18734: Foundations of Privacy

Discrimination and Fairness in Classification

Anupam Datta

Fall 2016

Fairness in Classification

Health

Care

Banking

Insurance

Financial aid

Taxation

many more...

Concern: Discrimination

Certain attributes should be irrelevant!

- Population includes minorities
 - Ethnic, religious, medical, geographic

Protected by law, policy, ethic

Discrimination notions in US law

- Disparate treatment
 - Special case: formal disparate treatment in which the protected feature (e.g., race, gender) is directly used to make a decision (e.g., about employment, housing, credit)
 - Formally, protected feature has <u>causal effect</u> on outcome (Datta et al. <u>AdFisher paper</u>)
 - Example: Gender has causal effect on advertising of job-related ads

Discrimination notions in US law

- Disparate impact
 - The protected feature (e.g., race, gender) is
 associated with the decision (e.g., about
 employment, housing, credit) [see Feldman et al.
 <u>Disparate Impact paper</u>]
 - Example: Propublica finding of association between race and recidivism score of the COMPAS scoring system
 - Association not problematic if caused by a correlate whose use is a "business necessity"

Discrimination arises even when nobody's *evil*

- Google+ tries to classify real vs fake names
- Fairness problem:
 - Most training examples standard white American names: John, Jennifer, Peter, Jacob, ...
 - Ethnic names often unique, much fewer training examples

Likely outcome: Prediction accuracy worse on ethnic names

"Due to Google's ethnocentricity I was prevented from using my real last name (my nationality is: Tungus and Sami)"

- Katya Casio. Google Product Forums.

Error vs sample size

Sample Size Disparity:

In a heterogeneous population, smaller groups face larger error

Credit Application

User visits capitalone.com

Capital One uses tracking information provided by the tracking network [x+1] to personalize offers

Concern: Steering minorities into higher rates (illegal)

WSJ 2010

Classifier (eg. ad network) Vendor (eg. capital one)

 $M: V \rightarrow O$

 $f: O \rightarrow A$

V: Individuals

O: outcomes

A: actions

Goal: Achieve Fairness in the classification step

First attempt...

Fairness through Blindness

Ignore all irrelevant/protected attributes

"We don't even look at 'race'!"

Useful to avoid formal disparate treatment

Point of Failure

You don't need to *see* an attribute to be able to predict it with high accuracy

E.g.: User visits artofmanliness.com

... 90% chance of being male

Second attempt...

Statistical Parity (Group Fairness)

Equalize two groups S, T at the level of outcomes

- E.g.
$$S = minority$$
, $T = S^c$

 $Pr[outcome \ o \mid S] = Pr[outcome \ o \mid T]$

"Fraction of people in S getting credit same as in T."

Useful to prevent disparate impact

Not strong enough as a notion of fairness

Sometimes desirable, but can be abused

- **Self-fulfilling prophecy:** Select smartest students in *T*, random students in *S*
 - Students in T will perform better

Lesson: Fairness is task-specific

Fairness requires understanding of classification task and protected groups

"Awareness"

Individual Fairness Approach

Individual Fairness

Treat similar individuals similarly

Similar for the purpose of the classification task

Similar distribution over outcomes

The Similarity Metric

Metric

- Assume task-specific similarity metric
 - Extent to which two individuals are similar w.r.t.
 the classification task at hand
- Ideally captures ground truth
 - Or, society's best approximation
- Open to public discussion, refinement
 - In the spirit of Rawls
- Typically, does not suggest classification!

Examples

- Financial/insurance risk metrics
 - Already widely used (though secret)
- AALIM health care metric
 - health metric for treating similar patients similarly
- Roemer's relative effort metric
 - Well-known approach in Economics/Political theory

Biggest weakness of theory

How do we construct a similarity metric?

How to formalize this?

V: Individuals O: outcomes

Distributional outcomes

How can we compare M(x) with M(y)?

Statistical distance!

V: Individuals

O: outcomes

Metric $d: V \times V \rightarrow \mathbb{R}$

Lipschitz condition $||M(x) - M(y)|| \le d(x, y)$

This talk: Statistical distance in [0,1]

V: Individuals

O: outcomes

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{\text{tv}}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Notation match:

$$M(x) = P$$
 $M(y) = Q$
 $Q = A$

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{\text{tv}}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: High D
$$A = \{0,1\}$$

$$P(0) = 1, P(1) = 0$$

$$Q(0) = 0, Q(1) = 1$$

$$D(P, Q) = 1$$

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{\text{tv}}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: Low D

$$A = \{0,1\}$$
 $P(0) = 1, P(1) = 0$
 $Q(0) = 1, Q(1) = 0$
 $D(P, Q) = 0$

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{\text{tv}}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: Mid D

$$A = \{0,1\}$$
 $P(0) = P(1) = \frac{1}{2}$
 $Q(0) = \frac{3}{4}, Q(1) = \frac{1}{4}$
 $D(P, Q) = \frac{1}{4}$

Existence Proof

There exists a classifier that satisfies the Lipschitz condition

 Idea: Map all individuals to the same distribution over outcomes

Are we done?

Utility Maximization

Vendor can specify arbitrary utility function

$$U: V \times O \rightarrow \mathbb{R}$$

U(v,o) = Vendor's utility of giving individual v the outcome o Maximize vendor's expected utility subject to Lipschitz condition

$$\max_{M(x)} \mathbb{E} \mathbb{E} U(x, o)$$

s.t. *M* is *d*-Lipschitz

$$||M(x) - M(y)|| \le d(x, y)$$

Linear Program Formulation

- Objective function is linear
 - U(x,o) is constant for fixed x, o
 - Distribution over V is known
 - $\{M(x)\}(x \text{ in } V) \text{ are only variables to be computed}$
- Lipschitz condition is linear when using statistical distance

Linear program can be solved efficiently

Discrimination Harms

Information use

- Explicit discrimination
 - Explicit use of race/gender for employment
- Redundant encoding/proxy attributes

Practices

- Redlining
- Self-fulfilling prophesy
- Reverse tokenism

The Story So Far...

- Group fairness
- Individual fairness
- Group fairness does not imply individual fairness

 When does individual fairness imply group fairness?

Statistical Parity (Group Fairness)

Equalize two groups S, T at the level of outcomes

- E.g.
$$S = minority$$
, $T = S^c$

 $Pr[outcome \ o \mid S] = Pr[outcome \ o \mid T]$

"Fraction of people in S getting credit same as in T."

Individual Fairness

Metric $d: V \times V \rightarrow \mathbb{R}$

Lipschitz condition $||M(x) - M(y)|| \le d(x, y)$

V: Individuals

O: outcomes

When does Individual Fairness imply Group Fairness?

Suppose we enforce a metric *d*.

Question: Which *groups of individuals* receive (approximately) equal outcomes?

Theorem:

Answer is given by **Earthmover distance** (w.r.t. *d*) between the two groups.

How different are S and T?

Earthmover Distance:

Cost of transforming uniform distribution on S to uniform distribution on T

$$\sigma_{\text{EM}}(S,T) \stackrel{\text{def}}{=} \min \sum_{x,y \in V} h(x,y)\sigma(x,y)$$
subject to
$$\sum_{y \in V} h(x,y) = S(x)$$

$$\sum_{y \in V} h(y,x) = T(x)$$

$$h(x,y) \ge 0$$

$$\sigma_{\text{EM}}(S,T) \stackrel{\text{def}}{=} \min \sum_{x,y \in V} h(x,y)\sigma(x,y)$$
subject to
$$\sum_{y \in V} h(x,y) = S(x)$$

$$\sum_{y \in V} h(y,x) = T(x)$$

$$h(x,y) \ge 0$$

bias(d,S,T) = largest violation of statistical parity between S and T that any d-Lipschitz mapping can create

Theorem:

 $bias(d,S,T) = d_{EM}(S,T)$

The Story So Far...

- Group fairness
- Individual fairness
- Group fairness does not imply individual fairness
- Individual fairness implies group fairness if earthmover distance small

Connection to differential privacy

 Close connection between individual fairness and differential privacy [Dwork-McSherry-Nissim-Smith'06]

DP: Lipschitz condition on set of databases

IF: Lipschitz condition on set of individuals

	Differential Privacy	Individual Fairness
Objects	Databases	Individuals
Outcomes	Output of statistical analysis	Classification outcome
Similarity	General purpose metric	Task-specific metric

Summary

- Disparate treatment
 - Protected attribute has causal effect on decision
 - Datta et al. <u>AdFisher paper</u>
- Disparate Impact
 - Protected attribute associated with decision
 - Feldman et al. <u>Disparate Impact paper</u>
- Individual fairness
 - "Similar" individuals treated similarly
 - Dwork et al. <u>Fairness through Awareness</u> paper

Questions?

Acknowledgement

Most of the slides are from Moritz Hardt.
 Slides 4, 5, 25, 47 are mine as are various comments about related work.