18734: Foundations of Privacy

Bootstrapping Privacy Compliance in Big Data Systems

Anupam Datta

Fall 2015

Privacy Compliance for Bing

Setting:

Auditor has access to source code

The Privacy Compliance Challenge

A Streamlined Audit Workflow

A Streamlined Audit Workflow

Legal Team
Crafts Policy

Encode

Legalease

A formal policy specification lar

Grok

Data inventory with policy data

Code analysis, developer annotations

Developer

Writes Code

Workflow for privacy compliance

Legalease, usable yet formal policy specification language

Grok, bootstrapped data inventory for big data systems

Scalable implementation for Bing

Fix code

Verifies Compliance

Privacy as Restrictions on Personal Information Flow

A Streamlined Audit Workflow

Specification: Legalease

Usable. Expressive. Precise.

Usable by lawyers and privacy champs.

Expressive enough for real-world policies.

Precise semantics for local reasoning.

Legalease : Syntax

```
Policy Clause C::=D\mid A
Deny Clause D::=DENY \ T_1\cdots T_n \ EXCEPT \ A_1\cdots A_m
|DENY \ T_1\cdots T_n \ ALLOW \ T_1\cdots T_n \ EXCEPT \ D_1\cdots D_m
|ALLOW \ T_1\cdots T_n \ Attribute \ T::= \langle attribute-name \rangle \ v_1\cdots v_l
|Value \ v::= \langle attribute-value \rangle
```

Legalease

DENY Datatype IPAddress
UseForPurpose Advertising

We will **not** use **full IP Address** for **Advertising**.

Legalease

DENY Datatype IPAddress
UseForPurpose Advertising

EXCEPT

ALLOW
Datatype IPAddress:Truncated

ALLOW
UseForPurpose AbuseDetect
EXCEPT

DENY Datatype
IPAddress, AccountInfo

We will **not** use **full IP Address** for **Advertising**.
IP Address may be used for **detecting abuse**. In such cases, it will not be combined with **account information**.

Designed for Usability

DENY Datatype IPAddress
UseForPurpose Advertising
EXCEPT
ALLOW
Datatype IPAddress:Truncated
ALLOW
UseForPurpose AbuseDetect
EXCEPT
DENY Datatype
H. DeYoung

IPAddress, Accour

Exceptions

How legal texts are structured One-to one correspondence

Local Reasoning

Each exception refines its immediate parent Formally proven property

H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta, "Experiences in the logical specification of the HIPAA and GLBA privacy laws"

Legalease: In Action

Datatype: IPAddress, AccountInfo UseForPurpose: AdsAbuseDetection

We will not use full IP
Address for Advertising.
IP Address may be used for detecting abuse. In such cases, it will not be combined with account inform on.

A Lattice of Policy Labels

- If "IPAddress" use is allowed then so is everything below it
- If "IPAddress:Truncated" use is denied then so is everything above it

Designed for Precision

Policy Clause
$$C$$
 ::= $D \mid A$
Deny Clause D ::= DENY $T_1 \cdots T_n$ EXCEPT $A_1 \cdots A_m$
 $\mid DENY \ T_1 \cdots T_n$
Allow Clause A ::= ALLOW $T_1 \cdots T_n$ EXCEPT $D_1 \cdots D_m$
 $\mid ALLOW \ T_1 \cdots T_n$
Attribute T ::= $\langle \text{attribute-name} \rangle \ v_1 \cdots v_l$
Value v ::= $\langle \text{attribute-value} \rangle$

TABLE I

GRAMMAR FOR LEGALEASE

$$\frac{T^G \not\sqsubseteq T^C}{\mathsf{ALLOW}\ T^C\ \mathsf{EXCEPT}\ D_1\cdots D_m\ \mathsf{denies}\ T^G} \quad (\mathsf{A}_1)$$

$$\frac{T^G \sqsubseteq T^C\ \exists_i D_i\ \mathsf{denies}\ T^G}{\mathsf{ALLOW}\ T^C\ \mathsf{EXCEPT}\ D_1\cdots D_m\ \mathsf{denies}\ T^G} \quad (\mathsf{A}_2)$$

$$\frac{T^G \sqsubseteq T^C\ \forall_i D_i\ \mathsf{allows}\ T^G}{\mathsf{ALLOW}\ T^C\ \mathsf{EXCEPT}\ D_1\cdots D_m\ \mathsf{allows}\ T^G} \quad (\mathsf{A}_3)$$

$$\frac{\bot \in T^G \sqcap T^C\ \mathsf{DENY}\ T^C\ \mathsf{EXCEPT}\ A_1\cdots A_m\ \mathsf{allows}\ T^G\ \mathsf{DENY}\ T^C\ \mathsf{EXCEPT}\ A_1\cdots A_m\ \mathsf{denies}\ T^G\ \mathsf{DENY}\ T^C\ \mathsf{EXCEPT}\ A_1\cdots A_m\ \mathsf{denies}\ T^G\ \mathsf{DS}_3)$$

TABLE III

INFERENCE RULES FOR LEGALEASE

Designed for Expressivity (Bing, October 2013)

ALLOW EXCEPT

DENY DataType IPaddress:Expired

DENY DataType UniqueIdentifier:Expired

DENY DataType SearchQuery, PII InStore Store

DENY DataType UniqueIdentifier, PII InStore Store

DENY DataType BBEPData UseForPurpose Advertising

DENY DataType BBEPData, PII InStore Store

DENY DataType BBEPData:Expired

DENY DataType UserProfile, PII InStore Store

DENY DataType PII UseForPurpose Advertising DENY DataType PII InStore AdStore

DENY *DataType* SearchQuery *UseForPurpose* Sharing EXCEPT

ALLOW DataType SearchQuery:Scrubbed

- ⟨ "[we remove] cookies and other cross session identifiers, after 18 months"
- d "We store search terms (and the cookie IDs associated with search terms) separately from any account information that directly identifies the user, such as name, e-mail address, or phone numbers."
- ¬ "we take steps to store [information collected through the Bing Bar Experience Improvement Program] separately from any account information we may have that directly identifies you, such as name, e-mail address, or phone numbers"
- "we store page views, clicks and search terms used for ad targeting separately from contact information you may have provided or other data that directly identifies you (such as your name, e-mail address, etc.)."
- ⊲ "our advertising systems do not contain or use any information that can
 personally and directly identify you (such as your name, email address and
 phone number)."
- ⟨ "Before we [share some search query data], we remove all unique identifiers
 such as IP addresses and cookie IDs from the data."

Designed for Expressivity (Google, October 2013)

ALLOW
EXCEPT
DENY DataType PII UseForPurpose Sharing

EXCEPT
ALLOW DataType PII:OptIn
EXCEPT
ALLOW AccessByRole Affiliates
EXCEPT
ALLOW UseForPurpose Legal

DENY DataType DoubleClickData, PII
EXCEPT
ALLOW DataType DoubleClickData, PII:Optin

- "We do not share personal information with companies, organizations and individuals outside of Google unless one of the following circumstances apply:"
- "We provide personal information to our affiliates or other trusted businesses or persons to process it for us"
- d "We will share personal information [if necessary to] meet any
 applicable law, regulation, legal process or enforceable governmental request."
- ¬ "We will not combine DoubleClick cookie information with
 personally identifiable information unless we have your opt-in
 consent"

Legalease Usability

Survey taken by 12 policy authors within Microsoft

Encode Bing data usage policy after a brief tutorial

Time spent

2.4 mins on the tutorial14.3 mins on encoding policy

High overall correctness

A Streamlined Audit Workflow

A Streamlined Audit Workflow

Map-Reduce Programming Systems

Dataset A

Process I

Dataset

C

Scope, Hive, Dremel

Data in the form of Tables

Code Transforms Columns to Columns

No Shared State Limited Hidden Flows

```
users =
    SELECT _name, _age FROM datasetAB
user_tag =
    SELECT GenerateTag(_name, _age)
    FROM users
OUTPUT user_tag TO datasetC
```


Purpose Labels

Annotate programs with purpose labels

Purpose Labels

Annotate programs with purpose labels

Initial Data Labels

Heuristics and Annotations

Purpose Labels

Annotate programs with purpose labels

Initial Data Labels

Heuristics and Annotations

Flow Labels

Source labels propagated via data flow graph

D. E. Denning. "A lattice model of secure information flow"

A Lattice of Policy Labels

- If "Profile" use is allowed then so is everything below it
- If "Name" use is denied then so is everything above it

Implicit flows

```
users =
   SELECT Name, Age FROM datasetAB

users_35 =
   SELECT _name
   FROM users
   WHERE (_age > 35)

OUTPUT users_35 TO Profile
```

Beyond direct flows discussed in healthcare audit examples

Map-Reduce

Map

Operate on rows in parallel eg. filtering

Reduce

Combine groups of rows eg. aggregation

```
users =
    SELECT Name, Age FROM datasetAB

users_35 =
    SELECT _name, _age
    FROM users
    WHERE (_age > 35)

ages_35 =
    SELECT _age, COUNT(_name) AS Profile
    FROM users_35
    GROUP BY _age

OUTPUT ages_35 TO datasetC
```

Combine Noisy Sources

Carefully curated regular expressions

Leverages developer conventions

Significant Noise

Variable Name Analysis Expensive

Low Noise

Developer Annotations Very Expensive

Definitive

Need very few of these

Auditor Verification

Why Bootstrapping Grok Works

A small number of annotations is enough to get off the ground.

Pick the nodes which will label the most of the graph

~200 annotations label 60% of nodes

Scale

Fig. 9. Number of GROK data flow graph nodes added each day

- > 77,000 jobs run each day
 - By 7000 entities
 - ▶ 300 functional groups
- I.I million unique lines of code
 - ▶ 21% changes on avg, daily
 - ▶ 46 million table schemas
 - 32 million files
- Manual audit infeasible
- Information flow analysis takes ~30 mins daily

Nightly Compliance **Process**

Static code analysis

Generate Manual report

> priaggit calednidatus 300K+

Audit

teams

A Streamlined Audit Workflow

A Streamlined Audit Workflow

Legal Team
Crafts Policy

Encode

Legalease

A formal policy specification lar

Grok

Data inventory with policy data

Code analysis, developer annotations

Developer

Writes Code

Workflow for privacy compliance

Legalease, usable yet formal policy

specification language

Grok, bootstrapped data inventory for big data systems

Scalable implementation for Bing

Fix code

Verifies Compliance

Reference

S. Sen, S. Guha, A. Datta, S. Rajamani, J. Tsai, J. M. Wing, Bootstrapping Privacy Compliance in Big Data Systems, in Proceedings of 35th IEEE Symposium on Security and Privacy, May 2014.

Policy Labels: Datatypes

Policy Types: Concept Lattices

InStore Lattice

UseForPurpose LatticeAccessByRole Lattice

Formal Semantics

$$\frac{T^G \sqsubseteq T^C}{\mathsf{ALLOW}\ T^C\ \mathsf{EXCEPT}\ D_1 \cdots D_m\ \mathsf{denies}\ T^G} \ \ (\mathsf{A}_2)$$

Based on Lattice Orderings on **Policy Types**

Formal Semantics

$$\frac{T^G \sqsubseteq T^C \quad \exists_i D_i \quad \text{denies} \quad T^G}{\text{ALLOW } T^C \quad \text{EXCEPT} \quad D_1 \cdots D_m \quad \text{denies} \quad T^G} \quad (\mathbf{A}_2)$$

Recursively check exceptions

ALLOW clauses have DENY clauses as exceptions

Top Level clause determines Blacklist/Whitelist