Commitment Schemes

Amit Datta

Coin Toss Example

Coin Toss in different places

Commitment

- Temporarily hide a value, but ensure that it cannot be changed later
- 1st stage: commit
 - Sender electronically "locks" a message in a box and sends the box to the Receiver
- 2nd stage: reveal
 - Sender proves to the Receiver that a certain message is contained in the box

Properties of Commitment Schemes

- Commitment must be hiding
 - At the end of the 1st stage, no adversarial receiver learns information about the committed value
 - If receiver is probabilistic polynomial-time, then <u>computationally</u> hiding; if receiver has unlimited computational power, then <u>perfectly</u> hiding
- Commitment must be binding
 - At the end of the 2nd stage, there is only one value that an adversarial sender can successfully "reveal"
 - Perfectly binding vs. computationally binding
 Can a scheme be perfectly hiding and binding?

Discrete Logarithm Problem

- Intuitively: given g^x mod p where p is a large prime, it is "difficult" to find x
 - Difficult = there is no known polynomial-time algorithm
- g is a generator of a multiplicative group Z_p^*
 - g⁰, g¹ ... g^{p-2} mod p is a sequence of distinct numbers, in which every integer between 1 and p-1 occurs once
 - For any number $y \in [1 .. p-1]$, $\exists x s.t. g^x = y \mod p$
 - Fermat's Little Theorem
 - For any integer a and any prime p, a^{p-1}=1 mod p.
 - If $g^q=1$ for some q>0, then g is a generator of Z_q , an order-q subgroup of Z_p^*

Pedersen Commitment Scheme

- Setup: receiver chooses...
 - Large primes p and q such that q divides p-1
 - Generator g of the order-q subgroup of Z_{p}^{*}
 - Random secret a from Z_q
 - h=g^a mod p
 - Values p,q,g,h are public, a is secret
- Commit: to commit to some x∈Z_q, sender chooses random r∈Z_q and sends c=g^xh^r mod p to receiver
 This is simply g^x(g^a)^r=g^{x+ar} mod p
- Reveal: to open the commitment, sender reveals x and r, receiver verifies that c=g^xh^r mod p

Security of Pedersen Commitments

- Perfectly hiding
 - Given commitment c, every value x is equally likely to be the value commited in c
 - Given x, r and any x', <u>there exists</u> r' such that $g^{x}h^{r} = g^{x'}h^{r'}$ r' = (x-x')a⁻¹ + r mod q (but must know a to <u>compute</u> r')
- Computationally binding
 - If sender can find different x and x' both of which open commitment c=g^xh^r, then he can solve discrete log
 - Suppose sender knows x,r,x',r' s.t. g^xh^r = g^{x'}h^{r'} mod p
 - Because h=g^a mod p, this means x+ar = x'+ar' mod q
 - Sender can compute a as (x'-x)(r-r')⁻¹
 - But this means sender computed discrete logarithm of h!

- f(x,y) is a commitment to (x, y)
- x, y are constructed to reveal u in case Alice tries to spend the same coin twice

CFN90 scheme

