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Administrative

• HW4 out today
• Fairness + anonymous communication (next unit)
• You will have ~3 weeks

• Presentations starting on Wednesday
• Upload your slides to Canvas by midnight the night before so we can  

download them in the morning
• Sign up for groups on Canvas so that we can assign group grades
• Presentation rubric on Canvas!
• Volunteer in SV to share their laptop on Wednesday?



In-class Quiz

• On Canvas



Last time

• Group fairness
• Statistical parity
• Demographic parity
• Ensures that same ratio of people from each group get the “desirable” 

outcome

• Individual fairness
• Ensures that similar individuals are treated similarly
• Can learn a fair classifier by solving linear program



Today

• When does individual fairness imply group fairness?

• Connections to differential privacy

• How do we take already-trained classifiers and make them fair? 



Paper from last time:
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Individual fairness formulation:

max
AB

𝔼D~F𝔼G~AB 𝑈(𝑥, 𝑜)

s.t. 𝑀D −𝑀M ≤ 𝑑 𝑥, 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑉

Q: What are the downsides to this formulation?
- Need a similarity metric between users 
- Very high-dimensional LP may be difficult to solve
- Classifier must be trained a priori with fairness

Maximize utility

Subject to fairness 
constraint



When does Individual Fairness imply Group Fairness?

Suppose we enforce a metric d.

Question: Which groups of individuals receive 
(approximately) equal outcomes?

Answer is given by Earthmover distance
(w.r.t. d) between the two groups.



How different are S and T?
Earthmover Distance: 
“Cost” of transforming one distribution 
to another, by ”moving” probability 
mass (“earth”).

TS

(V,d)

h(x,y) – how much 
probability of x in S to 
move to y in T



Example: Compute Earth-Mover’s Distance

• On document cam



bias 𝑑, 𝑆, 𝑇 = max
S:TUVWXYZ[W\] ^_T`a

P 𝑀 𝑥 = 𝑜|𝑥 ∈ 𝑆 − P 𝑀 𝑥 = 𝑜|𝑥 ∈ 𝑇

Theorem: 
Any Lipschitz mapping M satisfies group 
fairness up to bias 𝑑, 𝑆, 𝑇 . 

Further, 
bias(𝑑, 𝑆, 𝑇) ≤ 𝑑𝐸𝑀(𝑆, 𝑇)



Some observations
bias 𝑑, 𝑆, 𝑇 = max

S:TUVWXYZ[W\] ^_T`a
P 𝑀 𝑥 = 𝑜|𝑥 ∈ 𝑆 − P 𝑀 𝑥 = 𝑜|𝑥 ∈ 𝑇

Theorem: 
Any Lipschitz mapping M satisfies group fairness up to bias 𝑑, 𝑆, 𝑇 . 

• By definition, the bias is the maximum deviation from group fairness that  
can  be achieved!

• Indeed, for TV distance between distributions and binary classification, 
bias 𝑑, 𝑆, 𝑇 = 𝑑𝐸𝑀(𝑆, 𝑇)

• Takeaway message: If your groups are very far away (in EMD), the 
Lipschitz condition can only get you so far in terms of group fairness!  



Connections to Differential Privacy

max
AB

𝔼D~F𝔼G~AB 𝑈(𝑥, 𝑜)

s.t. 𝑀D −𝑀M ≤ 𝑑 𝑥, 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑉

What if we don’t  use TV distance for 𝑀D −𝑀M ? 

𝑃 − 𝑄 f ≜ sup
i∈j

log max
𝑃 𝑎
𝑄 𝑎 ,

𝑄 𝑎
𝑃 𝑎

A  mapping M satisfies 𝜖-differential privacy iff it satisfies the Lipschitz 
property!



Summary: Individual Fairness

• Formalized fairness property based on treating similar individuals 
similarly
• Incorporated vendor’s utility

• Explored relationship between individual fairness and group fairness
• Earthmover distance



Individual fairness formulation:

max
AB

𝔼D~F𝔼G~AB 𝑈(𝑥, 𝑜)

s.t. 𝑀D −𝑀M ≤ 𝑑 𝑥, 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑉

Q: What are the downsides to this formulation?
- Need a similarity metric between users 
- Very high-dimensional LP may be difficult to solve
- Classifier must be trained a priori with fairness

Maximize utility

Subject to fairness 
constraint



Lots of open problems/direction
• Metric

• Social aspects, who will define them?
• How to generate metric (semi-)automatically?

• Earthmover characterization when probability metric 
is not statistical distance

• Next: How can we compute a fair classifier from an  
already-computed unfair one?



More definitions of fair classifiers

• NeurIPS 2016
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Equalized odds

• Consider binary classifiers
• We say a classifier t𝑌 has equalized odds if for all true labels 𝑦,  

𝑃 t𝑌 = 1|𝐴 = 0, 𝑌 = 𝑦 = 𝑃 t𝑌 = 1|𝐴 = 1, 𝑌 = 𝑦

Q: How would this definition look if we only wanted to enforce group 
fairness?
A: 𝑃 t𝑌 = 1|𝐴 = 0 = 𝑃 t𝑌 = 1|𝐴 = 1



Equal opportunity

• Suppose 𝑌 = 1 is the desirable outcome
• E.g., getting a loan

• We say a classifier t𝑌 has equal opportunity if

𝑃 t𝑌 = 1|𝐴 = 0, 𝑌 = 1 = 𝑃 t𝑌 = 1|𝐴 = 1, 𝑌 = 1

Interpretation: True positive rate is the same for both classes

Weaker notion of fairness à can enable better utility



How can we create a predictor that meets 
these definitions? 
• Key property: Should be oblivious

• A property of predictor t𝑌 is oblivious if it only depends on the joint 
distribution of 𝑌, 𝐴, t𝑌

• What does this mean? 
• It does not depend on training data 𝑋



Need 4 parameters to define u𝑌 from ( t𝑌, 𝐴)

0 1

0 𝑝}} = 𝑃( u𝑌 = 1|𝐴 = 0, t𝑌 = 0) 𝑝}p = 𝑃( u𝑌 = 1|𝐴 = 1, t𝑌 = 0)

1 𝑝p} = 𝑃( u𝑌 = 1|𝐴 = 0, t𝑌 = 1) 𝑝pp = 𝑃( u𝑌 = 1|𝐴 = 1, t𝑌 = 1)

Protected attribute 𝐴

Predicted Label t𝑌



Once our 𝑝~~’s are defined… 

• How do we check that equalized odds are satisfied? 
𝛾i u𝑌 ≜ 𝑃 u𝑌 = 1|𝐴 = 𝑎, 𝑌 = 0 , 𝑃 u𝑌 = 1|𝐴 = 𝑎, 𝑌 = 1

Compute 𝛾p( u𝑌) and 𝛾}( u𝑌). (Depends on joint distribution of 𝑌, 𝐴, t𝑌 ) 
They should be equal (to satisfy equalized odds)

Q: What condition do we need for an equal opportunity classifier? 

A: The 2nd entries of 𝛾p( u𝑌) and 𝛾} u𝑌 should match 



Geometric Interpretation via ROC curves



Write equalized odds as an optimization

• Let’s define a loss function ℓ( u𝑌�, 𝑌) describing loss of utility from 
using u𝑌� instead of 𝑌

• Now we can optimize: 

• Objective and constraints are both linear in vector of 𝑝 values!



What about continuous values? 

• E.g., suppose we use a numeric credit score 𝑅 to predict binary value 
𝑌

• You can threshold the score to get a comparable definition of 
equalized odds

• If 𝑅 satisfies equalized odds, then so does any predictor t𝑌 =
𝐼 𝑅 > 𝑡 , where 𝑡 is some threshold



Case study: FICO Scores

• Credit scores 𝑅 range from 300 to 850
• Binary variable 𝑌 = whether someone will default on loan 



Experiment

• False positive – giving a loan to someone who will default
• False negative – not giving a loan to someone who will not default
• Loss function = false positives are 4.5x as expensive as false negatives

Baselines
• Max profit – no fairness constraint
• Race blind – uses same FICO threshold for all groups
• Group fairness – picks for each group a threshold such that the fraction of group 

members that qualify for loans is the same
• Equal opportunity – picks a threshold for each group s.t. fraction of non-defaulting 

group members is the same
• Equalized odds – requires both the fraction of non-defaulters that qualify for loans 

and the fraction of defaulters that qualify for loans to be constant across groups



ROC Curve Results



Profit Results

Method Profit (% relative to max profit)

Max profit 100

Race blind 99.3

Equal opportunity 92.8

Equalized odds 80.2

Group fairness (demographic parity) 69.8

Fair by some 
definition


