Commitment Schemes

Amit Datta

Coin Toss Example

Coin Toss in different places

Commitment

- Temporarily hide a value, but ensure that it cannot be changed later
- $1^{\text {st }}$ stage: commit
- Sender electronically "locks" a message in a box and sends the box to the Receiver
- $2^{\text {nd }}$ stage: reveal
- Sender proves to the Receiver that a certain message is contained in the box

Properties of Commitment Schemes

- Commitment must be hiding
- At the end of the $1^{\text {st }}$ stage, no adversarial receiver learns information about the committed value
- If receiver is probabilistic polynomial-time, then computationally hiding; if receiver has unlimited computational power, then perfectly hiding
- Commitment must be binding
- At the end of the $2^{\text {nd }}$ stage, there is only one value that an adversarial sender can successfully "reveal"
- Perfectly binding vs. computationally binding

Can a scheme be perfectly hiding and binding?

Discrete Logarithm Problem

- Intuitively: given $g^{x} \bmod p$ where p is a large prime, it is "difficult" to find x
- Difficult = there is no known polynomial-time algorithm
- g is a generator of a multiplicative group $Z_{p}{ }^{*}$
$-g^{0}, g^{1} \ldots g^{p-2} \bmod p$ is a sequence of distinct numbers, in which every integer between 1 and $p-1$ occurs once
- For any number $y \in[1 . . p-1], \exists x$ s.t. $g^{x}=y \bmod p$
- Fermat's Little Theorem
- For any integer a and any prime $p, a^{p-1}=1 \bmod p$.
- If $g^{q}=1$ for some $q>0$, then g is a generator of Z_{q}, an order-q subgroup of Z_{p} *

Pedersen Commitment Scheme

- Setup: receiver chooses...
- Large primes p and q such that q divides $p-1$
- Generator g of the order-q subgroup of $Z_{p}{ }^{*}$
- Random secret a from Z_{q}
$-h=g^{a} \bmod p$
- Values p, q, g, h are public, a is secret
- Commit: to commit to some $x \in Z_{q}$, sender chooses random $r \in Z_{q}$ and sends $c=g^{\times} h^{r}$ mod p to receiver
- This is simply $g^{x}\left(g^{a}\right)^{r}=g^{x+a r} \bmod p$
- Reveal: to open the commitment, sender reveals x and r, receiver verifies that $c=g^{\times r} h^{r}$ mod p

Security of Pedersen Commitments

- Perfectly hiding
- Given commitment c, every value x is equally likely to be the value commited in c
- Given x, r and any x^{\prime}, there exists r^{\prime} such that $g^{x} h^{r}=g^{x^{\prime}} h^{r^{\prime}}$ $r^{\prime}=\left(x-x^{\prime}\right) a^{-1}+r \bmod q$ (but must know a to compute $\left.r^{\prime}\right)$
- Computationally binding
- If sender can find different x and x^{\prime} both of which open commitment $\mathrm{c}=\mathrm{g}^{\mathrm{x}} \mathrm{h}^{r}$, then he can solve discrete log
- Suppose sender knows $x, r, x^{\prime}, r^{\prime}$ s.t. $g^{x} h^{r}=g^{x^{\prime}} h^{r^{\prime}} \bmod p$
- Because $h=g^{a} \bmod p$, this means $x+a r=x^{\prime}+a r^{\prime} \bmod q$
- Sender can compute a as $\left(x^{\prime}-x\right)\left(r-r^{\prime}\right)^{-1}$
- But this means sender computed discrete logarithm of h !

CFN90 scheme

$$
\begin{gathered}
\mathrm{B}_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}}^{\mathrm{e}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)(\bmod \mathrm{n}) \\
1<=\mathrm{i}<=k \text { where } \\
x_{i}=g\left(a_{i}, c_{i}\right) \\
y_{i}=g\left(a_{i} \oplus(u| |(v+i)), d_{i}\right)
\end{gathered}
$$

Account\#: u Counter: v

Random $a_{i}, c_{i}, d_{i}, r_{i}$
$1<=i<=k$

- B_{i} is a blinded message: does not reveal information about $f(x, y)$ to bank
- $f(x, y)$ is a commitment to (x, y)
- x, y are constructed to reveal u in case Alice tries to spend the same coin twice

CFN90 scheme

$R=$ random subset of $k / 2$
indices

> Reveal $a_{i}, c_{i}, d_{i}, r_{i}$ for i in R

Check
blinded
candidates
in R

- Ensure Alice following protocol
- Assume $\mathrm{R}=\{\mathrm{k} / 2+1, \ldots ., \mathrm{k}\}$ to simplify notation

