Public Key Encryption from trapdoor permutations

Public key encryption: definitions and security
Public key encryption

Bob: generates (PK, SK) and gives PK to Alice
Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)
• Bob sends email to Alice encrypted using pk_{alice}
• Note: Bob needs pk_{alice} (public key management)
Public key encryption

Def: A public-key encryption system is a triple of algs. \((G, E, D)\)

- **G:** Randomized alg. outputs a key pair \((pk, sk)\)
- **E:** Randomized alg. that takes \(m \in M\) and outputs \(c \in C\)
- **D:** Deterministic alg. that takes \(c \in C\) and outputs \(m \in M\) or \(\perp\)

Consistency: \(\forall (pk, sk)\) output by G:

\[\forall m \in M: \quad D(sk, E(pk, m)) = m\]
For \(b=0,1 \) define experiments \(\text{EXP}(0) \) and \(\text{EXP}(1) \) as:

\[
\text{Def: } E = (G,E,D) \text{ is sem. secure (a.k.a IND-CPA) if for all efficient } A:
\]

\[
\text{Adv}_{\text{SS}}[A, E] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right| < \text{negligible}
\]
Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security $\not\Rightarrow$ many-time security

For public key encryption:

- One-time security \Rightarrow many-time security (CPA)
 (follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized
Security against active attacks

What if attacker can tamper with ciphertext?

Attacker is given decryption of msgs that start with “to: attacker”
(pub-key) Chosen Ciphertext Security: definition

\[E = (G, E, D) \] public-key enc. over \((M, C)\). For \(b=0,1\) define \(\text{EXP}(b)\):

1. **Chal.**
 - \((pk, sk) \leftarrow G()\)

2. **pk**
 - \(c_i \in C\)
 - \(m_i \leftarrow D(sk, c_i)\)

3. **challenge:**
 - \(m_0, m_1 \in M: |m_0| = |m_1|\)
 - \(c \leftarrow E(pk, m_b)\)

4. **CCA phase 1:**
 - \(c_i \in C\)
 - \(c_i \neq c\)

5. **CCA phase 2:**
 - \(c_i \in C\)
 - \(m_i \leftarrow D(sk, c_i)\)

6. **Adv. A**
 - \(b' \in \{0, 1\}\)
Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

$$\text{Adv}_{\text{CCA}} [A, E] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right|$$

is negligible.

Example: Suppose

$$\text{Chal.} \quad (pk, sk) \leftarrow G()$$

$$\text{chal.:} \quad (\text{to: alice, 0}), (\text{to: alice, 1})$$

$$c \leftarrow E(pk, m_b)$$

CCA phase 2: $c' \neq c$

$$m' \leftarrow D(sk, c')$$
Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides **authenticated encryption**

[chosen plaintext security & ciphertext integrity]

- Roughly speaking: **attacker cannot create new ciphertexts**
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker **can** create new ciphertexts using \(pk \)
- So instead: we directly require chosen ciphertext security
This and next module:

constructing CCA secure pub-key systems

End of Segment
Goal: construct chosen-ciphertext secure public-key encryption
Trapdoor functions (TDF)

Def: a trapdoor func. \(X \rightarrow Y \) is a triple of efficient algs. \((G, F, F^{-1})\)

- \(G()\): randomized alg. outputs a key pair \((pk, sk)\)
- \(F(pk, \cdot)\): det. alg. that defines a function \(X \rightarrow Y \)
- \(F^{-1}(sk, \cdot)\): defines a function \(Y \rightarrow X \) that inverts \(F(pk, \cdot) \)

More precisely: \(\forall (pk, sk) \) output by \(G \)

\[\forall x \in X: \quad F^{-1}(sk, F(pk, x)) = x \]
Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a “one-way” function:

can be evaluated, but cannot be inverted without sk

Def: (G, F, F^{-1}) is a secure TDF if for all efficient A:

$$\text{Adv}_{\text{OW}}[A, F] = \Pr[x = x'] < \text{negligible}$$
Public-key encryption from TDFs

- \((G, F, F^{-1})\): secure TDF \(X \rightarrow Y\)
- \((E_s, D_s)\): symmetric auth. encryption defined over \((K,M,C)\)
- \(H: X \rightarrow K\): a hash function

We construct a pub-key enc. system \((G, E, D)\):

Key generation \(G\): same as \(G\) for TDF
Public-key encryption from TDFs

- \((G, F, F^{-1})\): secure TDF \(X \rightarrow Y\)
- \((E_s, D_s)\): symmetric auth. encryption defined over \((K, M, C)\)
- \(H: X \rightarrow K\) a hash function

\[
\begin{align*}
E(pk, m) : & \quad x \leftarrow^R X, \quad y \leftarrow F(pk, x) \\
& \quad k \leftarrow H(x), \quad c \leftarrow E_s(k, m) \\
& \quad \text{output } (y, c)
\end{align*}
\]

\[
\begin{align*}
D(sk, (y, c)) : & \quad x \leftarrow F^{-1}(sk, y), \\
& \quad k \leftarrow H(x), \quad m \leftarrow D_s(k, c) \\
& \quad \text{output } m
\end{align*}
\]
Security Theorem:

If \((G, F, F^{-1})\) is a secure TDF, \((E_s, D_s)\) provides auth. enc. and \(H: X \rightarrow K\) is a “random oracle” then \((G, E, D)\) is CCA\(^r\)o secure.
Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

$$E(\text{pk}, m) : \quad \text{output } c \leftarrow F(\text{pk}, m)$$

$$D(\text{sk}, c) : \quad \text{output } F^{-1}(\text{sk}, c)$$

Problems:

- Deterministic: cannot be semantically secure!!
- Many attacks exist (next segment)
Next step: construct a TDF

End of Segment
Public Key Encryption from trapdoor permutations

The RSA trapdoor permutation
Review: trapdoor permutations

Three algorithms: \((G, F, F^{-1})\)

- **G**: outputs \(pk, sk\). \(pk\) defines a function \(F(pk, \cdot): X \rightarrow X\)
- **F(pk, x)**: evaluates the function at \(x\)
- **\(F^{-1}(sk, y)\)**: inverts the function at \(y\) using \(sk\)

Secure trapdoor permutation:

The function \(F(pk, \cdot)\) is one-way without the trapdoor \(sk\)
Review: arithmetic mod composites

Let \(N = p \cdot q \) where \(p, q \) are prime

\[Z_N = \{0, 1, 2, \ldots, N-1\} ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N\} \]

Facts: \(x \in Z_N \) is invertible \(\iff \) \(\gcd(x, N) = 1 \)

- Number of elements in \((Z_N)^* \) is \(\varphi(N) = (p-1)(q-1) = N-p-q+1 \)

Euler’s thm: \(\forall x \in (Z_N)^* : \quad x^{\varphi(N)} = 1 \)
The RSA trapdoor permutation

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems
 ... many others
The RSA trapdoor permutation

\(G() \): choose random primes \(p, q \approx 1024 \text{ bits} \). Set \(N = pq \).

choose integers \(e, d \) s.t. \(e \cdot d = 1 \pmod{\varphi(N)} \)

output \(pk = (N, e) \), \(sk = (N, d) \)

\[F^{-1}(sk, y) = y^d \quad ; \quad y^d = RSA(x)^d = x^{ed} = x^{k\varphi(N)+1} = (x^{\varphi(N)})^k \cdot x = x \]
The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

\[\Pr \left[A(N,e,y) = y^{1/e} \right] < \text{negligible} \]

where \(p,q \xleftarrow{\text{R}} \text{n-bit primes}, \ N \leftarrow pq, \ y \xleftarrow{\text{R}} \mathbb{Z}_N^* \)
Review: RSA pub-key encryption (ISO std)

(E_s, D_s): symmetric enc. scheme providing auth. encryption.

$H: Z_N \rightarrow K$ where K is key space of (E_s, D_s)

- **$G()$:** generate RSA params: $pk = (N,e)$, $sk = (N,d)$

- **$E(pk, m)$:**
 1. choose random x in Z_N
 2. $y \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$
 3. output $(y, E_s(k,m))$

- **$D(sk, (y, c))$:** output $D_s(H(RSA^{-1}(y)), c)$
Textbook RSA is insecure

Textbook RSA encryption:

- public key: $\langle N, e \rangle$
- secret key: $\langle N, d \rangle$

Encrypt: $c \leftarrow m^e \quad \text{(in } \mathbb{Z}_N\text{)}$

Decrypt: $c^d \rightarrow m$

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist

\Rightarrow The RSA trapdoor permutation is not an encryption scheme!
Suppose k is 64 bits: $k \in \{0,\ldots,2^{64}\}$. Eve sees: $c = k^e$ in \mathbb{Z}_N

If $k = k_1 \cdot k_2$ where $k_1, k_2 < 2^{34}$ (prob. $\approx 20\%$) then $c/k_1^e = k_2^e$ in \mathbb{Z}_N

Step 1: build table: $c/1^e, c/2^e, c/3^e, \ldots, c/2^{34}e$. time: 2^{34}

Step 2: for $k_2 = 0,\ldots, 2^{34}$ test if k_2^e is in table. time: 2^{34}

Output matching (k_1, k_2). Total attack time: $\approx 2^{40} \ll 2^{64}$
End of Segment