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Overview 

• Revisiting deep neural networks 

• Adversarial attacks: attacks, properties, and defenses 

• Artifacts of adversarial samples  

• Deep manifold representation 

• Introduction to Gaussian processes 

• Bayesian uncertainty estimates 

• Making a detector 

• Breaking the detector  



Why deep learning? 

Good at human tasks  



Why deep learning? 

MNIST dataset for digit classification CIFAR-10 dataset for object recognition 

Deep neural networks achieve state-of-the-art performance (> 99% accuracy) 



Why deep learning? 

No need for extensive feature selection 



Why deep learning? 

Versatile and general architecture that can used for different tasks 



Issues with deep learning 

Understanding of why deep learning works is limited 



Adversarial attacks against DNNs 



Basic concepts of deep learning 

• Architecture 

 

• Neuron and activation 
functions 

 

• Logits, softmax, and 
confidence 

 

• Network loss 

 

• Overfitting 
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Basic concepts of deep learning 

• Architecture 

 

• Neuron and activation 
functions 

 

• Logits, softmax, and 
confidence 

 

• Network loss 

 

• Overfitting 
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• Softmax: converts outputs into probabilities 

• Logits: Inputs to softmax  

• Confidence: Probability of the predicted class 



Basic concepts of deep learning 

• Architecture 

 

• Neuron and activation 
functions 

 

• Logits, softmax, and 
confidence 

 

• Network loss 

 

• Overfitting 

͞Loss͟: the distaŶĐe ďetǁeeŶ grouŶd-truth and model prediction 

 

͞CategoriĐal Đross-eŶtropǇ͟: KL diǀergeŶĐe ďetǁeeŶ ŵodel output aŶd  
 one-hot encoded ground truth 

 

͞Risk͟: Total loss oŶ the eŶtire dataset 
 

 

Goal of model training is to minimize model risk 
 

 

L(q , x, y) = - logPcorrect



Basic concepts of deep learning 

• Architecture 

 

• Neuron and activation 
functions 

 

• Logits, softmax, and 
confidence 

 

• Network loss 

 

• Overfitting 

Actual decision boundary Over-fitted boundary 

Causes difference in performance between training and test data 



Dropout: Preventing overfitting 

Remove nodes probabilistically for each 

training batch with probability p 

 

Only done during training time. Scale weights 

down p after training is done 

 

Why( and how) does dropout work? 

 

  

Batch 1 
Batch 2 



Adversarial attacks against DNNs 

Regular  

(99%) 

Noisy  

(98%) 

Adversarial 

(0.01%) 

Transferrable , targeted, and numerous  



Adversarial attacks: FGSM[Goodfellow et al.] 

xadv = x+ e .sign(ÑxL(Q , x, y))



Adversarial attacks: BIM[Kurakin et al.] 

xadv
i

= xadv
i - 1

+
e

N
sign(ÑxL(Q , x, y))



Adversarial attacks: JSMA[Papernot et al.] 

A targeted attack to find perturbations that force mis-classification into  pre-selected class 

S(x, t)[i] =

0 if  Ñx[i ]L(x, t) < 0 or Ñx[i ]L(x, j ) > 0
j¹t

å

Ñx[i ]L(x, t)

Ñx[i ]L(x, j )
j¹t

å
 otherwise



Adversarial attacks: C&W[Carlini and Wagner] 

minD(x', x)

s.t.  Z(x') = t

The constraint is highly non-linear and cannot be optimized 

C&W is considered to be the most powerful attack 

min
x '

|| x'- x ||2
2

+c. f (x')

f (x') = max{Z(x')i ¹ t} - Z(x')t



Visualizing adversarial perturbations 



 

 

X 

Visualizing adversarial perturbations  

Loss surface in an 𝓔-neighborhood around x 

• Adversarial regions are small 

 

• Inhabit contiguous pockets 

 

• But numerous directions 
 

 

∆ǆ 



Defenses: Defensive distillation 

Input 
Soft 

probability 

labels 

Hidden layers 

Softmax Logits 

Network 1 trained using hard labels Smaller network 2 trained using soft labels 

Broken by Carlini and Wagner attacks 



 

 

X 

Defenses: Adversarial training 

• Create adversarial examples and use it to train the model 

Loss surface in an 𝓔-neighborhood around x 

Adversarial training 

causes gradient masking 
Xrandom 

Xadv 



Artifacts of adversarial samples:  

Deep manifold representation 

Hidden layer  

representation 

Properties of hidden layer representation 

 

• Lower-dimensional manifold 

 

• Approximates the true manifold  

 

• CaŶ ďe traǀersed to ĐhaŶge the ͞true͟ laďel [Gardner et al.] 

 



Artifacts of adversarial samples: 

Deep manifold representation 

Claiŵ: Adǀersarial saŵples lie ͞off͟ the data ŵaŶifold 

Near the classification boundary 

Far from sub-manifold 
Far from classification boundary 

Near (but not on) the sub-manifold 

Near the classification boundary 

Near (but not on) the sub-manifold 



Estimating density of the deep manifold 

representation 

Adversarial point leaving the source class and moving towards the target class 

d(x) =
1

| Xt |
K(f (x), f (x'))

x 'Î Xt

å

K(a,b) = e
- (a- b)2

s
2



Gaussian Processes 
Consider an appropriate model, e.g linear 

 

Draw weights from a prior Gaussian distribution 

 

Consider only those functions that satisfy training constraints 



Dropout as a Gaussian process 

Dropout is an approximate Gaussian process 

 

Explains why it prevents over-fitting 

 

Variance of predictions is high when the model is 

extrapolating 

 



Artifacts of adversarial samples:  

Bayesian Uncertainty 

• Run dropout during test time with T=50 iterations 

 

• Predicted value == mean prediction 

 

• Bayesian uncertainty == variance of predictions 



Artifacts of adversarial samples 



Building a detector 

• Compute uncertainty and density estimates 

• Build a two-feature logistic regression model 



Breaking uncertainty 



Breaking density of deep manifold 

representations [Sabour et al.] 

min || f (I ) - f (I g) ||2

such that || I - I s ||
¥
< d



Comparing defenses 



Future work 

• Currently, no perfect defenses 

 

• Robust optimization has been proposed as a provable defense 

 

• We are currently working on an approach based on influence 
functions 

 


