Security and Fairness of Deep Learning

Deep generative models

Anupam Datta

CMU

Spring 2018

Generative models

- Collect large amount of data in some domain
- Train generative model to generate data like it

Generative model

• Given training data generate samples from same distribution (density estimation)

Source: Fei-Fei Li et al.

- Generative models cannot memorize training data since they do not have enough parameters
- Forced to learn higher-level features from which they can reconstruct data

Why generative models?

- Long-term hope
 - Learn the natural features of a dataset
- Current applications
 - <u>image denoising</u>, <u>inpainting</u>, <u>super-resolution</u>, and neural network <u>pretraining</u> in cases where labeled data is expensive (will discuss today)

Generative models

- Generative adversarial networks (GAN)
- Other models
 - Variational autoencoders (see also: Variational fair autoencoder)
 - <u>Boltzmann machines</u>

GANs

- Goal: Sample from complex, high-dimensional training distribution
- Approach
 - Sample from a simple distribution (e.g., random noise)
 - Learn transformation to training distribution
- Question
 - How to represent this complex transformation?
 - A neural network!

GANs

- Implicit density estimation
 - Can sample from training distribution without explicitly representing it

- Two player game
 - Generator: try to fool discriminator by generating real-looking images
 - Discriminator: try to distinguish between real and fake images

• Two player game

- Generator: try to fool discriminator by generating real-looking images
- Discriminator: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for for real data x Discriminator output for generated fake data G(z)

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for for real data x Discriminator output for generated fake data G(z)

Discriminator outputs likelihood in (0,1) of real image

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Minimax objective function:

$$\min_{ heta_g} \max_{ heta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{ heta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{ heta_d}(G_{ heta_g}(z)))
ight]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient signal dominated by region where sample is already good

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different objective $\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Putting it together: GAN training algorithm

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log(D_{ heta_d}(G_{ heta_g}(z^{(i)})))$$

end for

Convergence theorem

• The training criterion allows one to recover the data generating distribution as G and D are given enough capacity

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_g is updated so as to improve the criterion $\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D^*_G(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D^*_G(\boldsymbol{x}))]$

then p_g converges to p_{data}

- Two player game
 - Generator: try to fool discriminator by generating real-looking images
 - Discriminator: try to distinguish between real and fake images

Generated samples

Generated samples

Generated samples

Generated samples (CIFAR-10)

GANs: Convolutional architectures

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Unsupervised pretraining

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Reconstructed data

Encoder: 4-layer conv Decoder: 4-layer upconv

Autoencoders for unsupervised pretraining

Autoencoders for unsupervised pretraining

Stacked auto-encoders: Bengio et al., <u>Greedy Layer-Wise Training of Deep Networks</u>, NIPS 2006

References and acknowledgments

- Fei-Fei Li et al.: <u>Generative models</u>
- OpenAl <u>blog post</u> on Generative Models
- Goodfellow et al.: <u>Generative Adversarial Networks</u>
- Unsupervised pretraining reference
 - Erhan et al., <u>Why Does Unsupervised Pre-training Help Deep Learning?</u>, JMLR 11 (2010) 625-660