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Roadmap

e Intro: why interpretability?

e Part 1: Interpretability for black-box structured models

* Part 2: Self-explaining neural networks
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Interpretability - Why?

Lack of transparency limits adoption in decision-critical
domains

Algorithmic decision making - models that impact lives
should come with explanations!

EU's GDPR law (2018) guarantees a "right to explanation”

A means to satisfy other criteria (e.g., fairness, privacy,
causality [Doshi-Velez and Kim, 2018])
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Interpretability - Challenges

e Emergent sub-field of Al, suffers from:
* |ll-defined goals
* No universally agreed-upon definition
* Few formalisms - existing ones sometimes contradictory

* Under-appreciation among many in the community

H
: Ui



A controversial topic
G v oot = -

One of my main concerns about machine
learning interpretability tools is that they will
make people think they understand ML when
they don't. People seem to think linear
models are interpretable, but no one looks at
them and has the intuition that they have

adversarial examples
‘:, Pedro Domingos S 9
’ @pmddomingos

Given the choice between an Al doctor that's
80% accurate and can explain its diagnoses
and one that's 90% accurate but can't, |I'd
pick the latter.

7:17 PM - 25 Jan 2018
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Demystifying interpretability



Demystifying interpretability
"The objective of interpretability is to

let us understand exactly how a complex model works"
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provide useful abstractions that summarize the model's

behavior
By definition
iIncomplete

v
Implies a concrete objective, e.g. debugging,
auditing, verifying model properties

"All models are wrong, some
are useful" - George E.P. Box
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"The objective of interpretability is to
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provide useful abstractions that summarize the model's

behavior
By definition
iIncomplete

v
Implies a concrete objective, e.g. debugging,
auditing, verifying model properties

All explanations are deficient, some are useful

"All models are wrong, some
are useful" - George E.P. Box

\ L 1A
CSAIL / II



Demystifying interpretability



Demystifying interpretability

"All explanations are glorified heatmaps on the input”
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Demystifying interpretability

1 :
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» Higher level concepts (instead if inputs) L
[Kim et al. 2017]

Scki ("I )

Test image Harmful training image

- Explanations in terms of training data
[Koh & Liang, 2017]

Label: 7 Label: 7

 Causal rules (instead of relevance
scores)
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Demystifying interpretability

"It's Impossible to evaluate interpretability methods"”
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Demystifying interpretability

* Task-driven™:
+ Functionally-grounded Evaluation on Proxy Tasks

+ Human-grounded evaluation on Simple Tasks

+ Application-grounded evaluation on Real Tasks
* Intrinsic:

+ Robustness/stability of explanations

+ Consistency with actual prediction

+ Information-theoretic notions

*(see section on "Taxonomy of Interpretability of Evaluation”
in [Doshi-Velez & Kim, 2017] for more details) III- I—
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Demystifying interpretability

[DVK17]: "Need for interpretability stems from an incompleteness
In the problem formalization”

e |t's necessary In:

e Decision-critical domains with human intervention (e.g.,
medical)

e Settings where law protects right to explanation (e.g., legal)

e Less so for fully automatic systems with no human
intervention, not critical domain (e.g. postal code sorting)
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~ make the model itself interpretable ~ explain specific predictions
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Interpretability: two paradigms

Model-based

~ make the model itself interpretable

o .
L * Sparse models, decision trees

Prediction-based
~ explain specific predictions

«” |ntuitive

«” No additional estimation
needed for interpretability

Advantages
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Interpretability: two paradigms

Model-based Prediction-based
~ make the model itself interpretable ~ explain specific predictions

o .
wi * Sparse models, decision trees * Feature relevance
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O ¢ Intuitive
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2 needed for interpretability
« Targeted: why was this predicted?

I Y
Syl 11 III I



What is an "explanation" anyways?

.
» PIT



What is an "explanation" anyways?

e A justification for a particular prediction

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction

e Should be:

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction
e Should be:

e small

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction
e Should be:
e small

e self-contained

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction

e Should be:
e small
e self-contained

o sufficient

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction

e Should be:
e small
e self-contained

o sufficient

e Simplest approach:

H N
12 III I



What is an "explanation" anyways?

e A justification for a particular prediction

e Should be:
e small
e self-contained

e sufficient
e Simplest approach:

"what parts of the input led to a particular prediction”
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Input-based explanations

e Example: for image classification

e Example: text-based prediction

Accession Number <unk> Report Status Final
Type Surgical Pathology ... Pathology Report:
LEFT BREAST ULTRASOUND GUIDED CORE NEEDLE BIOPSIES
INVASIVE DUCTAL CARCINOMA poorly differentiateied
modified Bloom Richardson grade lll Il measuring at least 0 7cm
in this limited 98% specimen Central hyalinization is present
within the tumor mass but no necrosis is noted No
lymphovascular invasion is identified No in situ carcinoma is
present Special studies were performed at an outside institution
with the following results not reviewed ESTROGEN RECEPTOR
NEGATIVE PROGESTERONE RECEPTOR NEGATIVE
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Input-based explanations

e Example: for image classification

e Example: text-based prediction

Accession Number <unk> Report Status Final
Type Surgical Pathology ... Pathology Report:
LEFT BREAST ULTRASOUND GUIDED CORE NEEDLE BIOPSIES
. INVASIVE DUCTAL CARCINOMA poorly differentiateied
modified Bloom Richardson grade Il lll measuring at least 0 7cm
in this limited 98% specimen Central hyalinization is present
within the tumor mass but no necrosis is noted No
lymphovascular invasion is identified No in situ carcinoma is
present Special studies were performed at an outside institution
with the following results not reviewed ESTROGEN RECEPTOR
NEGATIVE PROGESTERONE RECEPTOR NEGATIVE

qata] [Image Credit: Selvaraju et al.]
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Part |: Interpretability for black-box
sequence-to-sequence models

[A-M & Jaakkola, EMNLP 2017]
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Driving example: Machine Translation

Input Output

_ "Mary hat die
"Mary did not slap _____ — gra’;qye Hexe
the green Wltch\ nicht geschlagen"

Explanation
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Motivation

e SOTA structured prediction methods in NLP tasks are
essentially black-boxes

e Most interpretability work focuses on image classification
e Concrete uses of interpretability in NLP:
» Error analysis + model refinement

» Diagnose undesired behaviors (biases, etc.)

> Trust: "why did you say that”
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Motivation

Most methods assume a "simple" (scalar/categorical) output

What if inputs/outputs are structured (sentences, graphs)?
What if we don't have access to the model?

Can we avoid additional computation?

17
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Related Work

* Various work spanning various fields on "interpretability”

* Explanations through gradients [Bach et al., 2015; Selvaraju et al.,
2017]:

* Not Black-Box, expensive computation, no structured output &
* [earning Rationales [Lei et al., 2016]:

 Not Black-Box &/, no structured output &

* LIME [Ribeiro et al, 2016]: locally-faithful interpretable models

e Black-box &/, no structured input nor output &
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Setting: Black Box Interpretability

 No information about the model. How do we explain?

 LIME [Ribeiro et al. 2016]: Characterize model locally around
prediction by perturbing input + querying model

Simple model's
decision boundary ™
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Simple model's
decision boundary ™
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Setting: Black Box Interpretability

 No information about the model. How do we explain?

 LIME [Ribeiro et al. 2016]: Characterize model locally around
prediction by perturbing input + querying model

Simple model's
decision boundary ™

I

I
4 Complex model's
I

N
_;L_ @ «— decision boundary
+4+ @
+ @
[
I

 Assumes input is continuous, output is a a single value.

e Can we extend this to structured data?

[Image Credit: Ribeiro et al.]
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Explanations of structured objects

e Structured predictions vary in size and complexity
e \What parts of the input/output to explain?

e How to keep explanations interpretable regardless of
input/output size?

e What does "local” mean for a structured input?
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Setting

Black-box: F': X — Y

Elements x € &',y € V admit feature-set representation

X:{le,ZCQ,...,CBn}, y={y1,y2,--->ym}

Goal: explain output yin terms of input x

Requirements: locally faithful, model agnostic

H
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Input:  (S1,S2,...,Sn) @@ @

0.1 \0.5 0.2 } weight =
influence
v

e Explanation: FE,.,={G',...,G"}
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e Weighted bipartite graph summarizes local behavior of F

Input:

(S1,52,...,Sn)

(locally) |

Output: (T1,T2,...,Tn)

e Explanation:
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SOCRat: Structured-Output
Causal Rationalizer

Perturbation -~ Causal Explanati
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SOCRat: Structured-Output
Causal Rationalizer

Perturbati o Causal Explanatio
O— (x.y) *[ Moddl Ji{(xi’y i>}__{ Inforence JﬁQ(UUV’E) _{ Selection }‘{gﬂfﬂ}?l —0

L ) Ao @ RO @@
LR
: AR SR EAR SRS

* Perturb: Encode -> perturb vector representation -> decode
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SOCRat: Structured-Output
Causal Rationalizer

Perturbation

o— (%) *[ Model

Jﬁ {(%

Zg
[

(J
Z
VAl
[ ]

z3 ~/
2

Z7 oZ4°  Z

i, Yi)} _{

Causal
Inference

)

\

Explanation
Selection

} {g§—>y}§:1 —0

v

@4@ s (2

AN

* Infer: Logistic regression to infer causal dependencies

CSAIL
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SOCRat: Structured-Output
Causal Rationalizer

Perturbation AU Causal __,| Explanation .
O— (x,y) _{ Model Jﬁ (%, 3:) { Inference Jﬁ GUUY.E) { Selection } {g“]f%y}?:l ©
7 53
Lt ) IS AR
g U X
7 V00 NS
//7\\\ aY T RN

* Select: Partition dependency graph into explanation chunks
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1. Encode input to vector representation z
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1. Encode input to vector representation z
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Perturbation Model

o— (x,y) ->[ Perﬁggifion ]7 (% 7:)} —> X: input
y: output (prediction)

N Z
zR
. ~
Z3
Z7 Z4® %2

1. Encode input to vector representation z

VAE 2. Generate samples 2 around z
Decode samples 2 into sequences

4. Map perturbed sequences using F’



Perturbation Model

o— (x,¥) ->[

Perturbation

Model

]7 {(%i,5:)} —

ZK
( ]
Z7

(]

V4 )
Z3

d

58 7,
oZ4 R

.N
Z5e
N
VAl

[ )
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Perturbation Model

Perturbation ~
%3

* Notion of "locality” here is semantic
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Perturbation Model

Perturbation ~
Oo— (X7y) _>[ Model ]7 {(X’UYZ)} —
%3

* Notion of "locality” here is semantic

o After this step: list of pairs of perturbed inputs and outputs

L} N .
CSAIL 25 III I



Perturbation Model

O— (X7 y) _>[ Perﬁgziflon | {(}2@, yz)} >

VA

/3
. ~
Z3
Z7 oZ1® 72
o o ®

Zse

0

VAl
°

* Notion of "locality” here is semantic

o After this step: list of pairs of perturbed inputs and outputs

"The house is red”" — "La maison est rouge”
"The apartment is red" — "L'appartement est rouge”
"The house is brown" — "La maison est brune”
.. etc ... ... etc ...

. {(}2175’@) 1=1
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—g(UUV,E) —>

Causal Model

Causal
Inference

— (X, ¥yi)} —
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Causal Model

— {Gi g} —  Cawsal L v E) —

Inference

e Given perturbed input-output pairs, infer dependencies
between original input/output tokens
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— {Gi g} —  Cawsal L v E) —

Inference

e Given perturbed input-output pairs, infer dependencies
between original input/output tokens

e Simplest approach: logistic regression
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Inference

 \We want our estimations to take into account uncertainty

* Bayesian logistic regression: P(y; € § | %) = 0(8] ¢x(7))
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Causal Model

- . Causal
19 Y1 > — U U V, E .
{(X Y )} Inference g( )

 \We want our estimations to take into account uncertainty
» Bayesian logistic regression: P(y; € j | x) = 0(6] ¢x(7))

* Result: posterior mean, covariance
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Causal Model

Causal

- ~i7 ~’i > — 7E
{0, y3)} Inference GUUV,E) —

 \We want our estimations to take into account uncertainty
» Bayesian logistic regression: P(y; € j | x) = 0(6] ¢x(7))

* Result: posterior mean, covariance
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Explanation Selection

* For large inputs/outputs, dense graph might not be
interpretable

 We cast the problem as k-cut graph partitioning

e Traditional methods (coclustering, biclustering) don't take
into account uncertainty

 Graph partitioning with uncertainty [Fan et al. 2012]

[V W
A= 03 IIII-
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 Graph partitioning with uncertain{y [Fan et al. 2012]
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Edge weight intervals: Qij::éij Yijg = 0 ow
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Explanation Selection

 Graph partitioning with uncertain{y [Fan et al. 2012]

1 if v;, u; In different components

Edge weight intervals: Qij::éij Yijg = 0 ow

edges allowed to deviate

n m
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Explanation Selection

* Graph partitioning with uncertainty [Fan et al. 2012]

1 if v;, u; In different components

Edge weight intervals: Qij::ézj Yij =

0 ow
edges allowed to deviate robustness control
min S S 0,y + max E ,Lyz + ( I 9@,'%,'
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Explanation Selection

* Graph partitioning with uncertainty [Fan et al. 2012]

1 if v;, u; In different components

Edge weight intervals: Qij::ézj Yij =

0 ow
edges allowed to deviate robustness control
min 5 S 0;ivii + max E 0;:vii + ( [ HZ R
1=1 7=1 (ityjt)EJ\S (¢2,7)€S
partition size v ~
constraints o
Mean Total Cost Cost of worst-case deviation

e Can be cast as Mixed Integer Programming problem

e Each partition -> an explanation chunk

, “ (1) (s2)  (51) (s2)
— GWUV,E) — Explanation [k 1K o "l\ ’ ‘
’ Selection r—ylh=1 '
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SocRat - Pseudocode

Algorithm 1 Structured-output causal rationalizer

1. procedure SOCRAT(X,y, F')
2: (e, o) <— ENCODE(X)
for: =1to N do
Z; < SAMPLE(u, o)
X; < DECODE(Z;)
yi — F(X:)

i Perturbation
5

6:

7 end for

8: N
9

10

[ 1:

2

Model.

G N CAUSAL(X7 Y {iza 5’75}71:1)
Fy\y < BIPARTITION(G)
Ery < SORT(FEysy) > By cut capacity
return £, .,
end procedure

H
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e (Gold human explanations are hard to obtain
e |nstead: toy task with known alignments

e Word-to-phoneme mapping ( e.g. vowels -> Vv AWl AHO L Z7)

— Uncertainty —— Biclustering —— Coclustering —— Alignment

0.85 1.0
S Align - Full Vocab

SOTA method
0.75 \ 0.8 tailored to
/ this task
\ Our best model

AER
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. ) o 9
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Word-to-phoneme explanations

* Input: boolean

e Qutput:B UWO L IY1l AHO N

Large k
(more clusters)

Small k
(fewer clusters)

<

y

Raw Dependencies

Explanation Graph

B UWO L

IY1 AHO

X > & \

0 0 1

N

B UWO L IY1l AHO

N

B UWO L

IY1 AHO

N

B UWO L TIY1l AHO

) ¢

0 0 1 e a

N

(before partitioning)

33
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Application: Machine Translation

e MT is arguably the most popular sequence-to-sequence task

e SOTA models are very complex: 50-200M params, >4 layers,
hierarchical self-attention

* Task: English -> German
 Black-box translators:

e Azure's MT system

e Neural MT system (trained by us)

e A human (native speaker of German)
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Application: Machine Translation

* Input: "Students say they looked forward to his class”

 Explanations:

o Azure:

 NMT:

e Human:

Studenten sagten, dass | sie nach vorne 1in seine Klasse aussah.

Studentssaid they lookedforward to his class

Studenten sagten , dass | sie auf seine Klasse freuen

Studentssaid they lookedforward to his class
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Application: Machine Translation
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e Azure: =
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K4
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Application: Machine Translation

* Input: "Students say they looked forward to his class”

 Explanations:

Studenten sagten, dass | sie | nach vorne in seine Klasse aussah,
e Azure: =
Zure: V/| !

Studentssaid they lookedforward to his class

K4
K4

Studenten sagten , dass | sie '/ auf | seine Klasse freuen

e NMT:

L4
’
£4

Studentssaid they.lookedforward to his class

.

Studentensagten wiirden .’ seiner Vorlesung entgegensehen.

e Human:
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edforward to his class
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Application: Bias detection in MT

* NLP methods tend to incorporate biases present in their
training data

» Archaic gender < occupation stereotypes [Caliskan et al. 2017]

» Sexist adjective associations [Bolukbasi et al. 2016]

 (Can we use our interpretability framework to detect and
understand these biases?
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e Black-box: MSFT Azure's MT service, English — French

* |Inputs: sentences containing bias-prone words

e QOur findings: model exhibits strong grammatical gender
preferences

* Chooses masculine in sentences containing doctor,
professor, smart, talented

* Chooses feminine in sentences containing dancer, nurse,
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H
- Ui



Application: Bias detection in MT



Application: Bias detection in MT

e Black-box: MS

T Azure's M

39

service, English — French



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

H
. Ui



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

Cette danseuse est tres charmante

This dancer is very charming

H
. Ui



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

Output: Cette danseuse est tres charmante

This dancer is very charming

Input:

H
. Ui



Application: Bias detection in MT

e Black-box: MSFT Azure's M

service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

/\

Cette danseuse est tres charmante

Output:

This dancer is very charming

Input:

39



Application: Bias detection in MT

e Black-box: MS

T Azure's M

service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

—

Output: Cette danseuse est

This dancer is

Input:

tres charmante

very charming

39



Application: Bias detection in MT

e Black-box: MSFT Azure's M

service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

\
/

Output: Cette danseuse est tres charmante
Input: This dancer is very charming

39



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

—

Output: Cette danseuse est tres charmante Ce  médecin est tres talentueux

This dancer is very charming This doctor is very talented

Input:

H
. Ui



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

—

Output: Cette danseuse est tres charmante Ce  médecin est tres talentueux

This dancer is very charming This doctor is very talented

Input:

H
. Ui



Application: Bias detection in MT

e Black-box: MSFT Azure's MT service, English — French

* Inputs: sentences containing bias-prone words

feminine conjugation

e T

Output: Cette danseuse est tres charmante Ce  médecin est tres talentueux

This dancer is very charming This doctor is very talented

Input:

Ces personnes sont tres bizarres

These people are very odd III--
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Input Prediction

e Example actual predictions:
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Application: Flaw detection In dialogue systems

 Black-box: seg2seq with attention, 2 layers, dim 100, no tuning

Are you the son Yes. sir
of Vito Corleone? S

Input Prediction

e Example actual predictions:

Input Prediction
What do you mean it doesn’t matter? | don’t know
Perhaps have we met before? | don't think so
Can | get you two a cocktail? No, thanks.

* |s the model good?
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Application: Flaw detection In dialogue systems

e Input: What do you mean it doesn't matter?
e Output: / don't know

¢ Explanation: I don't know.

What do you mean it doesn'tmatter?
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Summary

Interpretability framework for structured-data models (not
only sentences!)

Works directly on inputs/outputs, model-agnostic

Experiments show how explanations yield partial view
into inner workings of black-box systems
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Discussion

e As with most interpretability frameworks, assumes
uncorrelated inputs - strong assumption

e Can we enhance the probabilistic modeling to account for
this?

e Can we prove reconstruction guarantees in some form?
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Epilogue

e \arious approaches to interpretability in NLP in the last
year:

e [Arras et al. 2017]: uses Layer-wise Relevance
Propagation

e [Sundararajan et al 2017]: integrated gradients,
applications to M

e [Murdoch et al. 2018]: decompose nonlinearities in
LSTM via telescoping sums, analyze "focalized"
contributions of subsets of the input
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Self explaining neural nets

Current gradient-based methods require additional
computation / optimization

Can we get explanations as a byproduct of computation?

... with minimal architectural modification?

Our approach: hybrid simple-complex models
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Interpretability: linear and beyond

* The archetypical interpretable model:
f(@) =" bix; + b
e What makes it interpretable?
1. Inputs are clearly anchored - interpretable quantities
2. Parameters -> (signed) contribution of each feature
3. Simple aggregation function (sum)

e How much can we generalize the model without losing (1)-(3)?
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Self-explaining models
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Explaining MNIST via inputs
* Surface model: linear, parameter model: CNN
f(x) = softmax(6(z)" z)

* MNIST dataset ¥ L5 CNN (LeNet)
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Input: *
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g } the prediction
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% the prediction
=
Predicted class: 1
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Neg. Feats. Pos. Feats.

Combined

Class: 0

Explaining MNIST via inputs

Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6 Class: 7 Class: 8

Class: 9
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 Consistency. Does 6(z) really behave as importance?
e Set §;(x) + 0 . How does class probability change?

e Compare original 8;(x) and drop in class probability.
Should be similar!
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MNIST: Explanations via concepts

e Stability. How coherent are the explanations of similar
examples?
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e Stability. How coherent are the explanations of similar
examples?
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MNIST: Explanations via concepts

o Stability. How coherent are the explanations of similar
examples?

Perturbation 1

Original

CO0 A CO0 A

C5 A C5 A

Regularized No regularization
M

o_

-100
L A
'I‘[j.'- 1]

CSAIL
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—

C4 ~

100 -100

Perturbation 2

—100 100

CO A
C1 4
C2 A
C3 A
C4 A

C5 A

100 —100

55

Perturbation 3
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Perturbation 4
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Perturbation 5
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Application: COMPAS dataset

COMPAS recidivism risk score dataset (ProPublica)

"Relapse” scores produced by COMPAS - private
proprietary algorithm

Used in criminal justice system to aid in bail granting
decisions

Various works analyzing its fairness [Grgic-Hlaca et al.,
2018, Zafar et al., 2017]
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Application: COMPAS dataset

e Task: train model to reproduce COMPAS scores

e SENN model achieves 4% improvement over baseline

e Example explanation:

CSAIL

Two_yr_Recidivism -

Number_of_Priors -

Age_Above_FourtyFive -

Age_Below_TwentyFive -

African_American -

Asian -

Hispanic -

Native_American -

Other -

Female -

Misdemeanor -

(Constant) -
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Relevance Score 0(x) (Scaled)
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Effect of gradient regularization

e How to evaluate stability of explanations?

e Continuous notion of stability:

; 10(zi) — 0(x;)][2

L; = argmax

z;€Bc(z;) h(zi) — h(z)|2

e Discrete analogue:

; 10(zi) — 0(x;)][2

L; = argmax
€N, (z)<e I11(x:) — h(z;)]]2

# Ball of radius eps around X_i

Set of points in dataset at most
distance eps away from Xx_i
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Effect of gradient regularization

e Stronger gradient regularization -> more stability (and
often better accuracy!)

COMPAS dataset Breast Cancer dataset
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Next Steps

e Larger, more complex datasets
e Alternative approaches to learn interpretable concepts

e Can we use explanations during training to improve
performance?
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Summary

e |nject interpretability into rich neural network models

e Framework draws inspiration from classic notions of
interpretability

e Directly enforces stability and consistency of explanations
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