# Why did the network make this prediction?

Ankur Taly (ataly@) go/probe

(Joint work with Mukund Sundararajan, Qiqi Yan, and Kedar Dhamdhere)

### **Deep Neural Networks**

**Output** (Image label, next word, next move, etc.)



Input (Image, sentence, game position, etc.)

Flexible model for learning arbitrary non-linear, non-convex functions

Transform input through a network of neurons

Each neuron applies a non-linear activation function ( $\sigma$ ) to its inputs

$$n_3 = \sigma(w_1. n_1 + w_2.n_2 + b)$$

## **Understanding Deep Neural Networks**

We understand them enough to:

- Design architectures for complex learning tasks (supervised and unsupervised)
- Train these architectures to favorable optima
- Help them generalize beyond training set (prevent overfitting)

But, a trained network largely remains a black box to humans



Understanding the input-output behavior of Deep Networks

i.e., we ask why did it make this prediction on this input?



Why did the network label this image as **"fireboat"**?

#### **Retinal Fundus Image**



Why does the network label this image with "**mild**" Diabetic Retinopathy?

## Why study input-output behavior of deep networks?

- Debug/Sanity check networks
- Surface an explanation to the end-user
- Identify network biases and blind spots
- Intellectual curiosity

### Analytical Reasoning is very hard



- Modern architectures are way too complex for analytical reasoning
   The meaning of individual neurons is not human-intelligible
- Could train a simpler model to approximate its behavior
  - Faithfulness vs. Interpretability

## The Attribution Problem

Attribute a deep network's prediction to its input features, relative to a certain baseline input

- E.g., Attribute an object recognition network's prediction to its pixels
- E.g., Attribute a text sentiment network's prediction to individual words

### Need for a baseline

- Every explanation involves an implicit or explicit counterfactual
  - see [Kahneman-Miller 86]
- Ideally, the baseline is an informationless input for the network
  - e.g., black image for image networks
- The baseline may also be an important analysis knob

### Outline

- Our attribution method: Integrated Gradients
- Applications of the method
- Justifying Integrated Gradients
- Case Study: Neural Programmer
- Discussion

### Naive approach: Ablations

Ablate each input feature and measure the change in prediction

Downsides:

- Costly, especially for image networks with (224\*224\*3) pixel features
- Unrealistic inputs
- Misleading when there are interactive features
  - E.g., Query="Facebook" AND Domain="facebook.com" IMPLIES high click through rate

### **Gradient-based Attribution**

Attribute using gradient of the output w.r.t each input feature Attribution for feature  $x_i$  is  $x_i^* \frac{\partial y}{\partial x_i}$ 

- Standard approach for understanding linear models
  - Here, gradients == feature weights
- First-order approximation for non-linear models

### Inception on ImageNet





### **Visualizing Attributions**

Visualization: Use (normalized) attribution as mask/window over image



### Attribution using gradients



### Saturation



### Saturation

1.0 **Pixel gradient** (average across<sup>®</sup> all pixels) 0.6 0.4 0.2 Intensity  $\alpha$ 0.0 -0.4 1.0 0.2 0.6 0.8 ... Scaled inputs ... Image Baseline

### Saturation



## Saturation occurs...

- across images
  - Not just the two images we discussed
- across networks
  - Not just Inception on ImageNet
  - Severity varies

(see this paper for details)

### The Method: Integrated Gradients

IG(input, base) ::= (input - base) \* 
$$\int_{0^{-1}} \nabla F(\alpha^* input + (1-\alpha)^* base) d\alpha$$



#### Original image



#### Gradient at image



#### **Integrated gradient**



#### Original image (Turtle)



#### Gradient at image



#### **Integrated gradient**



#### Original image



Original image



Original image



Top label: school bus Score: 0.997033

Many more Inception+ImageNet examples here

Integrated gradients

Gradients at image

















Gradients at image



Top label: stopwatch Score: 0.998507

> Top label: jackfruit Score: 0.99591

Integrated gradients

Gradients at image

### Misconception

Human label: accordion Network's top label: toaster



### **Misconception**

Human label: accordion Network's top label: toaster



### **Integrated gradient**



### Very few lines of code...

def integrated\_gradients(inp, base, label, steps=50):
 scaled\_inps = [base + (float(i)/steps)\*(inp-base) for i in range(0, steps)]
 predictions, grads = predictions\_and\_gradients(scaled\_inputs, label)
 integrated\_gradients = (img - base) \* np.average(grads, axis=0)
 return integrated\_gradients



### **Baseline matters**



**Black baseline** 

White baseline

# Applications

### **Diabetic Retinopathy**

Diabetes complication that causes damage to blood vessels in the eye due to excess blood sugar.

An Inception-based network for predicting diabetic retinopathy grade from retinal fundus images achieves 0.97 AUC [JAMA paper]

On what basis, does the network predict the DR grade?



### A prediction



### Predicted DR grade: Mild

### Surfacing an explanation to the doctor!



### Surfacing an explanation to the doctor!



## **Application: Text Classification**

- We have a data set of questions and answers
   Answer types include numbers, strings, dates, and yes/no
- Can we predict the answer type from the question?
   Answer: Yes using a simple feedforward network
- Can we tell which words were indicative of the answer type?

   Enter attributions
- **Key issue**: What is the baseline (analog of the black image)?
  - Answer: the zero embedding vector

### **Application: Text Classification**

how many townships have a population above 50 ? [prediction: NUMERIC] what is the difference in population between fora and masilo [prediction: NUMERIC] how many athletes are not ranked ? [prediction: NUMERIC] what is the total number of points scored ? [prediction: NUMERIC] which film was before the audacity of democracy ? [prediction: STRING] which year did she work on the most films ? [prediction: DATETIME] what year was the last school established ? [prediction: DATETIME] when did ed sheeran get his first number one of the year ? [prediction: DATETIME] did charles oakley play more minutes than robert parish ? [prediction: YESNO]

Red is positive attribution Blue is negative attribution Shades interplolate

#### Application: Text Class can almost harvest these as grammar rules

how many townships for a population above 50 ? [prediction: NUMERIC] what is the difference in population between fora and masilo [prediction: NUMERIC] how many athletes are not ranked ? [prediction: NUMERIC] what is the total number of points scored ? [prediction: NUMERIC] which film was before the audacity of democracy ? [prediction: STRING] which year did she work on the most films ? [prediction: DATETIME] what year was the last school established ? [prediction: DATETIME] when did ed sheeran get his first number one of the year ? [prediction: DATETIME] did charles oakley play more minutes than robert parish ? [prediction: YESNO]




# Many Other Applications

- Search Ranking
  - What makes one result rank higher than another?
- Language translation
  - Which input word does this output word correspond to?
- Text sentiment
  - Which input words cause negative sentiment?

# **Justifying Integrated Gradients**

### **Related Work on Attributions**

- Score back-propagation methods
  - DeepLift [ICML'17], Layerwise Relevance Propagation [JMLR'17], Guided BackPropagation [CoRR'14], DeConvNets [CVPR '10]...
- Local Model Approximation
  - E.g., LIME [KDD '16], Anchors [AAAI '18]
- Shapley value based methods
  - E.g., Quantitative Input Influence [S&P '16], SHAP [NIPS '17]
- Gradient-based methods
  - E.g., SmoothGrad [2017], SaliencyMaps [2014]

### How do you evaluate an attribution method?

## How do you evaluate an attribution method?

### • Eyeball Attributions

- <u>Issue</u>: Attribution may "look" incorrect due to unintuitive network behavior
- <u>Issue</u>: Preference to methods that agree with human reasoning (confirmation bias)

#### • Ablate top attributed features

• <u>Issue</u>: Ablations may change prediction for artifactual reasons

### Hard to separate model behavior, attribution errors, eval artifacts

# How do you evaluate an attribution method?

### • Eyeball Attributions

- <u>Issue</u>: Attribution may "look" incorrect due to unintuitive network behavior
- <u>Issue</u>: Preference to methods that agree with human reasoning (confirmation bias)

#### • Ablate top attributed features

• <u>Issue</u>: Ablations may change prediction for artifactual reasons

### Hard to separate model behavior, attribution errors, eval artifacts

#### **Our approach:**

- List **desirable criteria (axioms)** for an attribution method
- Establish a uniqueness result: X is the **only** method that satisfies these desirable criteria

# Axiom: Sensitivity

- A. If starting from baseline, varying a variable changes the output, then the variable should receive some attribution.
- B. A variable that has no effect on the output gets no attribution.

(A) not satisfied by:

- Gradient at output
- DeConvNets
- Guided Backpropagation

### Axiom: Implementation Invariance

Two networks that compute identical functions for all inputs get identical

attributions even if their architecture/parameters differ

E.g.  $F = x^*y + z$  and  $G = y^*x + z$  should get the same attributions

Not satisfied by:

- DeepLift
- Layerwise Relevance Propagation

For all 
$$x_1$$
 and  $x_2$ :  $F(x_1, x_2) == G(x_1, x_2)$ 





### Axiom: Linearity Preservation

If the function **F** is a linear combination of two functions  $F_1$ ,  $F_2$  then the attributions for **F** are a linear combination of the attributions for  $F_1$ ,  $F_2$ 

I.e., Attributions(a\*F1 + B\*F2) = a\*Attributions(F1) + B\*Attributions(F2)

#### Rationale:

- Attributions have additive semantics, good to respect existing linear structure
- E.g., For F = x\*y + z, the "optimal" attribution should assign blame independently to 'z' and 'x\*y'

## Axiom: Completeness

### Sum(attributions) = F(input) - F(baseline)

Rationale: Attributions apportion the prediction

- Break down the predicted click through rate (pCTR) of an ad like:
  - 55% of pCTR is because it's at position 1
  - 25% is due to its domain (a popular one)
  - o ...

### Theorem [Friedman 2004]

Every method that satisfies Linearity preservation, Sensitivity and Implementation

invariance, and Completeness is a path integral of a gradient.

# Axiom: Symmetry

Symmetric variables with identical values get equal attributions Rationale:

 E.g., For F = x\*y + z, the "optimal" attribution at x,y,z=1,1,2 should be equal for x and y.

### Theorem: [This work]

Integrated Gradients is the unique path method that satisfies these axioms. (there are other methods that take an average over a symmetric set of paths)

# Highlights of Integrated Gradients

### • Easy to implement

- Gradient calls on a bunch of scaled down inputs
- No instrumentation of the network, no new training
- Widely applicable
- Backed by an axiomatic guarantee

#### References

- Google Data Science Blog: <u>Attributing a deep network's prediction to its input</u>
- Paper [ICML 2017]: <u>Axiomatic Attribution for Deep Networks</u>

# Case Study: Neural Programmer

(Joint work with Pramod Mudrakarta, Mukund Sundararajan, Qiqi Yan, and Kedar Dhamdhere)

# **Question-Answering Task**

Answer a natural language question on a table (think: spreadsheet)

#### **1999 South Asian Games**

| Rank | Nation     | Gold | Silver | Bronze | Total |
|------|------------|------|--------|--------|-------|
| 1    | India      | 102  | 58     | 37     | 197   |
| 2    | Nepal      | 32   | 10     | 24     | 65    |
| 3    | Sri Lanka  | 16   | 42     | 62     | 120   |
| 4    | Pakistan   | 10   | 36     | 30     | 76    |
| 5    | Bangladesh | 2    | 10     | 35     | 47    |
| 6    | Bhutan     | 1    | 6      | 7      | 14    |
| 7    | Maldives   | 0    | 0      | 4      | 4     |

Q: How many gold medals did India win? A: 102

Q: how many countries won more than 10 gold medals? A: 3

# WikiTables Dataset (WTQ) [Pasupat and Liang 2015]

Dataset of 22,033 <Question, Table, Answer> triples (split into train, dev, test)

- Tables scraped from Wikipedia; Questions and Answers by Mechanical Turkers
- Wide variety of questions
  - **[Max/Min]** which lake has the **greatest** elevation?
  - **[A\_or\_B]** who won more gold medals, brazil **or** china?
  - **[Position]** which location comes **after** kfar yona?
  - **[Count] how many** ships were built after ardent?

### **Traditional Approach: Semantic Parsing**



- Annotate utterances with typed entities (metrics, dimensions, filters, etc.)
- Parse annotated sentence using a grammar into a logical form
- Execute logical form to obtain an answer

Relies on human authored grammar, synonym lists, and scoring heuristics

• Good precision but poor recall

### Our Protagonist: Neural Programmer [ICLR 2016 and ICLR 2017]

- Deep network augmented with a **fixed set of primitive operations** 
  - Belongs to the family of Neural Abstract Machine architecture
- Learns to compose operators and apply them to the table to obtain an answer
- Trained end-to-end on <question, table, answer> triples

Eliminates the need for hand-crafted grammars, synonym lists and other heuristics. Instead, learns these from data!

# Understanding Neural Programmer (NP)

- What triggers various operator and column selections?
- Can we extract rules from NP that we could use in a hand-authored system?
  - Can we extract a grammar from NP?
- How robust is NP's reasoning?
  - Can we craft adversarial examples to fool it?

| Rank | Athlete             | Nationality | Time    | Notes |
|------|---------------------|-------------|---------|-------|
|      | Valeriy Borchin     | Russia      | 1:19:56 |       |
|      | Vladimir Kanaykin   | Russia      | 1:20:27 |       |
|      | Luis Fernando López | Colombia    | 1:20:38 | SB    |
| 4    | Wang Zhen           | China       | 1:20:54 |       |
| 5    | Stanislav Emelyanov | Russia      | 1:21:11 |       |
| 6    | Kim Hyun-sub        | South Korea | 1:21:17 |       |
| 7    | Ruslan Dmytrenko    | Ukraine     | 1:21:31 | SB    |
| 8    | Yusuke Suzuki       | Japan       | 1:21:39 |       |
| 9    | Alex Schwazer       | Italy       | 1:21:50 | SB    |
| 10   | Erick Barrondo      | Guatemala   | 1:22:08 |       |
| 11   | Chu Yafei           | China       | 1:22:10 |       |
| 12   | Sergey Morozov      | Russia      | 1:22:37 |       |
| 13   | Wang Hao            | China       | 1:22:49 |       |

Q: Wang Zheng and Wang Hao are from which **country**? Neural Programmer: China

| Rank | Athlete             | Nationality | Time    | Notes |
|------|---------------------|-------------|---------|-------|
|      | Valeriy Borchin     | Russia      | 1:19:56 |       |
|      | Vladimir Kanaykin   | Russia      | 1:20:27 |       |
|      | Luis Fernando López | Colombia    | 1:20:38 | SB    |
| 4    | Wang Zhen           | China       | 1:20:54 |       |
| 5    | Stanislav Emelyanov | Russia      | 1:21:11 |       |
| 6    | Kim Hyun-sub        | South Korea | 1:21:17 |       |
| 7    | Ruslan Dmytrenko    | Ukraine     | 1:21:31 | SB    |
| 8    | Yusuke Suzuki       | Japan       | 1:21:39 |       |
| 9    | Alex Schwazer       | Italy       | 1:21:50 | SB    |
| 10   | Erick Barrondo      | Guatemala   | 1:22:08 |       |
| 11   | Chu Yafei           | China       | 1:22:10 |       |
| 12   | Sergey Morozov      | Russia      | 1:22:37 |       |
| 13   | Wang Hao            | China       | 1:22:49 |       |

Q: Wang Zheng and Wang Hao are from which **country**? Neural Programmer: China

**Operator Selection:** 

| Select First (Athlete) | Print<br>( <b>Nationality</b> ) |
|------------------------|---------------------------------|
|------------------------|---------------------------------|

What triggered the "Nationality" column?

| Rank  | Nation        | Gold | Silver | Bronze | Total |
|-------|---------------|------|--------|--------|-------|
| 1     | Cuba          | 4    | 3      | 2      | 9     |
| 2     | Canada        | 4    | 2      | 1      | 7     |
| 3     | United States | 2    | 0      | 2      | 4     |
| 4     | Mexico        | 1    | 1      | 0      | 2     |
| 5     | Ecuador       | 1    | 0      | 0      | 1     |
| 6     | Argentina     | 0    | 4      | 3      | 7     |
| 7     | Brazil        | 0    | 2      | 2      | 4     |
| 8     | Chile         | 0    | 0      | 1      | 1     |
| 8     | Venezuela     | 0    | 0      | 1      | 1     |
| Total | Total         | 12   | 12     | 12     | 36    |

Q: Which nation earned the most gold medals? Neural Programmer: Cuba

| Rank  | Nation        | Gold | Silver | Bronze | Total |
|-------|---------------|------|--------|--------|-------|
| 1     | Cuba          | 4    | 3      | 2      | 9     |
| 2     | Canada        | 4    | 2      | 1      | 7     |
| 3     | United States | 2    | 0      | 2      | 4     |
| 4     | Mexico        | 1    | 1      | 0      | 2     |
| 5     | Ecuador       | 1    | 0      | 0      | 1     |
| 6     | Argentina     | 0    | 4      | 3      | 7     |
| 7     | Brazil        | 0    | 2      | 2      | 4     |
| 8     | Chile         | 0    | 0      | 1      | 1     |
| 8     | Venezuela     | 0    | 0      | 1      | 1     |
| Total | Total         | 12   | 12     | 12     | 36    |

Q: Which nation earned the most gold medals? Neural Programmer: Cuba

**Operator Selection:** 

| Prev   | First | Print  |
|--------|-------|--------|
| (Team) |       | (Team) |

What triggered operator **Prev?** What triggered operator **First?** 

|   | Place | Team          | Matches | Won | Drawn | Lost | Difference | Points |
|---|-------|---------------|---------|-----|-------|------|------------|--------|
| 0 | 1     | Canada        | 6       | 6   | 0     | 0    | 62–6       | 12     |
| 1 | 2     | Sweden        | 6       | 4   | 1     | 1    | 33–14      | 9      |
| 2 | 3     | Switzerland   | 6       | 4   | 1     | 1    | 28–12      | 9      |
| 3 | 4     | Norway        | 6       | 2   | 0     | 4    | 10–27      | 4      |
| 4 | 5     | Great Britain | 6       | 1   | 1     | 4    | 18–42      | 3      |
| 5 | 6     | United States | 6       | 1   | 1     | 4    | 14-42      | 3      |
| 6 | 7     | Finland       | 6       | 1   | 0     | 5    | 15–37      | 2      |

### Q: which **country performed better** during the 1951 world ice hockey championships, **switzerland** or **great britain**?

Neural Programmer: Switzerland

|   | Place | Team          | Matches | Won | Drawn | Lost | Difference | Points |
|---|-------|---------------|---------|-----|-------|------|------------|--------|
| 0 | 1     | Canada        | 6       | 6   | 0     | 0    | 62–6       | 12     |
| 1 | 2     | Sweden        | 6       | 4   | 1     | 1    | 33–14      | 9      |
| 2 | 3     | Switzerland   | 6       | 4   | 1     | 1    | 28–12      | 9      |
| 3 | 4     | Norway        | 6       | 2   | 0     | 4    | 10–27      | 4      |
| 4 | 5     | Great Britain | 6       | 1   | 1     | 4    | 18–42      | 3      |
| 5 | 6     | United States | 6       | 1   | 1     | 4    | 14-42      | 3      |
| 6 | 7     | Finland       | 6       | 1   | 0     | 5    | 15–37      | 2      |

Q: which **country performed better** during the 1951 world ice hockey championships, **switzerland** or **great britain**?

Neural Programmer: Switzerland

**Operator Selection** 

| Select | First | Print  |
|--------|-------|--------|
| (Team) |       | (Team) |

What triggered this non-robust selection?

### **Basic Questions**

- Which inputs and outputs should we focus on?
  - Not immediately clear:
    - Several inputs comprising of question/table features, masks, labels, etc.
    - Answer computation logic is partly continuous and partly discrete
- What is the right baseline?

### **Basic Questions**

- Which inputs and outputs should we focus on?
  - Not immediately clear:
    - Several inputs comprising of question/table features, masks, labels, etc.
    - Answer computation logic is partly continuous and partly discrete
- What is the right baseline?
- Take inspiration from program debugging,
  - Abstract out uninteresting details
  - Focus on parts that are most mysterious or error-prone

# **Question and Table Featurization**



- Column matches: Boolean tensor indicating which column names share a word with the question
- **Table matches**: Boolean tensor indicating which table cells share a word with the question
- Special tokens <tm\_token>, <cm\_token> are added to the question when above tensors are non-zero

Network nevers sees the table contents; it sees only the table matches

### Answer Computation (during inference)



# Answer Computation (during inference)



### Answer Computation (during inference)





### col-names $\rightarrow$ < ques-words, table-matches, col-matches > $\rightarrow$ R<sup>#operators</sup>

(analogous function for column selection)

Split the analysis:

- 1. Understand the influence of table inputs (column names)
- 2. Understand the influence of question inputs given the table

# Step 1: Understanding Table Influence

We invoked the network on a given set of column names but **empty question** (i.e., **ques-words = []**, **table-matches = 0**, **column-matches = 0**)

- We expected this to return uniform operator and column distributions
- Instead, the distributions were quite skewed  $\Rightarrow$  network has a bias per table
- We call the (skewed) selections **Table-Default Programs**

<u>Next step</u>: Attribute table-default programs to column names

### **Table-Default Programs**

| Operator selections        | Num. tables | Attributions to <i>cnames</i>                                                 |
|----------------------------|-------------|-------------------------------------------------------------------------------|
| reset, reset, max, print   | 108         | UNK, year, date, name, points, position, competition, notes, team, no         |
| reset, prev, max, print    | 67          | UNK, rank, total, gold, silver, bronze, nation, year, name, no                |
| reset, reset, first, print | 29          | UNK, name, notes, year, nationality, rank, date, location, previous, comments |
| reset, mfe, first, print   | 26          | year, date, UNK, notes, title, role, genre, opponent, score, surface          |
| reset, reset, min, print   | 16          | year, UNK, name, height, location, jan, may, jun, notes, floors               |
| reset, mfe, max, print     | 14          | opponent, date, result, site, rank, year, attendance, location, notes, city   |
| reset, next, first, print  | 10          | UNK, name, edition, year, death, time, type, men, birth, women                |
| reset, reset, last, print  | 10          | UNK, year, date, location, album, winner, score, type, opponent, peak         |
| reset, prev, last, print   | 5           | date, votes, candidate, party, season, report, UNK, city, west, east          |

(similar table for column selections)

### **Table-Default Programs**

| Operator selections                    | Num. tables | Attributions to <i>cnames</i>                                                 |
|----------------------------------------|-------------|-------------------------------------------------------------------------------|
| reset, reset, max, print               | 108         | - UNK, year, date, name, points, position, competition, notes, team, no       |
| reset, prev, max, print                | 67          | UNK, rank, total, gold, silver, bronze, nation, year, name, no                |
| reset, <del>rese</del> t, first, print | 29          | UNK, name, notes, year, nationality, rank, date, location, previous, comments |
| reset, mfe, first, print               | 26          | year, date, UNK, notes, title, role, genre, opponent, score, surface          |
| reset, reset, min, print               | 16          | year, UNK, name, height, location, jan, may, jun, notes, floors               |
| reset, mfe, max, print                 | 14          | opponent, date, result, site, rank, year, attendance, location, notes, city   |
| reset, next, first, print              | 10          | UNK, name, edition, year, death, time, type, men, birth, women                |
| reset, reset, last, print              | 10          | UNK, year, date, location, album, winner, score, type, opponent, peak         |
| reset, prev, last, print               | 5           | date, votes, candidate, party, season, report, UNK, city, west, east          |

Sports tables?

(similar table for column selections)

### Bias can be useful

- When question has OOV words, final program == table-default program
- For 6% of dev data instances, the table-default program is the final program

There is a **global default for empty table, empty question** too!

| Reset        | Prev         | Мах          | Print        |
|--------------|--------------|--------------|--------------|
| (prob: 0.41) | (prob: 0.37) | (prob: 0.50) | (prob: 0.97) |


Use Integrated Gradients to attribute selections to **question words**, **table-matches** and **column-matches** 

- **Baseline**: empty question
- Attributions will be meaningful only for selections different from those in the table-default program

## **Visualizing Attributions**

#### 0.05 0.00 0.00 0.00 0.00 -1.2 UNK-wang -0.00 0.00 0.00 0.00 0.00 zhen 0.06 0.00 0.00 0.00 0.00 and - 0.8 0.00 0.00 0.00 0.00 0.00 wang 0.00 0.00 0.00 0.00 0.00 UNK-hao 0.00 0.00 0.00 0.00 0.00 were - 0.4 0.12 0.00 0.00 0.00 -0.74 both 0.06 0.00 0.00 0.00 0.00 from - 0.0 0.00 0.00 0.00 0.00 0.41 which 0.00 0.00 0.00 0.00 1.27 country · tm\_token 0.10 0.00 0.00 0.00 0.00 -0.40.40 0.00 0.00 0.00 0.00 tm 0.00 0.00 0.00 0.00 0.00 cm op1: select (prev) col1: athlete (athlete) op2: first (first) op3: print (print) col3: nationality (athlete)

#### Wang zhen and Wang Hao are both from which country?

## **Visualizing Attributions**

### Wang zhen and Wang Hao are both from which country?

| UN                                              | K-wang -  | 0.05                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           | -1.2  |
|-------------------------------------------------|-----------|------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|--------------------------------|-------|
| Attribution is not to                           | zhen -    | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           |       |
| Attribution is set to                           | anu       | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           |       |
| 0.0 when selection is                           | wang -    | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           | - 0.8 |
| same as table-default                           | NK-hao -  | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           |       |
|                                                 | were -    | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           | - 0.4 |
|                                                 | both -    | 0.12                               | 0.00                                    | 0.00                               | 0.00                               | -0.74                          |       |
|                                                 | from -    | 0.06                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           |       |
|                                                 | which -   | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.41                           | - 0.0 |
|                                                 | country - | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 1.27                           |       |
| tm                                              | token     | 0.10                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           | 0.4   |
|                                                 | tm -      | 0.40                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           | 0.4   |
|                                                 | cm -      | 0.00                               | 0.00                                    | 0.00                               | 0.00                               | 0.00                           |       |
| Table-default selection is shown in parenthesis |           | op1: select<br>(prev) <sup>-</sup> | col1: athlete<br>(athlete) <sup>-</sup> | op2: first<br>(first) <sup>-</sup> | op3: print<br>(print) <sup>-</sup> | col3: nationality<br>(athlete) |       |

## **Visualizing Attributions**

### Wang zhen and Wang Hao are both from which country?



#### Which nation earned the most gold medals?



### Which nation earned the most gold medals?



## Which country performed **better** during the 1951 word ice hockey championships, switzerland **or** great britain?



## Which country performed **better** during the 1951 word ice hockey championships, switzerland **or** great britain?



# **Crafting Adversarial Inputs**

Can we use (mis-) attributions to craft adversarial inputs against Neural Programmer?

## **Operator triggers**

For each operator, aggregate the top attributed words across questions

| Operator | Trigger words                                                                          |
|----------|----------------------------------------------------------------------------------------|
| select   | [tm_token, how, many, number, of, after, or, total, before, c Fluff words?             |
| count    | [how, many, number, of, total, times, is, players, games, difference]                  |
| first    | [tm_token, first, before, who, listed, after, top, previous, or, most]                 |
| reset    | [total, many, how, number, the, last, of, listed, first, are]                          |
| last     | [last, after, tm_token, next, chart, is, the, listed, or, in]                          |
| next     | [after, tm_token, next, same, listed, somes, not, below, finished, cm_token]           |
| prev     | [before, previous, listed, tm_token, above, most, is, what, largest, who]              |
| min      | [the, least, amount, which, has, smallest, no, who, school, team]                      |
| mfe      | [most, cm_token, tm_token, the, competitions, singles, other, many, locomotives, year] |
| geq      | [at, many, had, least, more, number, than, have, players, a]                           |
| max      | [most, taller, highest, what, area, or, other, building, larger, Irrelevant?           |
| print    | [cm_token, tm_token, each, who, chart]                                                 |

## Attack 1: Fluff word deletion

- We deleted fluff words from all dev data questions
- Dev accuracy falls from **33.62%** to **28.60%**

## Attack 2: Question phrase concatenation

Stick a content-free phrase comprised of semantically-irrelevant trigger words to all questions in the dev set<sup>1</sup>.

### Original Accuracy: 33.62%

| Attack Phrase            | Prefix   | Suffix  |
|--------------------------|----------|---------|
| "in not a lot of words"  | -12.92%  | -23.91% |
| "in this chart"          | -2.89%   | -4.23%  |
| "among these rows listed | l"-3.42% | -7.31%  |
| "if its all the same"    | -11.62%  | -15.65% |
| "above all"              | -7.17%   | -14.02% |
| "at the moment"          | -2.47%   | -7.62%  |

Union of the 6\*2 = 12 attacks drops accuracy from **33.62%** to **5.01%** 

<sup>1</sup>Related work: Adversarial examples for evaluating reading-comprehension systems [Jia and Liang, 2017]

### **Other Research Directions**

## On Understandability

- Extract rules from a DNN
  - E.g., Can we extract contextual synonyms from Neural Programmer?
- Understand individual dataflow paths
  - For e.g., what influence does the attention path have on the predictions?
  - Allows extracting more focussed rules
- Understand feature interactions
  - Can we automatically extract feature crosses from a deep network?
  - Hessians instead of Gradients?
- Steer DNNs toward **robust** behavior
  - Training data augmentation
  - Intervene with rules, e.g., only attend to non-stop words?

## Questions?