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Neural network architectures 

• Full connectivity is a problem for image inputs 

• Scalability: 200x200x3 images imply 120,000 weights per neuron in first 
hidden layer 

• Overfitting: Too many parameters would lead to overfitting 



Convolutional Neural Networks [LeCun 1989] 

• Specialized to the case where inputs are images (more generally, data 
with a grid-like topology)  

 

• Sparse connections, parameter sharing 

• Efficient to train  

• Avoid overfitting 

 

• Generalize across spatial translations of input  

• By slidiŶg ͞filters͟ that learŶ distiŶĐt patterŶs ;edges, ďloďs of Đolor etĐ.Ϳ 
 

 



Key idea 

• Replace matrix multiplication in neural networks with convolution 

 

• Everything else remains the same 



2D Convolution 

Fig. Goodfellow et al. 2016 

Sliding filters (kernels) 



Edge detection by convolution 



Sparse connectivity 



Sparse connectivity 



Growing receptive fields 



Parameter sharing 



Edge detection by convolution 



Efficiency of edge detection by convolution 

• Input: 320 x 280 

• With convolution 

• 319 x 280 x 3 floating point ops 

• 267960 

 

• With simple matrix 
multiplication 

• 320 x 280 x 319 x 280 elements in 
matrix 

• 16 billion + floating point ops 

 

 

 



Limitations of convolution 

• Captures spatial translation of input features but not changes in scale 
or rotation  

 

 

Dynamic Routing Between Capsules 

(paper reading suggestion) 

https://arxiv.org/abs/1710.09829


Convolutional Neural Networks 

• A ConvNet is made up of Layers 

• Every Layer transforms an input 3D volume to an output 3D volume with 
some differentiable function that may or may not have parameters 

• Neurons in a layer will only be connected to a small region of the layer 
before it 



Example ConvNet architecture 

Layers: CONV, RELU, POOL, FC 



Convolutional layer 



Connectivity  

• An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example 
volume of neurons in the first Convolutional layer.  

• Each neuron in the convolutional layer is connected only to a local region in the input 
volume spatially, but to the full depth (i.e. all color channels). 

• If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will 
have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights 
(and +1 bias parameter).  

• There are multiple neurons (5 in this example) along the depth, all looking at the same 
region in the input; these are part of different filters. 



Spatial arrangement 

• Output volume depends on 

• Depth (Number of filters) K 

• Spatial extent of filters (receptive field) F 

• Stride S 

• Amount of zero-padding P 

 



Spatial arrangement 

• One spatial dimension (x-axis), one neuron with a receptive field size of F = 3, the 
input size is W = 5, and there is zero padding of P = 1 

• Left: stride = 1; center: stride =2  

• Right: neuron weights shared across all yellow neurons in the same depth slice 
(parameter sharing) 

• Nuŵďer of output ŶeuroŶs = ;W−F+ϮPͿ/S+ϭ  
• OfteŶ P=;F−ϭͿ/Ϯ wheŶ S=ϭ; eŶsures Ŷuŵďer of output ŶeuroŶs = W 



Spatial arrangement 

• Depth 

• Number of filters 

• Each filter learns to look for a pattern in the input (e.g., first CONV layer filters 
may activate in the presence of differently oriented edges or blobs of color) 

 



Spatial arrangement 

• Stride 

• With which we slide the filters 

• When the stride is 1 then we move the filters one pixel at a time. When the 
stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a time 
as we slide them around 



Spatial arrangement 

• Zero-padding 

• Pad the input volume with zeros around the border 

• Allows us to control the spatial size of the output volumes 



Parameter sharing 

• Assumption 

• If one feature is useful to compute at some spatial position (x,y), then it 
should also be useful to compute at a different position (x2,y2) 

 

• All neurons in the same depth slice use the same weights and bias 



Convolution Demo 

• http://cs231n.github.io/convolutional-networks/ 

 

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/


Example ConvNet architecture 

Layers: CONV, RELU, POOL, FC 



Pooling layer 

• Goal: Reduce amount of parameters in network 

• Efficiency, address overfitting 

• Common settings: 2x2 filter with stride 2 (fig above), 3x3 filter with stride 2 

 



CNN architectures 



AlexNet (2012 ImageNet ILSVRC challenge winner) 

• Popularized CNNs in computer vision (top 5 error of 16% compared to runner-up 26%) 

• Similar to LeNet but deeper, bigger 

• Convolution layers stacked on top of each other without pooling in between 



VGGNet (2014 ImageNet ILSVRC challenge runner-up)  

• Depth of network critical for good performance (16 CONV/FC layers) 

• More expensive to evaluate; many parameters (140M) 

 



GoogleNet (2014 ImageNet ILSVRC challenge winner)  

• Key innovation: Inception unit 



GoogleNet (2014 ImageNet ILSVRC challenge winner)  

• Filters with different sizes better handle multiple objects scales 

• Max pooling layer is added to summarize the content of the previous layer 



GoogleNet (2014 ImageNet ILSVRC challenge winner)  

• Why the 1x1 convolutions? 
• Summarize information along depth slice of previous layer 
• Greatly reduce number of parameters: efficient, avoids overfitting  

Inception unit 
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Example ConvNet for CIFAR-10 

• INPUT [32x32x3] will hold the raw pixel values of the image, in this case an 
image of width 32, height 32, and with three color channels R,G,B. 

• CONV layer will compute the output of neurons that are connected to local 
regions in the input, each computing a dot product between their weights 
and a small region they are connected to in the input volume. This may 
result in volume such as [32x32x12] if we decided to use 12 filters. 

• RELU layer will apply an elementwise activation function, such as 
the max(0,x). This leaves the size of the volume unchanged ([32x32x12]). 

• POOL layer will perform a downsampling operation along the spatial 
dimensions (width, height), resulting in volume such as [16x16x12]. 

• FC (i.e. fully-connected) layer will compute the class scores, resulting in 
volume of size [1x1x10], where each of the 10 numbers correspond to a 
class score.  



AlexNet 

• The Krizhevsky et al. architecture that won the ImageNet challenge in 2012 
accepted images of size [227x227x3].  

• On the first Convolutional Layer, it used neurons with receptive field 
size F=11, stride S=4 and no zero padding P=0.  

• Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96, 
the Conv layer output volume had size [55x55x96].  

• Each of the 55*55*96 neurons in this volume was connected to a region of 
size [11x11x3] in the input volume.  

• Moreover, all 96 neurons in each depth column are connected to the same 
[11x11x3] region of the input, but of course with different weights. 

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


AlexNet 

• Number of parameters  

• Without parameter sharing 

• 55*55*96 = 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights 
and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first 
layer of the ConvNet 

• With parameter sharing 

• The first Conv Layer in our example would now have only 96 unique set of weights (one 
for each depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or 34,944 
parameters (+96 biases).  

 


