
HW4 18739

Due Date: May 9th 11:59pm PST

1 Introduction

In this homework, you will be implementing GAN and word2vec in Python3,
and revisiting some work covered in guest lectures.

2 PART I: Adversarial Learning (35 pts)

2.1 GAN

In 2014, Goodfellow et al.[4] presented a method for training generative models
called Generative Adversarial Networks (GANs for short). In a GAN, we build
two different neural networks. Our first network is a traditional classification
network, called the discriminator. We will train the discriminator to take im-
ages, and classify them as being real (belonging to the training set) or fake
(not present in the training set). Our other network, called the generator, will
take random noise as input and transform it using a neural network to produce
images. The goal of the generator is to fool the discriminator into thinking the
images it produced are real.

We can think of this back and forth process of the generator (G) trying to
fool the discriminator (D), and the discriminator trying to correctly classify real
vs. fake as a minimax game:

minimize
G

maximize
D

Ex∼pdata
[logD(x)] + Ez∼p(z) [log (1−D(G(z)))]

where x ∼ pdata are samples from the input data, z ∼ p(z) are the random
noise samples, G(z) are the generated images using the neural network generator
G, and D is the output of the discriminator, specifying the probability of an
input being real. To optimize this minimax game, we will alternate between
taking gradient descent steps on the objective for G, and gradient ascent steps
on the objective for D:

1. Update the generator (G) to minimize the probability of the discrimina-
tor making the correct choice.

2. Update the discriminator (D) to maximize the probability of the discrim-
inator making the correct choice.

1



While these updates are useful for analysis, they do not perform well in
practice. Instead, we will use a different objective when we update the generator:
maximize the probability of the discriminator making the incorrect choice. This
small change helps to allevaiate problems with the generator gradient vanishing
when the discriminator is confident. In this assignment, we will alternate the
following updates:

1. Update the generator (G) to maximize the probability of the discriminator
making the incorrect choice on generated data:

maximize
G

Ez∼p(z) [logD(G(z))]

2. Update the discriminator (D), to maximize the probability of the discrim-
inator making the correct choice on real and generated data:

maximize
D

Ex∼pdata
[logD(x)] + Ez∼p(z) [log (1−D(G(z)))]

2.1.1 Implementation(27 pts)

In this homework, you will be implementing a simple GAN network on MNIST
from ground up using Tensorflow. You need to complete code in hw4 partI.ipynb

containing the following components:

Leaky Relu Implement a LeakyReLU function as in equation (3) in [7] .
LeakyReLUs keep ReLU units from dying and are often used in GAN methods
(HINT: You should be able to use tf.maximum)

Random Noise Generate a TensorFlow Tensor containing uniform noise
from -1 to 1 with shape [batch size, dim].

Discriminator Our first step is to build a discriminator. You should use the
layers in tf.layers to build the model. All fully connected layers should include
bias terms. Your discriminator should have the following architecture:

• Fully connected layer from size 784 to 256

• LeakyReLU with alpha 0.01

• Fully connected layer from 256 to 256

• LeakyReLU with alpha 0.01

• Fully connected layer from 256 to 1

The output of the discriminator should have shape [batch size, 1], and con-
tain real numbers corresponding to the scores that each of the batch size inputs
is a real image.

2



Generator Now to build a generator. You should use the layers in ‘tf.layers‘
to construct the model. All fully connected layers should include bias terms.
Your generator should have the following architecture:

• Fully connected layer from tf.shape(z)[1] (the number of noise dimen-
sions) to 1024

• ReLU

• Fully connected layer from 1024 to 1024

• ReLU

• Fully connected layer from 1024 to 784

• TanH (To restrict the output to be [-1,1])

Loss functions The generator loss is:

`G = −Ez∼p(z) [logD(G(z))]

and the discriminator loss is:

`D = −Ex∼pdata
[logD(x)]− Ez∼p(z) [log (1−D(G(z)))]

Note that these are negated from the equations presented earlier as we will be
minimizing these losses.

HINTS: Use tf.ones like and tf.zeros like to generate labels for your
discriminator. Use sigmoid cross entropy loss to help compute your loss
function. Instead of computing the expectation, we will be averaging over ele-
ments of the minibatch, so make sure to combine the loss by averaging instead
of summing.

Optimizers Make an AdamOptimizer with a 1e−3 learning rate, beta1 = 0.5
to mininize G loss and D loss separately. The trick of decreasing beta was
shown to be effective in helping GANs converge. In fact, with our current
hyperparameters, if you set beta1 to the Tensorflow default of 0.9, there’s a
good chance your discriminator loss will go to zero and the generator will fail
to learn entirely. In fact, this is a common failure mode in GANs; if your D(x)
learns to be too fast (e.g. loss goes near zero), your G(z) is never able to learn.
Often D(x) is trained with SGD with Momentum or RMSProp instead of Adam,
but here we’ll use Adam for both D(x) and G(z).

Putting everything together and train a GAN! You don’t need to write
any code in this part. This should take about 10 minutes on a CPU.

3

https://www.tensorflow.org/api_docs/python/tf/ones_like
https://www.tensorflow.org/api_docs/python/tf/zeros_like
https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits


2.2 Other Work in Adversarial Learning(8 pts)

In this section, you will be revisiting 2 papers [2, 3] covered in guest lectures
and answer the following questions.

1. On a high level, what is the difference between L-BFGS attack(page 4 of
[2]) and attack introduced in [2]?

2. On a high level, what is the difference from the defenses mentioned in
[2](such as defensive distillation) and the defense of [3]? Why do you
think [3] can successfully defend against the attack in [2]?

3 PART II: Word2vec(65 pts)

Before you start on this section, please revisit slides of Apr.3rd. To learn more
about the technical details of word2vec and skip-gram, you are also encouraged
to read two of the most classic papers in modern NLP:[6] and [5].

3.1 Skipgram (57 pts)

In Apr 3rd lecture, we introduced skipgram. In slide 24, we established that the
prediction function of the system is defined as:

ŷo = p(o|c) =
exp(uT

o vc)∑
w∈V exp(u

T
wvc)

(1)

where vc is the center word(prediction vector), w denotes the w-th word in
the “output” vectors (uw) for all words in the vocabulary. And the loss(cost)
function of the is just the cross entropy loss

Jsoftmax−CE(o, vc,U) = −
V∑

j=1

log(ŷj)yj (2)

where U is the matrix of all the output vectors. j represents jth word in the
softmax predictions. yj = 1 only when j is the target word.

In slide 32, we also introduce the technique of negative sampling, which has
a different loss function:

Jneg−sample(o, vc,U) = −log(σ(uT
o vc))−

K∑
k=1

log(σ(−uT
kvc)) (3)

Where K are the number of negative samples drawn(o /∈ {1...K}) and σ() is the
sigmoid function.

4



3.1.1 Gradient Derivations(25 pts)

In slide 27(missing a minus sign), we see that the gradient with respect to the
center word vc is

∂

∂vc
(Jsoftmax−CE(θ)) = uw

T (y − ŷ) = −(uo −
V∑

x=1

p(x|c)ux) (4)

Where V is the vocabulary of all words.
However, to update all θ, we also need the gradients for the“output”(context)

word vectors uw(including uo), Please derive ∂
∂uw

(Jsoftmax−CE(θ)).

Similarly, please derive the gradients for negative sampling ∂
∂vc

(Jneg−sampling(θ))

and ∂
∂uk

(Jneg−sampling(θ)). Please include all the computation steps of your

derivation in a separate pdf file(However, if you know how to do markdown/latex,
you can also include that in the notebook).

After you’ve done this, describe(in the notebook) with one sentence why this
cost function is much more efficient to compute than the softmax-CE loss.

3.1.2 Implementation(25 pts)

In this part, you will be implementing a word2vec skip gram model from ground
up. You need to complete code in hw4 partII.ipynb containing the following
functions:

• softmaxCostAndGradient() In this function, you will be implementing
the gradients in equation (4) and your derivation for the output word
vectors.

• negSamplingCostAndGradient()In this function, you will be implement-
ing the gradients (derived by you) for negative sampling.

• skipgram() In this function, you will implement the skipgram model.

Be sure to use the helper function provided in the notebook. After you finish the
3 functions, you can test your function using some dummy data. If it works well,
you will be then training a small word2vec model using the Stanford sentiment
treebank dataset. Before you proceed, make sure you run get datasets.sh in
the datasets folder.

When the script finishes(it should take 1-2 hours if your code is efficient
enough), a visualization for your word vectors will appear. It will also be saved as
word vectors.png in your project directory. Include the plot in your homework
submission. Also report your run time. Briefly explain in at most three sentences
what you see in the plot.

3.1.3 Comparison with CBOW (7 pts)

What we did not cover in this class is the CBOW model, an alternaltive method
to estimate word presentation in a vector space. Read the sections in [5] on
CBOW and answer the following questions:

5



1. In one sentence, summarize the structural difference between skip-gram
and CBOW.

2. Which model do you think handles rare words better? Give an example
to illustrate your choice.

3.2 Bias in Word2vec (8 pts)

Revisit [1] and answer the following questions. (If you want to try out the
debiasing algorithm yourself, please visit the github repo here. )

1. In establishing the gender subspace, why can’t we just use the vector of
he minus the vector of she? What is the benefit of using 10 “definitional”
pairs as in Figure 2?

2. On a high level, what is the difference between hard debiasing and soft
debiasing algorithm? What do you think causes the difference in debiasing
results(Figure 4) between these two debiasing methods?

Submission

You have to submit the files according to the following procedures:

1. Rename both ipynb files (hw4 partX.ipynb) as 〈your andrew id〉 hw4 partX.ipynb.
Rename your derivations and plot to 〈your andrew id〉 derivation.pdf and
〈your andrew id〉 word vectors.png.

2. Make sure that you have run all your program in all the cells before you
submit so that the results/plots can be seen by simply opening the file.

3. Please comment your code.

4. Please cite all your references in the ipynb files.

Please put all files into 〈your andrew id〉 HW4 folder, before you zip the
folder into 〈your andrew id〉 HW4.zip and submit the zip file on Canvas.

References

[1] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man
is to computer programmer as woman is to homemaker? debiasing word
embeddings. In Advances in Neural Information Processing Systems, pages
4349–4357, 2016.

[2] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In Security and Privacy (SP), 2017 IEEE Symposium on, pages
39–57. IEEE, 2017.

6

https://github.com/tolga-b/debiaswe


[3] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting adver-
sarial samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[7] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

7


	Introduction
	PART I: Adversarial Learning (35 pts)
	GAN
	Implementation(27 pts)

	Other Work in Adversarial Learning(8 pts)

	PART II: Word2vec(65 pts)
	Skipgram (57 pts)
	Gradient Derivations(25 pts)
	Implementation(25 pts)
	Comparison with CBOW (7 pts)

	Bias in Word2vec (8 pts)


