
Anupam Datta
CMU

Fall 2015

18734: Foundations of Privacy

Secure Two-Party Computation

Secure Two-Party Computation

2

• Alice	• Bob	

• Bob’s	Genome:	ACTG…	
• Markers	(~1000):	[0,1,	…,	0]	

• Alice’s	Genome:	ACTG…	
• Markers	(~1000):	[0,	0,	…,	1]	

• Can Alice and Bob compute a function of their private data, without
exposing anything about their data besides the result?

Slide: Evans et al

Roadmap

◆ Yao’s Classic Garbled Circuits
◆ Recent advances in practical secure two party

computations

slide 3

slide 4
1

0 0 0

Yao’s Protocol

◆ Compute any function securely
•  … in the semi-honest model

◆ First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

0 0 0
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

slide 5

1: Pick Random Keys For Each Wire

◆ Next, evaluate one gate securely
•  Later, generalize to the entire circuit

◆ Alice picks two random keys for each wire
•  One key corresponds to “0”, the other to “1”
•  6 keys in total for a gate with 2 input wires

AND
x y

z k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

slide 6

2: Encrypt Truth Table

◆ Alice encrypts each row of the truth table by
encrypting the output-wire key with the
corresponding pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

0 0 0

Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 7

3: Send Garbled Truth Table

◆ Alice randomly permutes (“garbles”) encrypted
truth table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))

Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 8

4: Send Keys For Alice’s Inputs

◆ Alice sends the key corresponding to her input bit
•  Keys are random, so Bob does not learn what this bit is

AND
x y

z k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 9

5: Use OT on Keys for Bob’s Input

◆ Alice and Bob run oblivious transfer protocol
•  Alice’s input is the two keys corresponding to Bob’s wire
•  Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 10

6: Evaluate Garbled Gate

◆ Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys
•  Bob does not learn if this key corresponds to 0 or 1

– Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns k0z

slide 11

◆ In this way, Bob evaluates entire garbled circuit
•  For each wire in the circuit, Bob learns only one key
•  It corresponds to 0 or 1 (Bob does not know which)

–  Therefore, Bob does not learn intermediate values (why?)

◆ Bob tells Alice the key for the final output wire and
she tells him if it corresponds to 0 or 1
•  Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

slide 12

Brief Discussion of Yao’s Protocol

◆ Function must be converted into a circuit
•  For many functions, circuit will be huge

◆ If m gates in the circuit and n inputs, then need
4m encryptions and n oblivious transfers
•  Oblivious transfers for all inputs can be done in parallel

◆ Yao’s construction gives a constant-round protocol
for secure computation of any function in the
semi-honest model
•  Number of rounds does not depend on the number of

inputs or the size of the circuit!

Acknowledgments

◆ Slides 4-12 from Vitaly Shmatikov

slide 13

Example OT Protocol

Even, Goldreich, Lempel

https://en.wikipedia.org/wiki/Oblivious_transfer

slide 14

