Security and Fairness of Deep Learning

Recursive Neural Networks
for NLP

Anupam Datta
CMU

Spring 2018

Announcements

e HW4 due date poll
1. Friday May 4; OR
2. Tuesday May 8

* HW2 grading and review

Goal

Understand Recurrent Neural Networks (RNNs) using Natural Language
Processing (NLP) tasks as motivation

Natural Language Processing

Understand natural language (e.g., English, Mandarin, Hindi) to
perform useful tasks

Example tasks

e Sentiment analysis :
. Major successes of
* Language translation deep learning
* Google Translate, Microsoft Translator, ...

* Question answering
* Cortana, Google Assistant, Siri, ...

Outline for this module

* Word embedding

* Representing words succinctly while preserving “semantic distance”

* Neural language modeling (uses word embedding)
* RNN (basics), LSTM

* Neural machine translation (uses neural language modeling)
* Sequence-to-sequence models, attention

* Gender bias in word embedding
* Explanations for and bias in RNNs

Word Embedding

How to represent words?

First idea: one-hot encoding

Weakness
* Does not capture “similarity” between words
(e.g., “motel” and “hotel”)

A ‘1" in the position
corresponding to the
word “ants”

Ol 0O|0|0|O0|0O

o

o

How to represent words?

* Insight: “You shall know a word by the company it keeps” - J. R. Wirth

* The context of a word is the set of words that appear nearby (within a
fixed size window)

e Use the contexts of a word w to build up its representation

...government debt problems turning info banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...

How to represent words?

* Second idea: word embeddings (or word vectors)

* A dense vector for each word such that vectors of words that appear
in similar contexts are similar

e I
0.286
0.792
-0.177
- -0.107
linguistics = 0.109
-0.542
0.349

_ 0.271 Y,

Popular word embedding: Word2vec

* Papers from Mikolov et al. (Google)
e Efficient Estimation of Word Representations in Vector Space
e Distributed Representations of Words and Phrases and their Compositionality

* Will focus on Word2vec Skip-gram model

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf

Word2vec approach

* Train neural network with single hidden layer to perform a specific
task

* Weights of the hidden layer give us the word embeddings

* Seems familiar?
* Recall autoencoders used for pretraining in last lecture

Word2vec Skip-gram task

* Given a specific word in the middle of a sentence (the input word), look at the
words nearby and pick one at random.

The network is going to tell us the Rrobability for every word in our vocabulary of
being the “nearby word” that we chose.

* “Nearby” words: A typical window size might be 2, meaning 2 words behind and
2 words ahead (4 in total).

)

* Example: If input word “Soviet”, the output Erobabilities arefoing to be much
higher for words like “Union” and “Russia” than for unrelated words like
“watermelon” and “kangaroo”.

Training samples

Source Text

quick

brown |fox jumps

The

brown |fox | jumps

The

quick- fox|jumps

over

over

over

The

quick

brown - jumps

over

the lazy dog.

the lazy dog.

the lazy dog.

the lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Model

Input Vector

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
——= randomly chosen, nearby
position is “abandon”

A 1" in the position
corresponding to the —
word “ants”

[o[ofs]o]o]o]o]o]o]

10,000
positions

e o /
. /S T . “ability”
A/ ——= .. "able”

300 neurons —= .."“zone”

10,000
neurons

Weight matrix for hidden layer

Hidden Layer
Linear Neurons

2

Input Vector

A ‘1’ in the position
corresponding to the
word “ants”

[e[eBe]e]e]o]o]e]e]

(=]

2

300 neurons

10,000
positions

Output Layer
Softmax Classifier

)

10,000
neurons

Probability that the word at a
randomly chosen, nearby
position is “abandon”

.. “ability”

... “able”

... “zone”

* Weight matrix is
10,000 x 300

Weight matrix: lookup table for word vectors

(17 24 1 7
23 5 7
[0 0 0 1 0] x |4 6 13| = [10 12 19]
10 12 19
111 18 254

e Each one-hot encoding selects a row of the matrix (its word vector)

Output layer

Output weights for “car”

Word vector for “ants”

T X

300 features

Probability that if you
randomly pick a word
nearby “ants”, that it is “car”

=)

300 features

Note

If two words have similar contexts, then the network is motivated to
learn similar word vectors for these two words

Examples

»”

* “smart”, “intelligent”

”

e “ant”, “ants”

In Mmore detail

 We have a large corpus of text
 Every word in a fixed vocabulary is represented by a vector

* Go through each position t in the text, which has a center word
¢ and context (“outside”) words o

e Use the similarity of the word vectors for c and o to calculate
the probability of o given c (or vice versa)

e Keep adjusting the word vectors to maximize this probability

Word2Vec overview

Example windows and process for computing P(w¢ ; | w¢)

P(we_p | we) P(Weip | We)

P(we_q | we) P(Wesq | W)

problems turning banking crises as

| J |]
Y Y | ’ J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Word2Vec: toward objective function

For each positiont = 1, ..., T, predict context words within a
window of fixed size m, given center word w;.

L(e)—n l—[P(Weyj | we; 6)

: —m{j{m
JEV)

Word2Vec: objective function

e Objective function is negative log likelihood

T
1 1
J(6) = —7logL(®) = ~F).) 10gP(wesy | wi;6)

* Minimizing objective function equivalent to maximizing predictive
accuracy

Word2Vec: objective function

Question: How to calculate P(Wt_,_j | We; 6’) ?

Answer: We will use two vectors per word w:

vy When w is a center word

u,, when w is a context word

Then for a center word ¢ and a context word o:

exp(ulv,)

ZWEV EXPp (ug’; vc)

P(olc) =

Word2Vec: prediction function

exp(Uo Uc)

P(o|c) =
|ZWEV EXP(”‘TV@\ After taking exponent,

normalize over entire vocabulary

Output layer

Output weights for “car”

Word vector for “ants” 4
g_j Probability that if you
o _— .
e X8 —> = randomly pick a word
300 features § nearby “ants”, that it is “car”
Center (input) Context (outside)

word representation word representation

Word2Vec: train model using SGD

Recall: 8 represents all model parameters, in one long vector

In our case with d-dimensional vectors and V-many words:

Vaardvark
Uq

H — Vzebra c Rgdv
Uagardvark
Ugq

| Uzebra

Remember: every word has two vectors

We then optimize these parameters

Gradient with respect to center word

Gradient with respect to center word

Scalability is a challenge

e With 300 features and a vocab of 10,000 words, that’s 3M weights in
the hidden layer and output layer each!

* Two techniques in Mikolov et al. Distributed Representations of
Words and Phrases and their Compositionality
e Subsampling frequent words
* Negative sampling

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

Subsampling frequent words

* There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us much about the
meaning of “fox”. “the” appears in the context of pretty much every word.

2. We will have many more samples of (“the”, ...) than we need to learn a good
vector for “the”.

Subsampling frequent words

(105, Is the word
z(w;) is the fraction of the total words in the corpus that are that
word

Probability of keeping word);

0.001

z(w;)

‘=BeHOHI7 (100% chance of being kept) when $ @+ X QOFHEH I I1BZ
=@+ X OHECI@E (50% chance of being kept)
when B+ HOHE @I &g L

Negative sampling

* Scalability challenge
* For each training sample, update all weights in output layer
* 3M weights in our running example!

* Negative sampling
* For each training sample, update only a small number of weights in output
layer

* Weights for the correct output word (300 weights) + 5 randomly selected
“negative words”for whom the output should be 0 (5x 300 weights)

Negative sampling

* Negative samples are chosen according to their empirical frequency

Negative sampling: objective function

Jneg—sample(oa Uc, U) — = log(Z 10g(0(U UC))

* Maximize probability that real words appear around center word; and
* Minimize probability that random words appear around center word

Word embeddings capture relationships

Country and Capital Vectors Projected by PCA
2 I I I I I I

China«
*Beijing
15 - Russiax N
Japarr
a8 Moscow i
Turke?f Ankara ﬂ-uk.ll"c
05 -
Poland:
0 Germany _
France A arsaw
» ~*Berlin
-05 - Itaky Paris .
#Athens
Greecs« e
4 L Spaimr Rome -
X Madrid
-1.5 + Portugal JLisbon -
_2 | | | | | | |
-2 -15 -1 05 0 05 1 15 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure 1llustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the tramning we did not provide any supervised information about
what a capital city means.

Additive compositionality

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanom airline Lufthansa Moscow Juliette Binoche
Check crown Ho Cha Minh City carrier Lufthansa Volga Raver Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

Outline for this module

* Word embedding

* Representing words succinctly while preserving “semantic distance”

* Neural language modeling (uses word embedding)
* RNN (basics), LSTM

* Neural machine translation (uses neural language modeling)
e Sequence-to-sequence models, attention

* Gender bias in word embedding
* Explanations for and bias in RNNs

Acknowledgments

* Word2Vec tutorial by Chris McCormick
e Stanford cs224n lecture notes on word vectors

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://web.stanford.edu/class/cs224n/index.html
https://web.stanford.edu/class/cs224n/lectures/lecture2.pdf

