Fairness, Part II

Giulia Fanti

Fall 2019

Based in part on slides by Anupam Datta

Administrative

- HW4 out today
 - Fairness + anonymous communication (next unit)
 - You will have ~3 weeks
- Presentations starting on Wednesday
 - Upload your slides to Canvas by midnight the night before so we can download them in the morning
 - Sign up for groups on Canvas so that we can assign group grades
 - Presentation rubric on Canvas!
 - Volunteer in SV to share their laptop on Wednesday?

In-class Quiz

• On Canvas

Last time

- Group fairness
 - Statistical parity
 - Demographic parity
 - Ensures that same ratio of people from each group get the "desirable" outcome
- Individual fairness
 - Ensures that similar individuals are treated similarly
 - Can learn a fair classifier by solving linear program

Today

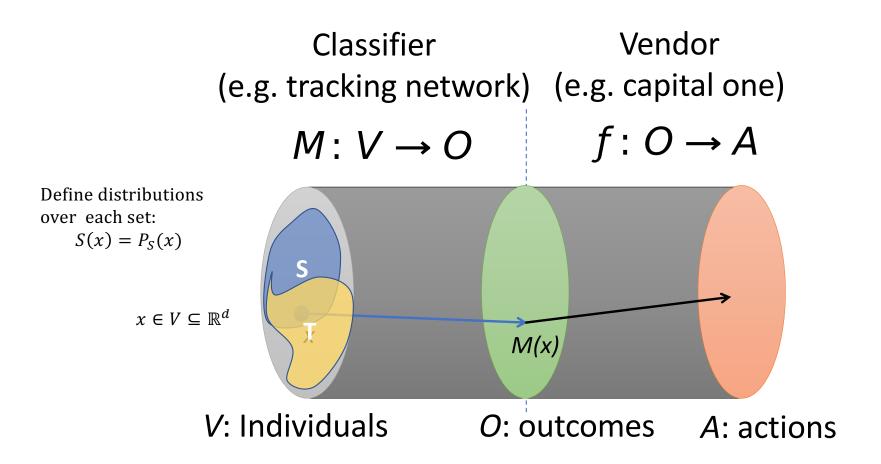
- When does individual fairness imply group fairness?
- Connections to differential privacy
- How do we take already-trained classifiers and make them fair?

Paper from last time:

Fairness Through Awareness

Cynthia Dwork^{*} Moritz Hardt[†] Toniann Pitassi[‡] Omer Reingold[§] Richard Zemel[¶]

November 30, 2011



Individual fairness formulation:

Maximize utility
$$\max_{M_x} \mathbb{E}_{x \sim V} \mathbb{E}_{o \sim M_x} [U(x, o)]$$
Subject to fairness
constraintS.t. $\|M_x - M_y\| \le d(x, y) \ \forall \ x, y \in V$

Q: What are the downsides to this formulation?

- Need a similarity metric between users
- Very high-dimensional LP may be difficult to solve
- Classifier must be trained *a priori* with fairness

When does Individual Fairness imply Group Fairness?

Suppose we enforce a metric *d*.

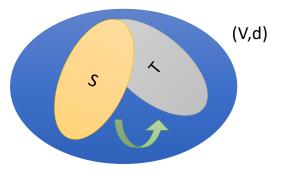
Question: Which *groups of individuals* receive (approximately) equal outcomes?

Answer is given by **Earthmover distance** (w.r.t. *d*) between the two groups.

How different are *S* and *T*?

Earthmover Distance:

"Cost" of transforming one distribution to another, by "moving" probability mass ("earth").



$$\begin{split} d_{EM}(S,T) &= \min_{h} \quad \sum_{x,y \in V} h(x,y) d(x,y) \\ \text{s.t.} \quad \sum_{y \in V} h(x,y) &= S(x), \ \forall x \in S \\ \sum_{y \in V} h(y,x) &= T(x), \ \forall x \in T \\ h(x,y) - \text{how much} \\ \text{probability of x in S to} \\ \text{move to y in T} \\ \end{split}$$

Example: Compute Earth-Mover's Distance

• On document cam

$$d_{EM}(S,T) = \min_{h} \sum_{x,y \in V} h(x,y)d(x,y)$$

s.t.
$$\sum_{y \in V} h(x,y) = S(x), \quad \forall x \in S$$
$$\sum_{y \in V} h(y,x) = T(x), \quad \forall x \in T$$
$$h(x,y) \ge 0$$

$d_{EM}(S,T) =$	\min_h	$\sum_{x,y\in V} h(x,y) d(x,y)$
	s.t.	$\sum_{y \in V} h(x,y) = S(x)$
		$\sum_{y \in V} h(y, x) = T(x)$
		$egin{array}{l} y \in V \ h(x,y) \geq 0 \end{array}$

 $bias(d, S, T) = \max_{\substack{\text{M:d-Lipschitz model}}} P[M(x) = o|x \in S] - P[M(x) = o|x \in T]$

Theorem:

Any Lipschitz mapping M satisfies group fairness up to bias(d, S, T).

Further,

 $bias(d, S, T) \leq d_{EM}(S, T)$

Some observations

 $bias(d, S, T) = \max_{\substack{\text{M:d-Lipschitz model}}} P[M(x) = o|x \in S] - P[M(x) = o|x \in T]$

Theorem:

Any Lipschitz mapping M satisfies group fairness up to bias(d, S, T).

- By definition, the bias is the maximum deviation from group fairness that can be achieved!
- Indeed, for TV distance between distributions and binary classification, bias $(d, S, T) = d_{EM}(S, T)$
- Takeaway message: If your groups are very far away (in EMD), the Lipschitz condition can only get you so far in terms of group fairness!

Connections to Differential Privacy

$$\max_{M_{x}} \mathbb{E}_{x \sim V} \mathbb{E}_{o \sim M_{x}} \left[U(x, o) \right]$$

s.t. $\left\| M_{x} - M_{y} \right\| \leq d(x, y) \ \forall x, y \in V$

What if we don't use TV distance for $||M_x - M_y||$?

$$\|P - Q\|_{\infty} \triangleq \sup_{a \in A} \log\left(\max\left\{\frac{P(a)}{Q(a)}, \frac{Q(a)}{P(a)}\right\}\right)$$

A mapping M satisfies ϵ -differential privacy iff it satisfies the Lipschitz property!

Summary: Individual Fairness

- Formalized fairness property based on treating similar individuals similarly
 - Incorporated vendor's utility
- Explored relationship between individual fairness and group fairness
 - Earthmover distance

Individual fairness formulation:

Maximize utility
$$\max_{M_x} \mathbb{E}_{x \sim V} \mathbb{E}_{o \sim M_x} [U(x, o)]$$
Subject to fairness
constraintS.t. $\|M_x - M_y\| \le d(x, y) \ \forall \ x, y \in V$

Q: What are the downsides to this formulation?

- Need a similarity metric between users
- Very high-dimensional LP may be difficult to solve
- Classifier must be trained *a priori* with fairness

Lots of open problems/direction

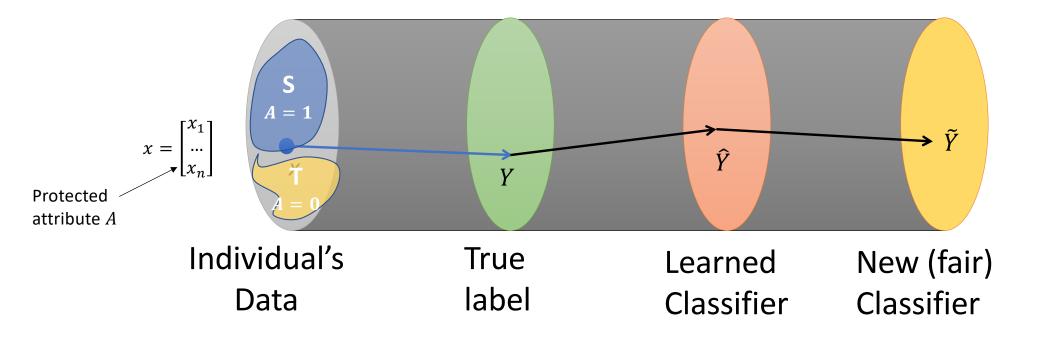
- Metric
 - Social aspects, who will define them?
 - How to generate metric (semi-)automatically?
- Earthmover characterization when probability metric is not statistical distance
- Next: How can we compute a fair classifier from an already-computed unfair one?

More definitions of fair classifiers

• NeurIPS 2016

Equality of Opportunity in Supervised Learning

Moritz Hardt Google m@mrtz.org **Eric Price*** UT Austin ecprice@cs.utexas.edu Nathan Srebro TTI-Chicago nati@ttic.edu



Equalized odds

- Consider binary classifiers
- We say a classifier \hat{Y} has equalized odds if for all true labels y,

$$P[\hat{Y} = 1 | A = 0, Y = y] = P[\hat{Y} = 1 | A = 1, Y = y]$$

Q: How would this definition look if we only wanted to enforce group fairness?

A:
$$P[\hat{Y} = 1 | A = 0] = P[\hat{Y} = 1 | A = 1]$$

Equal opportunity

- Suppose Y = 1 is the desirable outcome
 - E.g., getting a loan
- We say a classifier \hat{Y} has equal opportunity if

$$P[\hat{Y} = 1 | A = 0, Y = 1] = P[\hat{Y} = 1 | A = 1, Y = 1]$$

Interpretation: True positive rate is the same for both classes

Weaker notion of fairness \rightarrow can enable better utility

How can we create a predictor that meets these definitions?

- Key property: Should be oblivious
- A property of predictor \hat{Y} is oblivious if it only depends on the joint distribution of (Y, A, \hat{Y})
- What does this mean?
- It does not depend on training data X

Need 4 parameters to define \tilde{Y} from (\hat{Y}, A)

Protected attribute A

Predicted Label \widehat{Y}

	0	1
0	$p_{00} = P(\tilde{Y} = 1)$	$A = 0, \hat{Y} = 0$) $p_{01} = P(\tilde{Y} = 1 A = 1, \hat{Y} = 0)$
1	$p_{10} = P(\tilde{Y} = 1)$	$A = 0, \hat{Y} = 1$) $p_{11} = P(\tilde{Y} = 1 A = 1, \hat{Y} = 1)$

Once our p_{ii} 's are defined...

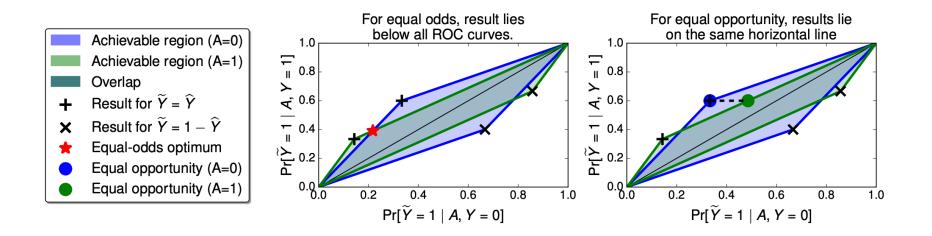
• How do we check that equalized odds are satisfied? $\gamma_a(\tilde{Y}) \triangleq (P\{\tilde{Y} = 1 | A = a, Y = 0\}, P\{\tilde{Y} = 1 | A = a, Y = 1\})$

Compute $\gamma_1(\tilde{Y})$ and $\gamma_0(\tilde{Y})$. (Depends on joint distribution of (Y, A, \hat{Y})) They should be equal (to satisfy equalized odds)

Q: What condition do we need for an equal opportunity classifier?

A: The 2nd entries of $\gamma_1(\tilde{Y})$ and $\gamma_0(\tilde{Y})$ should match

Geometric Interpretation via ROC curves



Write equalized odds as an optimization

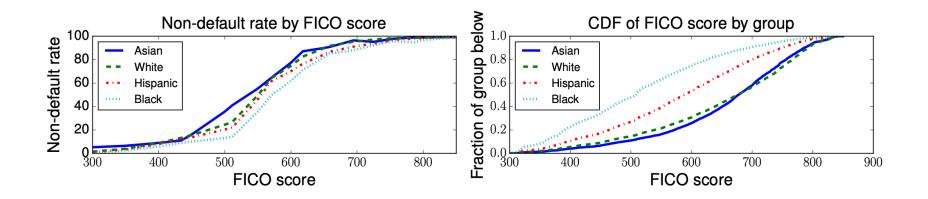
- Let's define a loss function $\ell(\tilde{Y}_p, Y)$ describing loss of utility from using \tilde{Y}_p instead of Y
- Now we can optimize:
 $$\begin{split} \min_p & \mathbb{E}\ell(\widetilde{Y}_p,Y) \\ & \text{s.t.} & \gamma_0(\widetilde{Y}_p) = \gamma_1(\widetilde{Y}_p) \\ & \forall_{y,a} 0 \leqslant p_{ya} \leqslant 1 \end{split}$$
- Objective and constraints are both linear in vector of p values!

What about continuous values?

- E.g., suppose we use a numeric credit score *R* to predict binary value *Y*
- You can threshold the score to get a comparable definition of equalized odds
- If R satisfies equalized odds, then so does any predictor $\hat{Y} = I\{R > t\}$, where t is some threshold

Case study: FICO Scores

- Credit scores *R* range from 300 to 850
- Binary variable *Y* = whether someone will default on loan



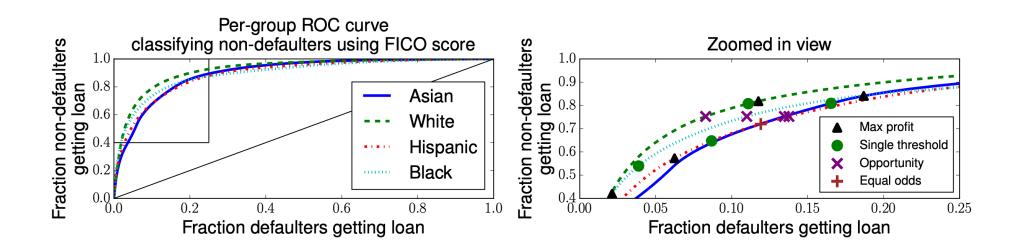
Experiment

- False positive giving a loan to someone who will default
- False negative not giving a loan to someone who will not default
- Loss function = false positives are 4.5x as expensive as false negatives

Baselines

- Max profit no fairness constraint
- Race blind uses same FICO threshold for all groups
- **Group fairness** picks for each group a threshold such that the fraction of group members that qualify for loans is the same
- Equal opportunity picks a threshold for each group s.t. fraction of non-defaulting group members is the same
- Equalized odds requires both the fraction of non-defaulters that qualify for loans and the fraction of defaulters that qualify for loans to be constant across groups

ROC Curve Results



Profit Results

	Method	Profit (% relative to max profit)
	Max profit	100
Fair by some definition	Race blind	99.3
	Equal opportunity	92.8
	Equalized odds	80.2
	Group fairness (demographic parity)	69.8