
Recursive Neural Networks

for NLP
Anupam Datta

CMU

Spring 2018

Security and Fairness of Deep Learning

Announcements

• HW4 due date poll

1. Friday May 4; OR

2. Tuesday May 8

• HW2 grading and review

Goal

Understand Recurrent Neural Networks (RNNs) using Natural Language
Processing (NLP) tasks as motivation

Natural Language Processing

Understand natural language (e.g., English, Mandarin, Hindi) to
perform useful tasks

Example tasks

• Sentiment analysis

• Language translation

• Google TraŶslate, MiĐrosoft TraŶslator, …

• Question answering

• CortaŶa, Google AssistaŶt, Siri, …

Major successes of

deep learning

Outline for this module

• Word embedding

• RepreseŶtiŶg ǁords suĐĐiŶĐtlǇ ǁhile preserǀiŶg ͞seŵaŶtiĐ distaŶĐe͟

• Neural language modeling (uses word embedding)

• RNN (basics), LSTM

• Neural machine translation (uses neural language modeling)

• Sequence-to-sequence models, attention

• Gender bias in word embedding

• Explanations for and bias in RNNs

Word Embedding

How to represent words?

First idea: one-hot encoding

Weakness

• Does Ŷot Đapture ͞siŵilaritǇ͟ ďetǁeeŶ ǁords

 ;e.g., ͞ŵotel͟ aŶd ͞hotel͟Ϳ

How to represent words?

• IŶsight: ͞You shall kŶoǁ a ǁord ďǇ the ĐoŵpaŶǇ it keeps͟ - J. R. Wirth

• The context of a word is the set of words that appear nearby (within a
fixed size window)

• Use the contexts of a word w to build up its representation

How to represent words?

• Second idea: word embeddings (or word vectors)

• A dense vector for each word such that vectors of words that appear
in similar contexts are similar

Popular word embedding: Word2vec

• Papers from Mikolov et al. (Google)

• Efficient Estimation of Word Representations in Vector Space

• Distributed Representations of Words and Phrases and their Compositionality

• Will focus on Word2vec Skip-gram model

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf

Word2vec approach

• Train neural network with single hidden layer to perform a specific
task

• Weights of the hidden layer give us the word embeddings

• Seems familiar?

• Recall autoencoders used for pretraining in last lecture

Word2vec Skip-gram task

• Given a specific word in the middle of a sentence (the input word), look at the
words nearby and pick one at random.

• The network is going to tell us the probability for every word in our vocabulary of
ďeiŶg the ͞ŶearďǇ ǁord͟ that ǁe Đhose.

• ͞NearďǇ͟ ǁords: A tǇpiĐal ǁiŶdoǁ size ŵight ďe Ϯ, ŵeaŶiŶg Ϯ ǁords ďehiŶd aŶd
2 words ahead (4 in total).

• Eǆaŵple: If iŶput ǁord ͞Soǀiet ,͟ the output proďaďilities are goiŶg to ďe ŵuĐh
higher for ǁords like ͞UŶioŶ͟ aŶd ͞Russia͟ thaŶ for uŶrelated ǁords like
͞ǁaterŵeloŶ͟ aŶd ͞kaŶgaroo .͟

Training samples

Model

Weight matrix for hidden layer

• Weight matrix is

 10,000 x 300

Weight matrix: lookup table for word vectors

• Each one-hot encoding selects a row of the matrix (its word vector)

Output layer

Note

If two words have similar contexts, then the network is motivated to
learn similar word vectors for these two words

Examples

• ͞sŵart ,͟ ͞iŶtelligeŶt͟

• ͞aŶt ,͟ ͞aŶts͟

In more detail

Word2Vec overview

Word2Vec: toward objective function

Word2Vec: objective function

• Objective function is negative log likelihood

• Minimizing objective function equivalent to maximizing predictive
accuracy

Word2Vec: objective function

Word2Vec: prediction function

Output layer

Center (input)

word representation

Context (outside)

word representation

Word2Vec: train model using SGD

Gradient with respect to center word

Gradient with respect to center word

Scalability is a challenge

• With ϯϬϬ features aŶd a ǀoĐaď of ϭϬ,ϬϬϬ ǁords, that’s ϯM ǁeights iŶ
the hidden layer and output layer each!

• Two techniques in Mikolov et al. Distributed Representations of
Words and Phrases and their Compositionality

• Subsampling frequent words

• Negative sampling

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

Subsampling frequent words

• There are tǁo ͞proďleŵs͟ ǁith ĐoŵŵoŶ ǁords like ͞the͟:
1. WheŶ lookiŶg at ǁord pairs, ;͞foǆ ,͟ ͞the͟Ϳ doesŶ’t tell us ŵuĐh aďout the

ŵeaŶiŶg of ͞foǆ .͟ ͞the͟ appears iŶ the ĐoŶteǆt of prettǇ ŵuĐh eǀerǇ ǁord.
2. We ǁill haǀe ŵaŶǇ ŵore saŵples of ;͞the ,͟ …Ϳ thaŶ ǁe Ŷeed to learŶ a good

ǀeĐtor for ͞the .͟

Subsampling frequent words

 is the word

 is the fraction of the total words in the corpus that are that
word

Probability of keeping word

•P(wi)=1 (100% chance of being kept) when z(wi)<=0.0026

•P(wi)=0.5 (50% chance of being kept)

when z(wi)=0.00746

Negative sampling

• Scalability challenge

• For each training sample, update all weights in output layer

• 3M weights in our running example!

• Negative sampling

• For each training sample, update only a small number of weights in output
layer

• Weights for the correct output word (300 weights) + 5 randomly selected
͞Ŷegatiǀe ǁords͟for whom the output should be 0 (5x 300 weights)

Negative sampling

• Negative samples are chosen according to their empirical frequency

Negative sampling: objective function

• Maximize probability that real words appear around center word; and

• Minimize probability that random words appear around center word

Word embeddings capture relationships

Additive compositionality

Outline for this module

• Word embedding

• RepreseŶtiŶg ǁords suĐĐiŶĐtlǇ ǁhile preserǀiŶg ͞seŵaŶtiĐ distaŶĐe͟

• Neural language modeling (uses word embedding)

• RNN (basics), LSTM

• Neural machine translation (uses neural language modeling)

• Sequence-to-sequence models, attention

• Gender bias in word embedding

• Explanations for and bias in RNNs

Acknowledgments

• Word2Vec tutorial by Chris McCormick

• Stanford cs224n lecture notes on word vectors

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://web.stanford.edu/class/cs224n/index.html
https://web.stanford.edu/class/cs224n/lectures/lecture2.pdf

