18734: Foundations of Privacy

Local Differential Privacy

Giulia Fanti

Slides based in part on material by Ananth Raghunathan Fall 2019

Administrative

HW3 out

Differential privacy and deanonymization

Recitation on Friday

Local differential privacy (Sruti)

Interesting talks

- Today @ 5.30 Posner I 60, "Facebook Data Privacy. + Design"
- Thursday 10/10 @ noon, Hamburg Hall 1002, "Next Generation Privacy Reviews", Dhanuja Shaji, SNAP

Project budget

If you need money for your project (e.g. for datasets) send me an email with the amount you need and link to purchase

Canvas quiz

I0 minutes

Different models

Global (database) differential privacy

Local differential privacy

• We say mechanism Q is ϵ -locally differentially private if

$$\sup_{S,x,x'\in\mathcal{X}}\frac{Q(S|X=x)}{Q(S|X=x')} \le e^{\epsilon},$$

Randomized Response

Are you now, or have you ever been, a member of the communist party?"

- ▶ Flip a coin, in private
- If the coin comes up heads, respond "Yes"
- Otherwise, tell the truth
- Estimate true "yes" ratio with
 # of "Yes" responses 0.5

Real-World Application: RAPPOR

Google wanted to detect hijacking of browser settings

- Measure proportion of homepages
- without collecting everyone's data in plaintext

RAPPOR

- First internet-scale deployment of differential privacy
- Open-source

Traditional best practices

- Collect user data
- Scrub IP addresses, timestamps, etc.
- Keep central database of scrubbed data (e.g., 2 weeks)
 Keep only aggregates of older data
- Report aggregates of data over threshold (e.g., 10 users)
- Can be the best approach for opt-in, low-sensitivity data

RAPPOR

Learn statistics with differential privacy

RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response

Úlfar Erlingsson Google, Inc. ulfar@google.com Vasyl Pihur Google, Inc. vpihur@google.com Aleksandra Korolova University of Southern California korolova@usc.edu

Pros:

- Strong privacy guarantees
- Robust to hackers, subpoenas, etc.

Cons:

How do you collect string-valued data with LDP?

Bloom Filters

We use k hash functions.

Here k = 2

Let's add differential privacy

User side: Randomized response

Let's add differential privacy

<u>Mechanism</u> w.p. 1 - f, report true bit w.p. f, report random bit

What privacy guarantee does this give you?

$$\epsilon = 2 \ln \left(\frac{\left(1 - \frac{f}{2}\right)}{\frac{f}{2}} \right)$$

Aggregator

5 2	0	1	12
-----	---	---	----

Decodes vector

Decoding Bloom Filter

- Aggregator knows:
 - Mapping from words to bits

- Aggregate sum of reported (noisy) vectors
- Value of parameter f

In-Class Exercise

- Step I: Go to <u>https://forms.gle/vtsZaTv8CnqqyYsS6</u> and record your operating system
- Step 2: Create RAPPOR-randomized bits for your OS, and submit them at the same link.
- (wait for class to synchronize)
- Step 3: Form teams of 2-3 students. Try to recover the original distribution. (don't look at RAPPOR paper for this!) Submit your guess here (one per group!): https://forms.gle/CDWPkD6GVPpyYFMx7

Different Techniques

Let

- $Y \in \mathbb{R}^d$ denote the observed Bloom filter
- $A \in \mathbb{R}^{d \times n}$ the matrix mapping words to initial (unnoised) bits
- $X \in \mathbb{R}^n$ the vector of all real word counts
- Linear regression:

$$\min_{X\in R^n} \|Y - AX\|_2$$

LASSO

$$\min_{X \in \mathbb{R}^n} \|Y - AX\|_2^2 + \lambda \|X\|_1$$

Hybrid

- Find support of X via LASSO
- Solve linear regression to find weights

Chrome homepages estimated by RAPPOR

google msn avg google tr google br

What is the downside of LDP?

- Higher ϵ requires more data
 - Train models
 - Release statistics with given accuracy

How much more?