	learning	rate	by	a	half	every	5	epochs,	or	
by	0.1	every	20	epochs.	These	numbers	depend	heavily	on	the	type	of	
problem	and	the	model.	
• One	heuristic	you	may	see	 in	practice	is	to	watch	the	validation	error	while	
training	with	a	fixed	learning	rate,	and	reduce	the	learning	rate	by	a	constant	
(e.g.	0.5)	whenever	the	validation	error	stops	improving.

Monitoring	during	learning

• First-layer	Visualizations

Parameter	updates

• Vanilla	SGD

where learning_rate is	a	hyperparameter - a	fixed	constant.	

Parameter	updates

• Momentum	update

A	typical	 setting	is	to	start	with	momentum	of	about	 0.5	and	
anneal	it	to	0.99	or	so	 over	multiple	 epochs	 (cf.	learning	 rate	is	
decreased	over	time)

Nesterov momentum

Per-parameter	adaptive	learning	rate	
methods
• Adaptively	tune	learning	rate	per	parameter	(instead	of	single	global	
learning	rate)
• Adagrad
• RMSprop

Adagrad

• cache has	size	equal	to	the	size	of	the	gradient,	and	keeps	track	of	per-
parameter	sum	of	squared	gradients
• Reduce	effective	learning	rate	more	for	weights	with	high	gradients
• eps (usually	set	somewhere	in	range	from	1e-4	to	1e-8)	avoids	division	by	
zero
• Monotonically	decreasing	learning	rate	may	stop	learning	too	early

Example

• <w1,	w2>	
• w1:	1,	1,	1
• w2:	0.2,	0.2,	0.2
• cache	=	 3, .12
• Effective	gradient	for	w1	=	1/	 3 =	0.76
• Effective	gradient	for	w2	=	0.2/	 .12 =	0.35

RMSprop

• Adjusts	Adagrad to	reduce	aggressive,	monotonically	decreasing	learning	
rate
• Uses	a	moving	average	of	squared	gradients
• decay_rate is	a	hyperparameter and	typical	values	are	[0.9,	0.99,	0.999]
• Unlike	Adagrad the	updates	do	not	get	monotonically	smaller

Adam

• RMSProp with	momentum
• smooth	version	of	the	gradient	m	used	instead	of	gradient	dx
• Recommended	values:	eps	=	1e-8,	beta1	=	0.9,	beta2	=	0.999

Hyperparameter optimization

• Some	hyperparameters
• the	initial	 learning	rate
• learning	rate	decay	schedule	(such	as	the	decay	constant)
• regularization	strength	(L2	penalty,	dropout	strength)

Hyperparameter optimization

• Hyperparameter ranges

• Search	for	multiplicative	 hyperparameters (e.g.,	learning	rate,	regularization	
strength)	on	a	log	scale	

• Dropout	parameter	search	on	original	scale	

learning_rate = 10 ** uniform(-6, 1)

dropout = uniform(0,1)

Hyperparameter optimization

• Random	search	better	than	grid	search	on	high	dimensional	spaces	
with	low	effective	dimensionality

Random Search for Hyper-Parameter Optimization

Hyperparameter optimization

• Search	from	coarse	to	fine	ranges

• First	search	in	coarse	ranges	(e.g.	10	**	[-6,	1]),	and	then	depending	on	where	
the	best	results	are	turning	up,	narrow	the	range.

Model	ensembles

• Approach
• Train	multiple	 independent	models,	and	at	test	time	average	their	predictions

• Training	”independent”	models
• Same	model,	different	initializations
• Top	models	discovered	during	cross-validation
• Different	checkpoints	of	a	single	model
• Running	average	of	parameters	during	training

Hinton et al., Distilling the Knowledge in a Neural Network

Many	other	tools	to	improve	training

• Second-order	methods	(Newton,	L-BFGS)
• Momentum
• Batch	normalization
• Adam
• …

Acknowledgment

Based	in	part	on	material	from	Stanford	CS231n	
http://cs231n.github.io/

Batch	Normalization

• Batch	Normalization	is	a	technique	that	alleviates	problems	with	
proper	initialization	of	neural	networks

• We	will	discuss	it	in	a	later	lecture	

Numerical	gradient

A	problem	 of	efficiency

Biological	motivation

Imperfect	analogy!

Second-order	methods

• Newton’s	method	does	not	scale
• Computing	inverse	Hessian	explicitly	 is	too	expensive

• Quasi-newton	method	L-BFGS	works	quite	well
• Iteratively	build	up	limited	memory	approximation	of	Hessian

Dean et al. Large Scale Distributed Deep Networks

