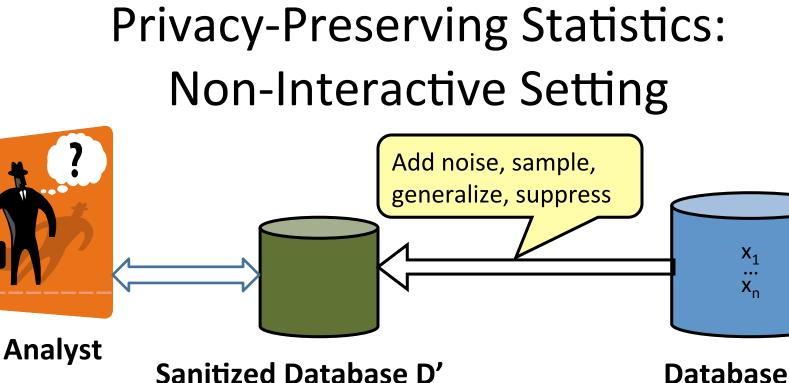
18734: Foundations of Privacy

Privacy-preserving Release of Statistics: Differential Privacy

Anupam Datta CMU

Fall 2015



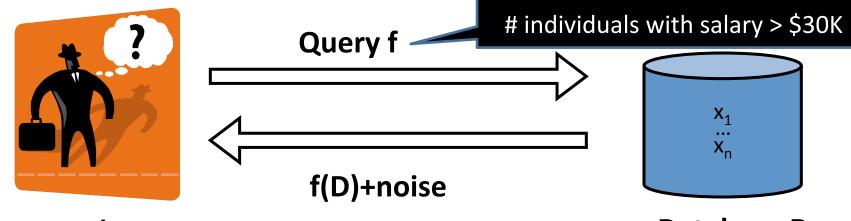
Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database D maintained by trusted curator

- Census data
- Health data
- Network data

Privacy-Preserving Statistics: Interactive Setting



Analyst

Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database D maintained by trusted curator

- Census data
- Health data
- Network data

Some possible defenses

• Anonymize data

- Re-identification, information amplification

• Queries over large data sets

Differencing attack

- Query auditing
 - Refusal leaks, computational tractability
- Summary statistics
 - Frequency lists

Classical Intuition for Privacy

- "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database
- Similar to semantic security of encryption

Impossibility Result [Dwork, Naor 2006]

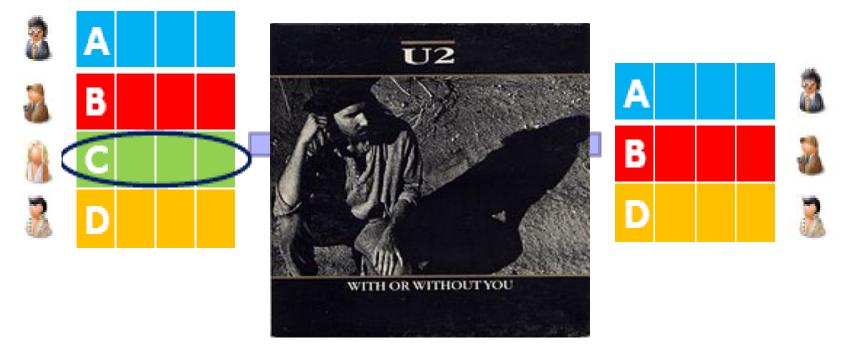
- <u>Result</u>: For reasonable "breach", if sanitized database contains information about database, then some adversary breaks this definition
- Example
 - Terry Gross is two inches shorter than the average Lithuanian woman
 - DB allows computing average height of a Lithuanian woman
 - This DB breaks Terry Gross's privacy according to this definition... even if her record is <u>not</u> in the database!

Very Informal Proof Sketch

- Suppose DB is uniformly random
- "Breach" is predicting a predicate g(DB)
- By itself, does not leak anything about DB
- Together with San(DB), reveals g(DB)

Differential Privacy: Idea

[Dwork, McSherry, Nissim, Smith 2006]



Released statistic is about the same if any individual's record is removed from the database

An Information Flow Idea

Changing input databases in a specific way changes output statistic by a small amount

Not Absolute Confidentiality

Does not guarantee that Terry Gross's height won't be learned by the adversary

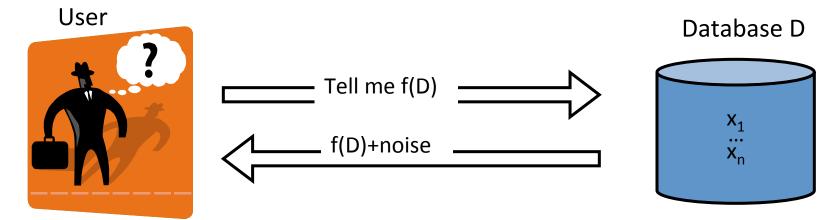
Differential Privacy: Definition

Randomized sanitization function κ has ε -differential privacy if for all data sets D_1 and D_2 differing by at most one element and all subsets S of the range of κ ,

$$\Pr[\kappa(D_1) \in S] \le e^{\varepsilon} \Pr[\kappa(D_2) \in S]$$

Answer to query # individuals with salary > \$30K is in range [100, 110] with approximately the same probability in D_1 and D_2

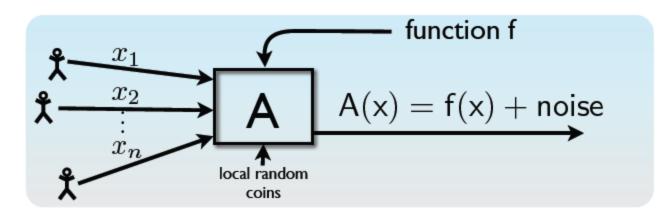
Achieving Differential Privacy: Interactive Setting



How much and what type of noise should be added?

Slide: Adam Smith

Example: Noise Addition



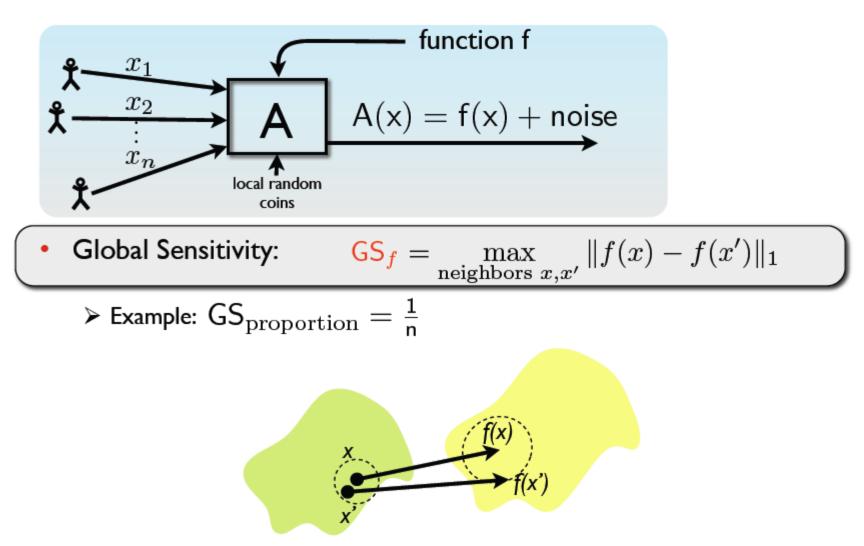
• Say we want to release a summary $f(x) \in \mathbb{R}^p$

 \blacktriangleright e.g., proportion of diabetics: $x_i \in \{0,1\}, \ f(x) = \frac{1}{n} \sum x_i$

- Simple approach: add noise to f(x)
 ➤ How much noise is needed?
- Intuition: f(x) can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n

Slide: Adam Smith

Global Sensitivity



Exercise

- Function f: # individuals with salary > \$30K
- Global Sensitivity of f = ?

• Answer: 1

Background on Probability Theory (see Oct 11, 2013 recitation)

Continuous Probability Distributions

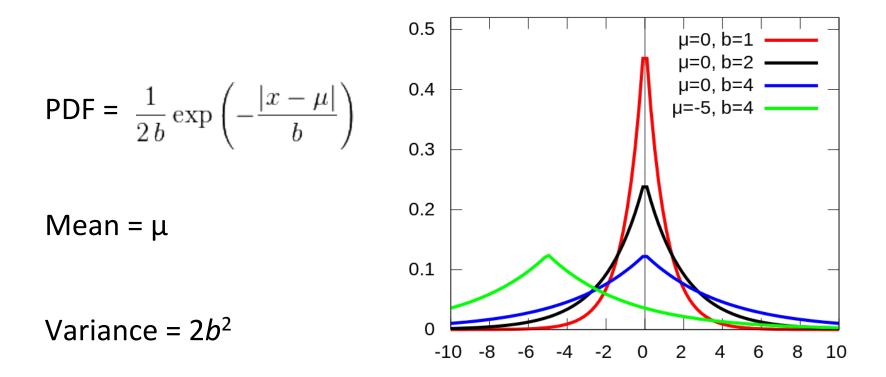
• Probability density function (PDF), f_x

$$\Pr[a \le X \le b] = \int_a^b f_X(x) \, dx.$$

• Example distributions

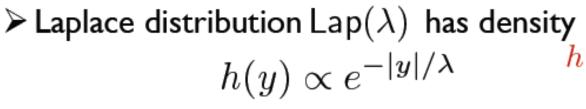
- Normal, exponential, Gaussian, Laplace

Laplace Distribution

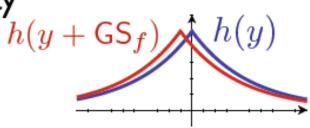


Source: Wikipedia

Laplace Distribution



Changing one point translates curve



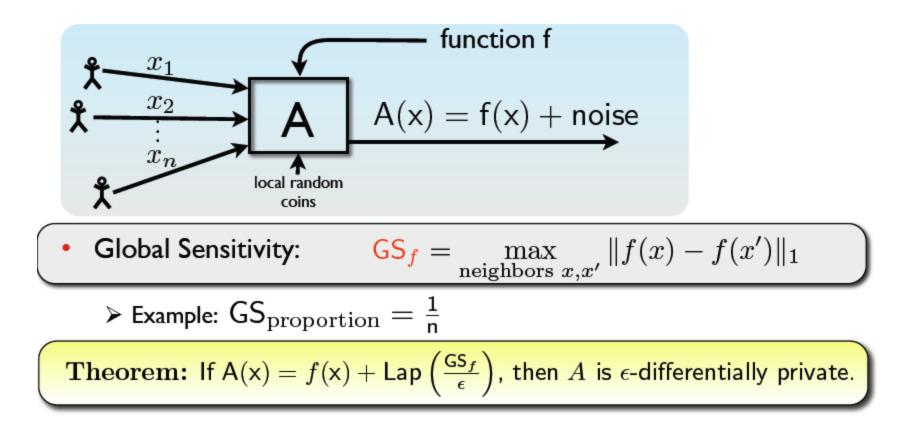
Change of notation from previous slide:

 $\begin{array}{ll} x \rightarrow y & \mu \rightarrow 0 \\ b \rightarrow \lambda & \end{array}$

Achieving Differential Privacy

Slide: Adam Smith

Laplace Mechanism



Laplace Mechanism: Proof Idea

Theorem: If
$$A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$$
, then A is ϵ -differentially private.

Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

$$h(y+\delta)$$
 $h(y)$ y

Sliding property of $Lap\left(\frac{GS_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \le e^{\varepsilon \cdot \frac{\|\delta\|}{GS_f}}$ for all y, δ *Proof idea:* A(x): blue curve A(x'): red curve $\delta = f(x) - f(x') \le GS_f$

Slide: Adam Smith

Example: Noise Addition

- Example: proportion of diabetics
 > GS_{proportion} = 1/n
 > Release A(x) = proportion ± 1/εn
- Is this a lot?

If x is a random sample from a large underlying population, then sampling noise ≈ 1/√n
 A(x) "as good as" real proportion

Using Global Sensitivity

- Many natural functions have low global sensitivity
 - Histogram, covariance matrix, strongly convex optimization problems

Composition Theorem

If A₁ is ε₁-differentially private and A₂ is ε₂-differentially private and they use independent random coins then < A₁, A₂ > is (ε₁+ε₂)-differentially private

 Repeated querying degrades privacy; degradation is quantifiable

Applications

- Netflix data set [McSherry, Mironov 2009; MSR]
 - Accuracy of differentially private recommendations (wrt one movie rating) comparable to baseline set by Netflix
- Network trace data sets [McSherry, Mahajan 2010; MSR]

Packet-level analyses		High accuracy
Packet size and port dist.	$(\S5.1.1)$	strong privacy
Worm fingerprinting [27]	$(\S5.1.2)$	weak privacy
Flow-level analyses		
Common flow properties [30]	$(\S 5.2.1)$	strong privacy
Stepping stone detection [33]	$(\S 5.2.2)$	medium privacy
Graph-level analyses		
Anomaly detection [13]	$(\S 5.3.1)$	strong privacy
Passive topology mapping [9]	$(\S 5.3.2)$	weak privacy

Challenge: High Sensitivity

 Approach: Add noise proportional to sensitivity to preserve ε-differential privacy

- Improvements:
 - Smooth sensitivity [Nissim, Raskhodnikova, Smith 2007; BGU-PSU]
 - Restricted sensitivity [Blocki, Blum, Datta, Sheffet 2013; CMU]

Challenge: Identifying an Individual's Information

- Information about an individual may not be just in their own record
 - Example: In a social network, information about node A also in node B *influenced* by A, for example, because A may have caused a link between B and C

Differential Privacy: Summary

- An approach to releasing privacy-preserving statistics
- A rigorous privacy guarantee

 Significant activity in theoretical CS community
- Several applications to real data sets
 - Recommendation systems, network trace data,..
- Some challenges
 - High sensitivity, identifying individual's information, repeated querying