Deep Learning Software II SP18 18739

Agenda

- Logistics
- Finish On CNN Architectures
 - Batch Normalization
- CNN Training
- CPU/GPU
- Tensorflow

Logistics

- HW2 will be out by the end of today
 - Due March 20th before class. Start Early!
 - You should have gotten an email about PSC
 - If you haven't sent me the Xsede username yet, please send me a private post
 - Cite your references
- OH cancelled today

Batch Normalization [paper]

- Distribution of each layer's inputs changes during training, as the parameters of the previous layers change
- Solution:
 - Normalizing for each batch
 - Output should have mean 0 and variance 1
 - Learn a scale parameter and shift parameter on the normalized value
 - Output should have mean alpha, variance beta
- In CNN, Batch Normalization Layer are typically placed before Non-linear Activation. (Topic of Debate)
- Regularize & Save time

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Image Classification Datasets

- MNIST
- CIFAR -10
 - 60000 32x32 colour images in 10 classes, with 6000 images per class
- CIFAR -100
 - 100 classes containing 600 images each
- ImageNet
 - Over 14 Million images, 20000 classes,most 256x256

Image Classification Datasets

- MNIST
- CIFAR -10
 - 60000 32x32 colour images in 10 classes, with 6000 images per class
- CIFAR -100
 - 100 classes containing 600 images each
- ImageNet
 - Over 14 Million images, 20000 classes,most 256x256

CIFAR-10

						9
airplane	and the	X	¥	- 5	N	-
automobile		1	-			-
bird	No.			4.17	1	4
cat		-				
deer	1	X R		8	1	
dog	W. 1.	1	1		C A	Ter
frog	S	100	27			4.2
horse		17 22	P	171 -1	20	N.
ship	-	<u>ani</u>	Lan.	-	N	<u>.</u>
truck					1	1 dela

-

CNN Training

- Specify filters:
 - Number of filters, Filter size, Strides/zero padding
- Network architecture
 - (conv-relu-pool)×N \rightarrow (affine)×M \rightarrow (softmax or SVM)
 - (conv-relu-conv-relu-pool)×N \rightarrow (affine)×M \rightarrow (softmax or SVM)
 - (batchnorm-relu-conv)×N \rightarrow (affine)×M \rightarrow (softmax or SVM)

CNN Training

• Regularization

- Dropout
- Batch Normalization
- L2 weight regularization
- Optimizers
 - Adam/Rmsprop
- Activations
 - ReLus
 - Leaky Relus....

CNN Training: Parameter Tuning

- Lots of knobs: Architecture, layer params, optimizer params
 - Empirical evidence
- If the parameters are working well, you should see improvement within a few hundred iteration
- Coarse-to-fine approach
 - Start by large range + a few training iterations to find the combinations
 - Search more finely + more iterations

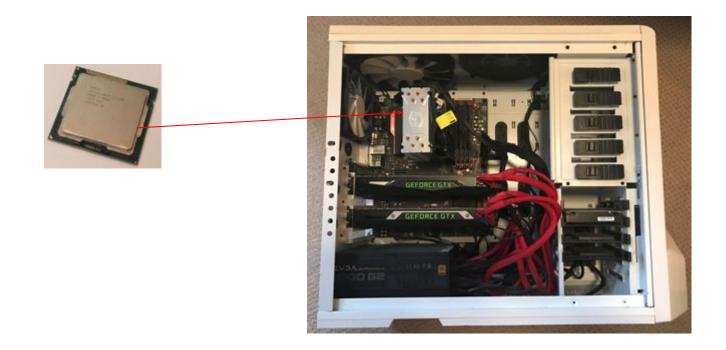
CNN Training

- Train, Validate and Test!
 - Test Data can only be seen once!
 - Don't let your test result steer your training
- Time / Accuracy Trade-off

CPU vs. GPU

	# Cores	Clock Speed	Memory	Price
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.4 GHz	Shared with system	\$339
CPU (Intel Core i7-6950X)	10 (20 threads with hyperthreading)	3.5 GHz	Shared with system	\$1723
GPU (NVIDIA Titan Xp)	3840	1.6 GHz	12 GB GDDR5X	\$1200
GPU (NVIDIA GTX 1070)	1920	1.68 GHz	8 GB GDDR5	\$399

Spot the CPU!



Spot the GPU!

CPU vs. GPU

- **CPU**: Fewer cores, but each core is much faster and much more capable; great at sequential tasks
- **GPU**: More cores, but each core is much slower and "dumber"; great for parallel tasks

Tensorflow

clear old variables tf.reset default graph()

```
# setup input (e.g. the data that changes every batch)
# The first dim is None, and gets sets automatically based on batch size fed in
X = tf.placeholder(tf.float32, [None, 32, 32, 3])
y = tf.placeholder(tf.int64, [None])
is_training = tf.placeholder(tf.bool)
```

```
def modell(X,y):
    # define our weights (e.g. init two layer convnet)
```

```
# setup variables
Wconvl = tf.get_variable("Wconvl", shape=[7, 7, 3, 32])
bconvl = tf.get_variable("bconvl", shape=[32])
Wl = tf.get_variable("Wl", shape=[5408, 10])
bl = tf.get_variable("bl", shape=[10])
```

```
# define our graph (e.g. two_layer_convnet)
al = tf.nn.conv2d(X, Wconvl, strides=[1,2,2,1], padding='VALID') + bconvl
hl = tf.nn.relu(al)
hl_flat = tf.reshape(hl,[-1,5408])
y_out = tf.matmul(hl_flat,Wl) + bl
return y out
```

```
y_out = model1(X,y)
```

```
total_loss = tf.losses.hinge_loss(tf.one_hot(y,10),logits=y_out)
mean_loss = tf.reduce_mean(total_loss)
```

define our optimizer

```
optimizer = tf.train.AdamOptimizer(5e-4) # select optimizer and set learning rate
train_step = optimizer.minimize(mean_loss)
```