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Overview

* Revisiting deep neural networks
* Adversarial attacks: attacks, properties, and defenses

 Artifacts of adversarial samples
* Deep manifold representation
* Introduction to Gaussian processes
* Bayesian uncertainty estimates

* Making a detector
* Breaking the detector



Why deep learning?
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Why deep learning?
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MNIST dataset for digit classification

airpiene ot N B > - I EH 2
automobile E.Eﬁh.‘
ot el WS ¥
o l:alnul-au
cerr IR IS RS
g HESHSBOAK R
vog I I S 2 I L
orse i M N 5 9 [ B R B TR
o g e EE S e
week o R 4 150 5 o L R

CIFAR-10 dataset for object recognition

Deep neural networks achieve state-of-the-art performance (> 99% accuracy)



Why deep learning?

No need for extensive feature selection



Why deep learning?

Versatile and general architecture that can used for different tasks



Issues with deep learning

Understanding of why deep learning works is limited



Adversarial attacks against DNNs




Basic concepts of deep learning

e Architecture

* Neuron and activation
functions

* Logits, softmax, and
confidence

e Network loss

e Overfitting




Basic concepts of deep learning
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Basic concepts of deep learning

e Architecture .
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Basic concepts of deep learning

* Architecture &4

e Neuron and activation
functions j

e Softmax: converts outputs into probabilities
* Logits: Inputs to softmax
* Confidence: Probability of the predicted class

* Logits, softmax, and
confidence

e Network loss

e Overfitting




Basic concepts of deep learning

e Architecture

L( ,xy)= logP

* Neuron and activation correct
functions
“Loss”: the distance between ground-truth and model prediction
¢ Logits, softmax, and “Categorical cross-entropy”: KL divergence between model output and
confidence one-hot encoded ground truth

“Risk”: Total loss on the entire dataset
e Network loss

Goal of model training is to minimize model risk

e Overfitting




Basic concepts of deep learning
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* Logits, softmax, and ® ®
confidence !
Actual decision boundary Over-fitted boundary
* Network loss
Causes difference in performance between training and test data
e Overfitting




Dropout: Preventing overfitting

Remove nodes probabilistically for each
training batch with probability p

)

Batch 1 /'\/' ’
Batch 2 .“ v ’ C w
A

Only done during training time. Scale weights
down p after training is done

Why( and how) does dropout work?




Adversarial attacks against DNNs
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Transferrable , targeted, and numerous




Adversarial attacks: FGSMisoodreliow et al]
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Adversarial attacks: JSMA[Papernot et al.]

A targeted attack to find perturbations that force mis-classification into pre-selected class

Output classification
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Adve rSa r| a | atta CkS C&W[Carlini and Wagner]

min D(X', X)
st. Z(x")=t

The constraint is highly non-linear and cannot be optimized

min || x' x||; +c f(x')
f(x")=max{Z(x"), ,} Z(x'),

C&W is considered to be the most powerful attack



Visualizing adversarial perturbations




Visualizing adversarial perturbations

e Adversarial regions are small
* Inhabit contiguous pockets

e But numerous directions

Loss surface in an
E-neighborhood around x



Defenses: Defensive distillation

Hidden layers
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Broken by Carlini and Wagner attacks



Defenses: Adversarial training

* Create adversarial examples and use it to train the model

Adversarial training
causes gradient masking

Loss surface in an
&E-neighborhood around x
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Artitfacts of adversarial samples:
Deep manifold representation

Properties of hidden layer representation

e Lower-dimensional manifold
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Hidden layer
representation

1,’,7 * Approximates the true manifold
11"*\

e Can be traversed to change the “true” label (cardner etal]




Artifacts of adversarial samples:

Deep manifold representation

Claim: Adversarial samples lie “off” the data manifold
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(a) Two simple 2D submanifolds. (b) One submanifold has a ‘pocket’.

Near the classification boundary Far from classification boundary
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(c) Nearby 2D submanifolds.

Near the classification boundary
Near (but not on) the sub-manifold



Estimating density of the deep manifold
representation
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iteration iteration

Adversarial point leaving the source class and moving towards the target class



Gaussian Processes

Consider an appropriate model, e.g linear
Draw weights from a prior Gaussian distribution

Consider only those functions that satisfy training constraints

0 05 1 0 0.5 i
input, x input, x

(a), prior (b), posterior



Dropout as a Gaussian process

Dropout is an approximate Gaussian process
Explains why it prevents over-fitting 1}

Variance of predictions is high when the model is
extrapolating




Artifacts of adversarial samples:
Bayesian Uncertainty

1000 . . .
— Normal samples
* Run dropout during test time with T=50 iterations —— Adversarial samples
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Artifacts of adversarial samples

Sample MNIST CIFAR-10

Type |2)>1 | G <1 | 28>0 | <1 |85 | G2 < | 88050 | 25D <
FGSM 92.2% 95.6% 79.5% 90.0% 74.7% 70.1% 68.2% 69.6%
BIM-A 99.2% 98.0% 99.5% 08.7% 83.4% 76.4% 83.3% 76.8%
BIM-B 60.7% 90.5% 39.6% 86.7% 4.0% 98.8% 3.6% 99.1%
JSMA 98.7% 98.5% 07.5% 06.5% 93.5% 91.5% 87.4% 89.6%
C&W 98.5% 08.4% 96.6% 07.5% 92.9% 92.4% 88.23% 90.4%




Building a detector

TPA

* Compute uncertainty and density estimates

* Build a two-feature logistic regression model
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Breaking uncertainty

Uncertainty vs. # of FGSM iterations
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Breaking density of deep manifold
representations isavouretal,

min || (/) (Ig)H2
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(a) d(a,g)/d(s,g) (b) d(ex,g)/ di(g)



Comparing defenses
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Future work

e Currently, no perfect defenses
* Robust optimization has been proposed as a provable defense

* We are currently working on an approach based on influence
functions



