
Understanding Black-box Predictions
with Influence Functions

Pang Wei Koh
Percy Liang

Top-5 error on ImageNet

Computer vision

Deep learning

Human

2010 2011 2012 2013 2014 Human 2015 2016

30%

25%

20%

15%

10%

5%

0%

[1] Defense Systems Information Analysis Center

[1] Defense Systems Information Analysis Center
[2] Krizhevsky, Sutskever, and Hinton, 2012

Top-5 error on ImageNet

Computer vision

Deep learning

Human

2010 2011 2012 2013 2014 Human 2015 2016

30%

25%

20%

15%

10%

5%

0%

Given a high-accuracy,
black-box model,

and a prediction from it,
can we answer…

Why did the model make
this prediction?

Why did the model make
this prediction?

• Make better decisions [1]

• Improve the model [2]

• Discover new science [3]

• Provide end-users explanations [4]

[1] Lakkaraju, Bach, and Leskovec, 2016
[2] Amershi et al., 2015
[3] Shrikumar, Greenside, and Kundaje, 2017
[4] Goodman & Flaxman, 2016

“Dog”

“Dog”

What inputs maximally
activate these neurons? [1]

Can we represent this
model with
a simpler one? [2-3, 9]

Which part of the input was
most responsible for this

prediction? [4-9] [1] Girshick et al., 2014
[2] Zeiler and Fergus, 2013
[3] Ribeiro, Singh, and Guestrin, 2016
[4] Bastani, Kim, and Bastani, 2017
[5] Simonyan, Vedaldi, and Zisserman, 2013
[6] Li, Monroe, and Jurafsky, 2016
[7] Shrikumar, Greenside, and Kundaje, 2017
[8] Sundararajan, Taly, and Yan, 2017
[9] Leino et al., 2018

“Dog”

Training

Training data

D
og

D
og

Fi
sh

Why did the model make this
prediction?

Which training points were most
responsible for this prediction?

D
og

D
og

Fi
sh

Training data z1, z2, . . . , zn

D
og

D
og

Fi
sh

Training data z1, z2, . . . , zn

“Dog”

�̂

Pick �̂ to minimize 1
n

�n
i=1 L(zi, �)

D
og

D
og

Fi
sh

Training data z1, z2, . . . , zn

“Dog”

�̂

ztrain

Pick �̂ to minimize 1
n

�n
i=1 L(zi, �)

D
og

D
og

Fi
sh

Training data z1, z2, . . . , zn

“Dog”

�̂

ztrain

Pick �̂ to minimize 1
n

�n
i=1 L(zi, �)

D
og

D
og

Fi
sh

Training data z1, z2, . . . , zn

“Dog”

Pick �̂ to minimize 1
n

�n
i=1 L(zi, �)

Pick �̂�,ztrain to minimize
1
n

�n
i=1 L(zi, �) + �L(ztrain, �)

ztrain

�̂�,ztrain

Test input

“Dog” (82% confidence)“Dog” (79% confidence)

�̂

vs.

�̂�,ztrain

“Dog” (82% confidence)“Dog” (79% confidence)

�̂

vs.

�̂�,ztrain

What is L(ztest, �̂�,ztrain) � L(ztest, �̂)?

Why did the model make this
prediction?

Which training points were most
responsible for this prediction?

How would the prediction
change if we upweighted each

training point?

Motivation
> Influence functions

Applications
Conclusion

Influence functions

• Introduced in the 1970s in the field of robust statistics
(e.g., Jaeckel, 1972; Cook, 1977; Cook and Weisberg, 1982)

Influence functions

• Introduced in the 1970s in the field of robust statistics
(e.g., Jaeckel, 1972; Cook, 1977; Cook and Weisberg, 1982)

• Consider an estimator T that acts on a distribution F

• How much does T change if we perturb F?

• For us, F is the training distribution, and T = L(ztest, �̂(F))

Influence functions
• Goal: Measure change in L(ztest, �̂�,ztrain) as we increase �.

• �̂�,ztrain
def
= arg min���

1
n

�n
i=1 L(zi, �) + �L(ztrain, �).

• Under smoothness assumptions,

Iup,loss(ztrain, ztest)
def
=

dL(ztest, �̂�,ztrain)

d�

���
�=0

= ���L(ztest, �̂)
�H�1

�̂
��L(ztrain, �̂),

• where H�̂
def
= 1

n

�n
i=1 �2

�L(zi, �̂).

Influence functions
• Goal: Measure change in L(ztest, �̂�,ztrain) as we increase �.

• �̂�,ztrain
def
= arg min���

1
n

�n
i=1 L(zi, �) + �L(ztrain, �).

• Under smoothness assumptions,

Iup,loss(ztrain, ztest)
def
=

dL(ztest, �̂�,ztrain)

d�

���
�=0

= ���L(ztest, �̂)
�H�1

�̂
��L(ztrain, �̂),

• where H�̂
def
= 1

n

�n
i=1 �2

�L(zi, �̂).

Influence functions
• Goal: Measure change in L(ztest, �̂�,ztrain) as we increase �.

• �̂�,ztrain
def
= arg min���

1
n

�n
i=1 L(zi, �) + �L(ztrain, �).

• Under smoothness assumptions,

Iup,loss(ztrain, ztest)
def
=

dL(ztest, �̂�,ztrain)

d�

���
�=0

= ���L(ztest, �̂)
�H�1

�̂
��L(ztrain, �̂),

• where H�̂
def
= 1

n

�n
i=1 �2

�L(zi, �̂).

Influence functions
• Goal: Measure change in L(ztest, �̂�,ztrain) as we increase �.

• �̂�,ztrain
def
= arg min���

1
n

�n
i=1 L(zi, �) + �L(ztrain, �).

• Under smoothness assumptions,

Iup,loss(ztrain, ztest)
def
=

dL(ztest, �̂�,ztrain)

d�

���
�=0

= ���L(ztest, �̂)
�H�1

�̂
��L(ztrain, �̂),

• where H�̂
def
= 1

n

�n
i=1 �2

�L(zi, �̂).

Test image

RBF SVM
(raw pixels)

Logistic regression
(Inception features)

Test image

RBF SVM
(raw pixels)

Logistic regression
(Inception features)

Most influential

Most harmful

Helpful

Test image Helpful dog

Potential issues

*More details in paper

Potential issues
1. Computational inefficiency

Potential issues
1. Computational inefficiency

H
__

_

__
_

-1

[1] Pearlmutter, 1994
[2] Martens, 2010
[3] Agarwal, Bullins, Hazan, 2016

Slow

Potential issues
1. Computational inefficiency

H
__

_

__
_

-1

H
__

_

__
_

v

SlowFast [1]

[1] Pearlmutter, 1994
[2] Martens, 2010
[3] Agarwal, Bullins, Hazan, 2016

Potential issues
1. Computational inefficiency

H
__

_

__
_

-1

H
__

_

__
_

v
approx
[2, 3]

Fast [1]

[1] Pearlmutter, 1994
[2] Martens, 2010
[3] Agarwal, Bullins, Hazan, 2016

v

Potential issues
1. Computational inefficiency

2. Non-smooth losses

Potential issues
1. Computational inefficiency

2. Non-smooth losses

Potential issues
1. Computational inefficiency

2. Non-smooth losses

3. Difficulty in finding the global minimizer

Potential issues
1. Computational inefficiency

2. Non-smooth losses

3. Difficulty in finding the global minimizer

�̂

�̃

stuck here

Potential issues
1. Computational inefficiency

2. Non-smooth losses

3. Difficulty in finding the global minimizer

�̂

�̃

Potential issues
For a fixed ztest and for each ztrain, compared:

1. Actual change in L(ztest) after removing ztrain

2. Predicted change in L(ztest) after removing ztrain

Actual diff in loss

Softmax (approx) Hinge CNN

Pr
ed

ic
te

d
di

ff
in

 lo
ss

Actual diff in loss Actual diff in loss

Motivation
Influence functions

> Applications
Conclusion

Application 1
Debugging model errors

Debugging model errors

• If a model makes a mistake, can we find out why?

• Case study: hospital re-admission (logistic regression,
20K patients, 127 features)

Debugging model errors

~20k

21

3

Healthy +
re-admitted

adults

Healthy
children

Re-admitted
children

Original Modified

~20k

1

3

same

same

-20

Debugging model errors
True test label:

Model predicts:
Healthy
Re-admitted

Debugging model errors
To

p
20

 fe
at

ur
es

Feature weight
0 321

True test label:
Model predicts:

Healthy
Re-admitted

Indicator for ‘child’

Debugging model errors

Re-admitted children

In
flu

en
ce

Top 20 influential training examples

0.1

-0.1

0

Healthy child

True test label:
Model predicts:

Healthy
Re-admitted

Debugging model errors
True test label:

Model predicts:
Healthy
Re-admitted

To
p

20
 fe

at
ur

es

Contribution to influence

Indicator for ‘child’

Application 2
Fixing training data

Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• Because we don’t have a test set, we measure Iup,loss(z, z)
for each training point z, which approximates leave-one-out
error

Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• Because we don’t have a test set, we measure Iup,loss(z, z)
for each training point z, which approximates leave-one-out
error

Ham Ham HamSpam Spam Spam

Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• Because we don’t have a test set, we measure Iup,loss(z, z)
for each training point z, which approximates leave-one-out
error

Ham Ham HamSpam Spam Spam

Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• No test set, so we measure Iup,loss(z, z) for each training
point z, which approximates leave-one-out error

Fixing training data

Application 3
Adversarial training examples

Model

Test data Correct
prediction

Model

Test data Wrong
prediction

Image from Goodfellow, Shlens, Szegedy, 2015
Original demonstration from Szegedy et al., 2013

“panda” “gibbon”
57.7% confidence 99.3% confidence

Image from Goodfellow, Shlens, Szegedy, 2015
Original demonstration from Szegedy et al., 2013

“panda” “gibbon”
57.7% confidence 99.3% confidence

Adversarial test examples

Model

Test data Wrong
prediction

Gradient

Adversarial test examples
Follow the gradient of the test loss w.r.t. test features

(to increase loss) [1]

[1] Goodfellow, Shlens, Szegedy, 2015

We have adversarial test examples.
Can we create adversarial training examples?

Adversarial training examples
Follow the gradient of the test loss w.r.t. train features

Model

Test data
(unmodified)

Wrong
prediction

Training
data

Gradient

Adversarial training examples
Follow the gradient of the test loss w.r.t. train features

Influence functions help us calculate this gradient

Adversarial training examples
Follow the gradient of the test loss w.r.t. train features

Influence functions help us calculate this gradient

*Mathematically equivalent to gradient-based attacks
explored by Biggio et al. (2012), Mei & Zhu (2015), and others

Adversarial training examples

• Setup: dog vs. fish classification, logistic regression
on top of Inception features

Adversarial training examples

Adversarial training examples

Three observations

1. Ambiguous examples are good attack vectors

Label: fish

Three observations

1. Ambiguous examples are good attack vectors

Label: fish

Three observations

1. Ambiguous examples are good attack vectors

2. Small change in pixels but large change in feature
space

Three observations

1. Ambiguous examples are good attack vectors

2. Small change in pixels but large change in feature
space

3. Attack makes model overfit to specific test examples
(n ~ d)

Three observations

Certified Defenses for Data
Poisoning Attacks, NIPS, 2017

Jacob Steinhardt Percy Liang

1. Ambiguous examples are good attack vectors

2. Small change in pixels but large change in feature
space

3. Attack makes model overfit to specific test examples
(n ~ d)

Test data Wrong
prediction

Outside
world

[1] Barreno, Nelson, Joseph, and Tygar, 2010.
[2] Biggio, Nelson, and Laskov, 2012.

Model

Training
data

Test data

Outside
world

[1] Barreno, Nelson, Joseph, and Tygar, 2010.
[2] Biggio, Nelson, and Laskov, 2012.

Training
data

Model

Correct
prediction

Biggio et al., Poisoning attacks against support vector machines, 2012
Xiao et al., Is feature selection secure against training data poisoning?, 2015
Mei and Zhu, Using machine teaching to identify optimal training-set attacks
on machine learners, 2015
Mozaffari-Kermani et al., Systematic poisoning attacks on and defenses for
machine learning in healthcare, 2015
Burkard and Lagesse, Analysis of causative attacks against SVMs learning
from data streams, 2017
…

Cretu et al., Casting out demons: Sanitizing training data for anomaly sensors,
2008
Rubinstein et al,. Antidote: Understanding and defending against poisoning of
anomaly detectors, 2009
Laishram and Phoha, Curie: A method for protecting SVM classifier from
poisoning attack, 2016
Chen, He, and Hsu, Chen, He, and Hsu, Data sanitization against adversarial
label contamination based on data complexity, 2017
…

Given a defense and a dataset,
can we bound the damage that any attacker can do?

vs.

Motivation
Influence functions

Applications
> Conclusion

Why did the model make this
prediction?

Which training points were most
responsible for this prediction?

How would the prediction
change if we upweighted each

training point?

“Dog”

Training

Training data

D
og

D
og

Fi
sh

“Dog”

Training

Training data

D
og

D
og

Fi
sh

Gradient

Future work
• Real-world problems: hospitals (interpretability,

uncertainty)

• Real-world models: scale [1], non-convexity, SGD

• Studying global perturbations

• Connections to reliability and privacy [2]

• Influence as part of the objective [3]

[1] Wojnowicz et al., 2016
[2] Wang, 2017
[3] Ross, Hughes, Doshi-Velez, 2017

Thank you
Github: https://bit.ly/gt-influence

CodaLab: https://bit.ly/cl-influence
Paper: https://arxiv.org/abs/1703.04730

pangwei@cs.stanford.edu

This presentation uses images from the Noun Project:

Question by Valeriy | Box by Rockicon | Magnifying Glass by il Capitano | services by IconsGhost | Ghost by Bakunetsu Kaito
Neural Network by Knut M. Synstad | Poisoned Dagger by Ben Davis | world by Aleksandr Vector | Shield by Nikita Kozin

Percy Liang Koda

https://bit.ly/gt-influence
https://bit.ly/cl-influence
https://arxiv.org/abs/1703.04730
mailto:pangwei@cs.stanford.edu

