Detecting Adversarial Samples from Artifacts

Saurabh Shintre Principal Researcher Symantec Research Labs

Joint work with:

Reuben Feinman (NYU/Symantec) and Ryan Curtin (Symantec)

Overview

- Revisiting deep neural networks
- Adversarial attacks: attacks, properties, and defenses
- Artifacts of adversarial samples
 - Deep manifold representation
 - Introduction to Gaussian processes
 - Bayesian uncertainty estimates
- Making a detector
- Breaking the detector

© 2009 Geek Culture

joyoftech.com

Good at human tasks

З б S -5 F B Я в q Ð

MNIST dataset for digit classification

CIFAR-10 dataset for object recognition

Deep neural networks achieve state-of-the-art performance (> 99% accuracy)

No need for extensive feature selection

Versatile and general architecture that can used for different tasks

Issues with deep learning

Understanding of why deep learning works is limited

Adversarial attacks against DNNs

- Architecture
- Neuron and activation functions
- Logits, softmax, and confidence
- Network loss

• Overfitting

- Architecture
- Neuron and activation functions
- Logits, softmax, and confidence
- Network loss
- Overfitting

• Architecture Activation function Neuron and activation Output Input Σ $\varphi(\cdot)$ signals functions Summing junction • Logits, softmax, and Synaptic weights confidence Softplus Rectifier 3 - Network loss (x) o 2 -1-• Overfitting -2 -6 0 2 4 6 -4 Sigmoid

ReLu

 y_k

Bias

- Architecture
- Neuron and activation functions
- Logits, softmax, and confidence
- Network loss

• Overfitting

- Softmax: converts outputs into probabilities
- Logits: Inputs to softmax
- Confidence: Probability of the predicted class

• Architecture

- Neuron and activation functions
- Logits, softmax, and confidence
- Network loss
- Overfitting

$$L(, \mathbf{x}, \mathbf{y}) = \log P_{\text{correct}}$$

"Loss": the distance between ground-truth and model prediction

"Categorical cross-entropy": KL divergence between model output and one-hot encoded ground truth

"Risk": Total loss on the entire dataset

Goal of model training is to minimize model risk

- Architecture
- Neuron and activation functions
- Logits, softmax, and confidence
- Network loss
- Overfitting

Causes difference in performance between training and test data

Dropout: Preventing overfitting

Batch 1

Batch 2

Remove nodes probabilistically for each training batch with probability p

Only done during training time. Scale weights down p after training is done

Why(and how) does dropout work?

Adversarial attacks against DNNs

Transferrable, targeted, and numerous

Adversarial attacks: FGSM[Goodfellow et al.]

 $X_{adv} = X + .sign(\nabla_x L(, x, y))$

Adversarial attacks: BIM[Kurakin et al.]

$$\mathbf{x}_{adv}^{i} = \mathbf{x}_{adv}^{i} + \frac{1}{N} \operatorname{sign}(\nabla_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}))$$

Adversarial attacks: JSMA[Papernot et al.]

A targeted attack to find perturbations that force mis-classification into pre-selected class

$$\mathbf{S}(\mathbf{x}, t)[i] = -\begin{cases} 0 \text{ if } \nabla_{x[i]} L(\mathbf{x}, t) < 0 \text{ or } \sum_{j \neq t} \nabla_{x[i]} L(\mathbf{x}, j) > 0 \\ \frac{\nabla_{x[i]} L(\mathbf{x}, t)}{\sum_{j \neq t} \nabla_{x[i]} L(\mathbf{x}, j)} \text{ otherwise} \end{cases}$$

Adversarial attacks: C&W[Carlini and Wagner]

 $\min D(x', x)$ st. Z(x') = t

The constraint is highly non-linear and cannot be optimized

$$\min_{x'} \|x' \|_{2}^{2} + c. f(x')$$
$$f(x') = \max\{Z(x')_{i}\} \ Z(x')_{t}\}$$

C&W is considered to be the most powerful attack

Visualizing adversarial perturbations

Visualizing adversarial perturbations

Loss surface in an *E*-neighborhood around x

- Adversarial regions are small
- Inhabit contiguous pockets
- But numerous directions

Defenses: Defensive distillation

Network 1 trained using hard labels

Smaller network 2 trained using soft labels

Broken by Carlini and Wagner attacks

Defenses: Adversarial training

• Create adversarial examples and use it to train the model

Loss surface in an *E*-neighborhood around x

Artifacts of adversarial samples: Deep manifold representation

Properties of hidden layer representation

- Lower-dimensional manifold
- Approximates the true manifold
- Can be traversed to change the "true" label [Gardner et al.]

Artifacts of adversarial samples: Deep manifold representation

Claim: Adversarial samples lie "off" the data manifold

(a) Two simple 2D submanifolds.

(b) One submanifold has a 'pocket'.

(c) Nearby 2D submanifolds.

Near the classification boundaryFar from classification boundaryFar from sub-manifoldNear (but not on) the sub-manifold

Near the classification boundary Near (but not on) the sub-manifold

Estimating density of the deep manifold representation

Adversarial point leaving the source class and moving towards the target class

Gaussian Processes

Consider an appropriate model, e.g linear

Draw weights from a prior Gaussian distribution

Consider only those functions that satisfy training constraints

Dropout as a Gaussian process

Dropout is an approximate Gaussian process

Explains why it prevents over-fitting

Variance of predictions is high when the model is extrapolating

Artifacts of adversarial samples: Bayesian Uncertainty

- Run dropout during test time with *T=50* iterations
- Predicted value == mean prediction
- Bayesian uncertainty == variance of predictions

Artifacts of adversarial samples

Sample	MNIST				CIFAR-10			
Туре	$\frac{u(x^*)}{u(x)} > 1$	$\frac{d(x^*)}{d(x)} < 1$	$\frac{u(x^*)}{u(x^n)} > 1$	$\frac{d(x^*)}{d(x^n)} < 1$	$\frac{u(x^*)}{u(x)} > 1$	$\frac{d(x^*)}{d(x)} < 1$	$\frac{u(x^*)}{u(x^n)} > 1$	$\frac{d(x^*)}{d(x^n)} < 1$
FGSM	92.2%	95.6%	79.5%	90.0%	74.7%	70.1%	68.2%	69.6%
BIM-A	99.2%	98.0%	99.5%	98.7%	83.4%	76.4%	83.3%	76.8%
BIM-B	60.7%	90.5%	35.6%	86.7%	4.0%	98.8%	3.6%	99.1%
JSMA	98.7%	98.5%	97.5%	96.5%	93.5%	91.5%	87.4%	89.6%
C&W	98.5%	98.4%	96.6%	97.5%	92.9%	92.4%	88.23%	90.4%

Building a detector

- Compute uncertainty and density estimates
- Build a two-feature logistic regression model

Breaking uncertainty

Uncertainty vs. # of FGSM iterations

Breaking density of deep manifold representations [Sabour et al.]

 $\min \| (I) (I_g) \|_2$

Comparing defenses

Future work

- Currently, no perfect defenses
- Robust optimization has been proposed as a provable defense
- We are currently working on an approach based on influence functions