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Announcements 

• HW4 due date poll 

1. Friday May 4; OR  

2. Tuesday May 8 

 

• HW2 grading and review 



Goal 

Understand Recurrent Neural Networks (RNNs) using Natural Language 
Processing (NLP) tasks as motivation 



Natural Language Processing 

Understand natural language (e.g., English, Mandarin, Hindi) to 
perform useful tasks 

 

Example tasks 

• Sentiment analysis 

• Language translation 

• Google TraŶslate, MiĐrosoft TraŶslator, … 

• Question answering 

• CortaŶa, Google AssistaŶt, Siri, … 

 

Major successes of 

deep learning 



Outline for this module 

• Word embedding 

• RepreseŶtiŶg ǁords suĐĐiŶĐtlǇ ǁhile preserǀiŶg ͞seŵaŶtiĐ distaŶĐe͟ 

• Neural language modeling (uses word embedding) 

• RNN (basics), LSTM  

• Neural machine translation (uses neural language modeling) 

• Sequence-to-sequence models, attention 

 

• Gender bias in word embedding 

• Explanations for and bias in RNNs 

 



Word Embedding 



How to represent words? 

First idea: one-hot encoding 

 

Weakness 

• Does Ŷot Đapture ͞siŵilaritǇ͟ ďetǁeeŶ ǁords 

    ;e.g., ͞ŵotel͟ aŶd ͞hotel͟Ϳ   



How to represent words? 

• IŶsight: ͞You shall kŶoǁ a ǁord ďǇ the ĐoŵpaŶǇ it keeps͟ - J. R. Wirth 

 

• The context of a word is the set of words that appear nearby (within a 
fixed size window) 

 

• Use the contexts of a word w to build up its representation 



How to represent words? 

• Second idea: word embeddings (or word vectors) 

 

• A dense vector for each word such that vectors of words that appear 
in similar contexts are similar 



Popular word embedding: Word2vec 

• Papers from Mikolov et al. (Google) 

• Efficient Estimation of Word Representations in Vector Space 

• Distributed Representations of Words and Phrases and their Compositionality 

 

• Will focus on Word2vec Skip-gram model 

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf


Word2vec approach 

• Train neural network with single hidden layer to perform a specific 
task 

• Weights of the hidden layer give us the word embeddings 

 

 

 

• Seems familiar? 

• Recall autoencoders used for pretraining in last lecture 



Word2vec Skip-gram task 

• Given a specific word in the middle of a sentence (the input word), look at the 
words nearby and pick one at random.  

 

• The network is going to tell us the probability for every word in our vocabulary of 
ďeiŶg the ͞ŶearďǇ ǁord͟ that ǁe Đhose. 
 

• ͞NearďǇ͟ ǁords: A tǇpiĐal ǁiŶdoǁ size ŵight ďe Ϯ, ŵeaŶiŶg Ϯ ǁords ďehiŶd aŶd 
2 words ahead (4 in total). 

 

• Eǆaŵple: If iŶput ǁord ͞Soǀiet ,͟ the output proďaďilities are goiŶg to ďe ŵuĐh 
higher for ǁords like ͞UŶioŶ͟ aŶd ͞Russia͟ thaŶ for uŶrelated ǁords like 
͞ǁaterŵeloŶ͟ aŶd ͞kaŶgaroo .͟ 



Training samples 



Model 



Weight matrix for hidden layer 

• Weight matrix is  

     10,000 x 300 



Weight matrix: lookup table for word vectors 

• Each one-hot encoding selects a row of the matrix (its word vector) 



Output layer 



Note 

If two words have similar contexts, then the network is motivated to 
learn similar word vectors for these two words 

 

Examples 

• ͞sŵart ,͟ ͞iŶtelligeŶt͟ 

• ͞aŶt ,͟ ͞aŶts͟ 



In more detail 



Word2Vec overview 



Word2Vec: toward objective function 



Word2Vec: objective function 

• Objective function is negative log likelihood 

 

 

 

 

 

 

• Minimizing objective function equivalent to maximizing predictive 
accuracy 



Word2Vec: objective function  



Word2Vec: prediction function 



Output layer 

Center (input)  

word representation 

Context (outside)  

word representation 



Word2Vec: train model using SGD  



Gradient with respect to center word 



Gradient with respect to center word 



Scalability is a challenge 

• With ϯϬϬ features aŶd a ǀoĐaď of ϭϬ,ϬϬϬ ǁords, that’s ϯM ǁeights iŶ 
the hidden layer and output layer each! 

 

• Two techniques in Mikolov et al. Distributed Representations of 
Words and Phrases and their Compositionality 

• Subsampling frequent words 

• Negative sampling 

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf


Subsampling frequent words 

• There are tǁo ͞proďleŵs͟ ǁith ĐoŵŵoŶ ǁords like ͞the͟: 
1. WheŶ lookiŶg at ǁord pairs, ;͞foǆ ,͟ ͞the͟Ϳ doesŶ’t tell us ŵuĐh aďout the 

ŵeaŶiŶg of ͞foǆ .͟ ͞the͟ appears iŶ the ĐoŶteǆt of prettǇ ŵuĐh eǀerǇ ǁord. 
2. We ǁill haǀe ŵaŶǇ ŵore saŵples of ;͞the ,͟ …Ϳ thaŶ ǁe Ŷeed to learŶ a good 

ǀeĐtor for ͞the .͟ 
 



Subsampling frequent words 

         is the word 

       is the fraction of the total words in the corpus that are that 
word 

Probability of keeping word 

•P(wi)=1 (100% chance of being kept) when z(wi)<=0.0026 

•P(wi)=0.5 (50% chance of being kept) 

when z(wi)=0.00746 



Negative sampling 

• Scalability challenge 

• For each training sample, update all weights in output layer 

• 3M weights in our running example! 

 

• Negative sampling 

• For each training sample, update only a small number of weights in output 
layer  

• Weights for the correct output word (300 weights) + 5 randomly selected 
͞Ŷegatiǀe ǁords͟for whom the output should be 0 (5x 300 weights) 

 



Negative sampling 

• Negative samples are chosen according to their empirical frequency 



Negative sampling: objective function 

• Maximize probability that real words appear around center word; and  

• Minimize probability that random words appear around center word 



Word embeddings capture relationships 



Additive compositionality 



Outline for this module 

• Word embedding 

• RepreseŶtiŶg ǁords suĐĐiŶĐtlǇ ǁhile preserǀiŶg ͞seŵaŶtiĐ distaŶĐe͟ 

• Neural language modeling (uses word embedding) 

• RNN (basics), LSTM  

• Neural machine translation (uses neural language modeling) 

• Sequence-to-sequence models, attention 

 

• Gender bias in word embedding 

• Explanations for and bias in RNNs 
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