Private Information Retrieval

Gihyuk Ko

Carnegie Mellon University

original slides from **Amos Beimel**

Private Information Retrieval (PIR) [CGKS95]

Goal

allow user to query database while hiding the identity of the data-items she is after.

Note

hides identity of data-items; not existence of interaction with the user.

Motivation

patent databases; stock quotes; web access; many more....

Paradox(?)

imagine buying in a store without the seller knowing what you buy.

(Encrypting requests is useful against third parties; not against owner of data.)

Modeling

Server: holds n-bit string x

n should be thought of as very large

- User: wishes (to retrieve x_i), while (keeping i private)
- **Remark:** most basic version;

building block for involved retrieval.

Private Information Retrieval (PIR) [CGKS95]

Non-Private Protocol

NO privacy!!!

Communication cost: log n

Trivially Private Protocol

Server sends entire database **x** to User.

Information theoretic privacy

Communication cost: *n*

... is this optimal?

Theorem [CGKS]:

In any 1-server PIR with information-theoretic privacy, the communication cost is at least n.

More "solutions"

- User asks for additional random indices. Drawback: reveals a lot of information
- Employ general crypto protocols to compute xi privately. Drawback: highly inefficient (polynomial in n).
- Anonymity (e.g., via Anonymizers). Note: different concern: hides identity of user, not x_i.

Two Approaches

Information-Theoretic PIR [CGKS95,Amb97,...]

Replicate database among k servers. Unconditional privacy against t servers. Default: t=1

Computational PIR [CG97,KO97,CMS99,...]

Computational privacy, based on cryptographic assumptions.

Known Computational Upper Bounds

Multiple servers, information-theoretic PIR:

- 2 servers, comm. n^{1/3} [CGKS95]
- k servers, comm. $n^{1/\Omega(k)}$ [CGKS95, Amb96,...,BIKR02]
- log n servers, comm. Poly(log(n)) [BF90, CGKS95]

Single server, computational PIR:

- Comm. Poly(log(n))
 - Under appropriate computational assumptions [KO97,CMS99]

Approach I: k-Server PIR

Correctness: User obtains x_i

Privacy: No single server gets information about i

Information-Theoretic 2-Server PIR

- Best Known Protocol: communication cost n^{1/3} [CGKS95]
- Open Question: Is this optimal?
- This Talk: comm. n^{1/2}

Two Stages:

- 1. Protocol I: n bit queries, 1 bit answers
- 2. Protocol II: $n^{1/2}$ bit queries, $n^{1/2}$ bit answers

Protocol I: 2-Server PIR

Protocol I: 2-Server PIR

Protocol I: 2-Server PIR

PIR with $O(n^{1/2})$ Communication

Comp. PIR with $O(n^{1/2})$ Communication

Tool: (randomized) homomorphic encryption

Example Quadratic Residue:

- $E(0) \rightarrow QR_{N}$ $E(1) \rightarrow NQR_{N}$ $QR \qquad \bigotimes R = QR$
- NQR $Q_R = NQR$

PIR – Related Work

- Extensions:
 - Symmetric PIR [GIKM,NP]
 - t-privacy [CGKS,IK,BI]
 - Robust PIR [BS]
- More settings [OS,GGM,DIO,BIM,...]
- PIR as a building-block [NN,FIMNSW,...]

Future Directions

Focus so far: communication complexity

Obstacle: time complexity

• All existing protocols require high computation by the servers (linear computation per query).

Theorem [BIM]:

Expected computation of the servers is $\Omega(n)$

Major research goal: Improving time complexity via preprocessing / amortization / off-line computation (Preliminary results in [BIM, IKOS])

Thanks!