
Mathematical Models of Computer Security

Peter Y. A. Ryan

The Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA 15213

pryan@cert.org

Abstract. In this chapter I present a process algebraic approach to the
modelling of security properties and policies. I will concentrate on the
concept of secrecy, also known as confidentiality, and in particular on
the notion of non-interference. Non-interference seeks to characterise the
absence of information flows through a system and, as such, is a funda-
mental concept in information security.
A central thesis of these lectures is that, viewed from a process algebraic
point of view, the problem of characterising non-interference is essen-
tially equivalent to that of characterising the equivalence of processes.
The latter is itself a fundamental and delicate question at the heart of
process algebra and indeed theoretical computer science: the semantics
of a process is intimately linked to the question of which processes should
be regarded as equivalent.
We start, by way of motivation and to set the context, with a brief
historical background. A much fuller exposition of security policies in
the wider sense, embracing properties other than secrecy, can be found
in the chapter by Pierangela Samarati in this volume. We then cover
some elements of process algebra, in particular CSP (Communicating
Sequential Processes), that we need and present a formulation of non-
interference, along with some more operational presentations of process
algebra, including the idea of bi-simulation. I argue that the classical
notion of unwinding found in the security literature is really just bi-
simulation in another guise.
Finally, I propose some generalisations of the process algebraic formula-
tions designed to encompass a richer class of policies and examples.

1 Background

This chapter presents a process algebra based framework in which we can ex-
press and analyze security requirements at an abstract level. I hope that the
reader will come away with the impression that such an approach is well suited
to formulating security properties. Many issues that have proved problematic
in the formulation of, for example, secrecy in information processing systems,
become much clearer when viewed in a process algebraic style. Many insights
and results from the process algebra community turn out to be highly relevant
in the context of information security. On the other hand, information security
presents a number of challenges to current theory and so should help stimulate
advances in theory.

R. Focardi and R. Gorrieri (Eds.): FOSAD 2000, LNCS 2171, pp. 1–62, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 Peter Y. A. Ryan

The term security is often used to cover a multitude of requirements, in
particular:

– Secrecy (confidentiality)

– Integrity

– Availability (e.g., resilience to denial-of-service attacks).

By secrecy or confidentiality I mean, informally, that information can only be
acquired by agents or processes entitled to such access. By and large I will regard
the task of a policy to be to define when access should be allowed or denied.
Integrity, roughly speaking, will mean that the correctness of data is ensured: i.e.,
it can only be established or modified by agents or processes entitled to influence
the values of the data. Availability typically means that access to information
and services to agents with the right to them is maintained in a timely and
dependable manner.

Pierangela has given the background to these concepts in her chapter of this
volume so we will not dwell on the various flavours that exist in the security
literature. For the most part I will concentrate on secrecy for these lectures but
I will touch on the other requirements. Indeed, to some extent at least, other
requirements can be captured in a rather similar framework as variants of non-
interference.

There has been much debate in the security literature as to what exactly
is meant by the terms security model or security policy and indeed what, if
any, is the distinction. I do not propose to enter such debate in these lectures,
but refer the interested reader to the excellent and lucid writings of McLean,
for example [57], on this and the subject area in general. For the purposes of
these lectures I will take the attitude that the purpose of a policy is to state
what information flows are to be allowed and which are to be prevented. More
generally a policy will state what privileges are accorded to which agents. I will
regard a model as being a mathematical framework in which we can precisely
characterise the properties of interest, in particular that of secrecy, i.e., the
absence of certain information flows.

Another much debated question is that of whether a “correct,” Platonic no-
tion of security, or at least secrecy, exists. Again I will avoid being drawn into the
rather philosophical aspects of such discussions. We will see later, however, that
even the apparently rather well focussed question of characterising information
flows, and in particular their absence, in a system is surprisingly delicate, but
for precise mathematical reasons rather than philosophical ones.

In these lectures I am principally concerned with presenting definitions se-
curity properties such as secrecy. Such definitions are of little use if we do not
have ways to demonstrate that actual designs and systems meet the defintions.
I will discuss some of the issues involved in going from the high-level definitions
towards implementations. This turns out to be distinctly non-trivial. Step-wise
development techniques are well established for so-called safety properties but

Mathematical Models of Computer Security 3

it is well known that security properties tend not to be preserved by such tech-
niques. Safety properties typically amount to assertions that a system will not
perform such and such an undesirable behaviour. As we will see later, secu-
rity properties are far more subtle and cannot be captured by simply outlawing
certain behaviours.

The next two sections provide some motivation for the use of mathematical
models. Section 4 gives a brief overview of the historical development of models
of computer security. This will help to put the central theme, the concept of
non-interference, in context. Section 5 presents the Goguen-Meseguer formula-
tion of non-interference along with some discussions of the limitations of this
formulation. This is usually cited as the primary reference for non-interference
although there is some prior work due to Cohen and Feiertag. This is followed
by a brief introduction to process algebra, in particular CSP, which will be used
to give more up-to-date formulations of non-interference. Finally I present some
generalisations of these formulations and topics for further research.

2 Mathematical Models

Before we launch into descriptions of mathematical models, a few words are in
order on why such models are needed at all. The purpose of (mathematical)
models is to provide abstract descriptions of a more complex reality. The models
will typically ignore many details of the real artifact in order to render them
understandable and amenable to analysis. Care has to be taken to ensure that
such abstractions are not so drastic as to remove any semblance of reality.

Usually we are only interested in certain aspects of the real artifact that are
wholly or largely independent of many of the details. For example, in thermo-
dynamics physicists study the behaviour of a gas in a box. Suppose that the gas
comprises n molecules, then the state of the gas is represented by a point in a 6n
dimensional phase space. However we are not remotely interested in the exact
point in the phase space the gas actually occupies. Even if we could accurately
determine this point it would actually tell us nothing of interest. It is enough
for most purposes just to consider the state of the gas to be a function of three
parameters: temperature, volume and pressure and to study the relationship be-
tween these. The equations of motion on the phase space lift to relations between
these parameters.

Similarly in computer science we are dealing with extremely complex arti-
facts, many of whose details are of no interest to us or are unobservable. Again
we use mathematical models which, by their very nature, abstract much of the
extraneous detail or are suitably constructed to allow us to make abstractions
as appropriate. In these lectures we will be concentrating on process algebras as
our mathematical framework and we will see that these give rise rather natu-
rally to a representation of systems that corresponds to what is observable by
some outside observer. Process algebras also lead to a number of very natural
and powerful abstraction operators. We will see, for example, how the notion of
secrecy leads to equivalences on the state space of a system rather analogous to

4 Peter Y. A. Ryan

the way a thermodynamical system is factored by equivalences of temperature,
pressure and volume.

In short, the use of mathematical models allows us to introduce simplicity,
to borrow a phrase from Abrial [76]. We can then deploy all the usual math-
ematician’s tricks of abstraction, modularisation, symmetry, etc. to reduce the
problem to mind-sized chunks. All the while we have to be careful that we have
not simplified too much. This is an ever present danger, especially for security,
where the old dictum: “the devil is in the detail,” is particularly true.

Another beauty of mathematical models is that they are completely at your
mercy: you can do what you like with them, up to requirements of consistency.
You can change parameters with an ease that would be impossible with the
real thing or even a physical mock up. You can perform Gedankenexperimente:
thought experiments that would be impossible in reality, along the lines of Ein-
stein’s riding a light beam.

Another motivation for models is that they allow us to move from an abstract
representation gradually, in a step-wise fashion towards an implementation. The
hope is that by making the steps reasonably modest we ensure that the complex-
ity of our manipulations and proofs is kept manageable throughout. This tends
to be rather easier said than done, especially for security, but it is nonetheless
a worthy and sensible goal.

We also need to bear in mind that absolute security is probably a theoretical
impossibility and certainly a practical impossibility. Ultimately we need to aim
to provide adequate levels of security against probable threats, enough for to
ensure that the cost to the attacker of launching an attack outweighs the benefits.
In the world of physical security people have long known how to rate safes in
terms of the time they can resist certain types of attack. So, you choose the
appropriate safe in terms of its resistance to attack and in terms of the likely
value of its contents. Such ratings can be blown away by a new mode of attack
and the history of safe design has been a game of cat and mouse between the safe
designers and the safe crackers. When a new style of attack is invented, a few
safes get blown, and new designs are deployed.

The story is rather similar in the information security world, but there are
differences. The game is a far more complex one: the systems in question are
vastly complex and the styles of attack vastly more diverse. Often the stakes are
much higher. If we are concerned with critical infrastructures for example, we
can’t just insure everything with Lloyd’s of London and upgrade our defences
after a cyber terrorist has taken the whole system out.

3 Formal Models and Methods

A few words are also in order on the nature and utility of formal models and
formal methods. The idea of formality in mathematics goes back a long way,
to around the time of Hilbert. The motivation was to flush out implicit and
unstated assumptions in proofs. Most rigorous, journal-style proofs will involve
quite large steps whose justification involves understanding and insight into the

Mathematical Models of Computer Security 5

problem domain. Typically, the detailed justification of such steps can be readily
filled in by a competent mathematician. Occasionally errors show up later or,
more usually, it is found that the justification actually requires some additional
assumption not explicitly stated in the original proof. The delightful book“Proofs
and Refutations”, [42], by Lakatos illustrates this process beautifully by tracing
“proofs” of the Euler formula relating the number of edges, vertices and faces of
polyhedra. Early “proofs” were published only for counter-examples to be found
later. Closer examination revealed that the“proofs” actually depended on certain
unstated assumptions, assumptions that were violated by the counter-examples.
Thus, for example, it had unwittingly been assumed that the polyhedra were
convex and had a simple topology, i.e., genus zero. The counter-examples, Kepler
stars or toroidal polyhedra, etc., violated these conditions.

This is rather troubling and raises the question: when is a proof a proof?
The notion of a formal system and a formal proof is an attempt to answer
this question. A formal system comprises a finite set of axioms along with a
finite set of inference rules. A theorem is a statement that can be reached from
the axioms by finite application of the rules. No further insight or creativity is
admitted other perhaps than some ingenuity in discovering the right sequence
of application of rules. In principle, then, any theorem is checkable in a purely
mechanical fashion and there is no way for implicit assumptions to slip into the
process.

Why is all this of interest in systems engineering? Why is it not enough
just to use rigorous pen-and-paper proofs, for example? There seem to be two
motivations: again, the urge to flush out all unstated assumptions and, secondly,
to introduce the possibility of mechanised proofs using automated tools. Are
these valid motivations? The answer seems to be: sometimes yes. Sometimes
the design of a system or component is so critical that it really is crucial to
eliminate the possibility that unrecognised and flawed assumptions could creep
in. Sometimes having an automated tool really does help, in the sense that it
reduces the amount of work and/or increases the resulting level of assurance.
But it is essential to use the right tool in the right place. The essential question
is, as Bob Morris Sr., has phrased it: “Where do I put my extra five bucks of
verification money?”

Unfortunately, the history of formal methods is littered with instances of
a compulsion to perform a mechanised proof even where this has been vastly
expensive and has added little or nothing of benefit. You really have to ask
yourself why you are attempting to prove something and, in particular, why
with a mechanised proof. The validity of the result has to matter. If you are after
insight into why the result holds, you are probably better off with a rigorous,
pen-and-paper proof. Often the kinds of theorems that crop when performing
a refinement as proof obligations (or opportunities as Jim Woodcock prefers
to call them) involve rather tedious and error-prone case enumeration. This is
the kind of thing theorem-provers or model-checkers are actually rather good
at. For the more interesting theorems the tools can all too easily get in the
way. Mackenzie, for example, discusses such issues in depth [50]. Often the mere

6 Peter Y. A. Ryan

process of thinking about how to cast a design in a form ripe for analysis reveals
ambiguities, flaws and insights long before any proofs are actually attempted.

We hasten to reassure the reader that none of the results presented here have
been subjected to the ignominy of mechanical proof.

4 A Brief History of Security Models

I will concentrate on the concept of non-interference and related models of se-
curity, but to help put this in context I give a very swift overview of the early
evolution of computer security models in this chapter.

The topic of security models goes back some 30 years, starting with papers by
Lampson, for example, that presented ways of formalizing access controls [43].
These models comprised a set of subjects S , objects O and access modes A.
From a security point of view each state of the system corresponds to an access
control matrix M whose rows correspond to the subjects, and columns to objects.
Entries in the matrix are subsets of A and represent the allowed access of the
subject to the object. Various rules constrain how states can evolve, i.e., how
the entries of the matrix can be updated.

Such early work was based on analogies with the existing policies and mech-
anisms for the pen-and-paper world. The early work was also very much inspired
by (or perhaps more accurately, funded by) the military/government environ-
ment.

In the pen and paper world, we traditionally have the notions of classified
files and cleared individuals. A simple access control policy is then formulated
in terms of these classifications and clearances. Thus a file might be classified
secret and so only accessible to someone with secret clearance or higher. The
traditional mechanisms for enforcing such policy might be a trusted registrar
who would check the clearance of anyone requesting a particular file and who
will only hand it over after the clearance has been verified.

Classification and clearances, that we will refer to collectively as security lev-
els, are typically organised in a lattice structure. A particularly simple example
is a linear hierarchy:

Top secret
—

Secret
—

Confidential
—

Unclassified

Each element of this hierarchy is said to dominate those below it, as well as
itself. You are allowed to view a file if your clearance dominates the classifica-
tion of the file. Thus someone with Secret clearance is allowed to view Secret,
Confidential or Unclassified files but not Top secret, for example.

Mathematical Models of Computer Security 7

More elaborate, non-linear lattices representing partial orders are possible
and indeed common, at least in the military world. These correspond to the
notion of compartmentalized information and the need to know principle. Thus
a file might carry not only a classification but also a so-called caveat. For example,
NATO-Secret, UK-Secret etc.

The lattice might then take the form:

Top secret
—

NATO Secret – UK Secret
—

Confidential
—

Unclassified

NATO-Secret and UK-Secret are incompatible and so someone with UK-
Secret would not be entitled to view a NATO-secret file and vice versa. Someone
with Top Secret could view both. Such lattices form the basis of the so-called
Multi-Level-Secure (MLS) policies that were prevalent in the early work in com-
puter security and provide a convenient way to define which information flows
are deemed acceptable and which unacceptable.

Early models of computer security sought to map such policies and mech-
anisms across into the information technology world. The policies map across
reasonably cleanly, though even here some subtleties do arise which we will re-
turn to shortly. Mapping the mechanisms proves to be distinctly tricky. In the
pen-and-paper world the means of access to files was pretty simple: you wandered
over to a registry and persuaded Miss Moneypenny that you had the appropri-
ate clearance to view a particular file. For distributed information processing
systems there is a far richer set of modes and mechanisms for accessing data and
the controls on such access are quite different. Also, access may not be so direct
but might be mediated by various intermediate programs.

4.1 The Bell and LaPadula Model

The model proposed by Bell and LaPadula, (BLP), is one of the earliest and
best known models [2]. It is embodied in the famous Orange Book put out by
the NCSC (National Computer Security Centre), a branch of the NSA (National
Security Agency) [15]. The Orange Book was the first attempt to establish sys-
tematic criteria for the evaluation of secure systems and products.

BLP is fairly straightforward and intuitive and is a rather natural analogue
of MLS policies of the pen-and-paper world. I give a somewhat simplified version
here; more formal and complete descriptions can be found in [29], for example.

The model comprises a set of subjects S and objects O . Subjects are thought
of as active, either principals or processes acting on behalf of principals, whilst
objects are passive, e.g., files. We suppose that a lattice L of security levels has

8 Peter Y. A. Ryan

been defined along with a mapping C from S ∪ O into L that assigns a clear-
ance/classification to each subject/object. For simplicity we will suppose that
there are just two modes of access: read and write. The information-flow policy
is now captured by enforcing two rules:

The Simple Security Property :
A subject s is allowed read access to an object o if and only if C (s) dominates

C (o).
That is, a subject is allowed to read only objects whose classification is dom-

inated by its clearance. In particular a subject cannot read an object of higher
classification, a requirement often referred to as no read up.

The * Property :
A subject s is allowed write access to an object o if and only if C (o) dominates

C (s).
That is a subject is not allowed to write to an object whose classification is

lower than its clearance, i.e., no write down.

Assuming that read and write really are the only modes of access to objects
and, furthermore, that they really are one-way information flows in the direction
we would intuitively expect, then we see that together these rules ensure that
information cannot flow downwards through the lattice. Information can flow
upwards.

Such a policy is referred to as a mandatory access control (MAC) policy.
Subjects are not allowed any discretion with respect to these rules or to the clas-
sifications assigned to objects. Another class of access policies, in which subjects
are accorded some discretion, can be constructed. Such policies are referred to
as discretionary access control (DAC) policies. They might permit, for example,
the owner or creator of a file some discretion as to what classification to assign
it or to whom he wishes to grant access. A more elaborate version of BLP can
be used to formulate DAC policies but this will not concern us. See Pierangela’s
chapter for more on this.

In practice the MLS model above is too rigid for real environments. In the
pen-and-paper world there are typically rules and mechanisms allowing excep-
tions to the strict MLS access rules. You might, in some operational circum-
stances, want to allow a certain agent access to a file to which he would not
ordinarily have access according to the MLS rules. Alternatively there may be
reasons to lower the classification of a file, perhaps after some period has elapsed
after which its contents are no longer deemed sensitive. Such exceptions would
typically be handled by a security officer.

In the BLP model the handling of such exceptions are assigned to so-called
trusted subjects. Exactly how such trusted subjects are implemented and indeed
exactly what the term trusted means here has been the subject of much debate.
The issue will crop up again when we come discuss intransitive non-interference.

Mathematical Models of Computer Security 9

4.2 The Harrison-Ruzzo-Ullman Model

The model proposed by Harrison, Ruzzo and Ullman (HRU) is also based on
Lampson’s access-control-matrix framework, but allows a far richer set of prim-
itives for updating the state than for BLP [32]. In particular, subject to precon-
ditions on the state, entries in the matrix can be added or removed, and indeed
rows and columns can be added or deleted (corresponding to the creation or
deletion of subject and objects). In effect we have an elaborate, conditional
rewriting system. Rather unsurprisingly then we rapidly hit against various un-
decidablity results: in general establishing whether a certain state can be reached,
i.e., whether a certain access can be granted, is undecidable.

BLP sacrifices flexibity and genericity for simplicity and decidability. Ques-
tions of whether a flow from a particular object to a particular subject is per-
mitted can be immediately answered by simple comparison of their classification
and clearance, ignoring for the moment the actions of trusted subjects.

4.3 Chinese Walls

Chinese walls policies arise naturally in a commercial setting, for example, in
a consultancy firm. The firm will consult to various clients. We want to ensure
that any given consultant, C say, does not gain access to sensitive information of
two competing clients, A and B say. This is enforced by stipulating that should C
get access to A′s files he should subsequently be barred from access to B ′s files
and vice versa. In effect we need to enforce appropriate mutual exclusion rules
for clients with potentially conflicting interests.

Such policies can be formulated in the HRU model and can be modelled in
the MLS framework as long as we allow for dynamic clearances, see [22,81]. Here
accesses evolve: initially C has access rights to A or B but as soon as he exercises
his right to A′s files, say, then his right to B ′s is deleted, or vice versa. Notice,
however, that rights are monotonically non-increasing.

Brewer and Nash proposed introducing such policies and models into com-
puter security [5]. They are an instance of a more general class of policies known
as dynamic separation of duties policies. Here a principal can take on certain
roles, but there are certain mutual exclusions between roles. Thus if he takes
on a role as a bank teller he cannot also countersign cheques, for example. The
purpose of such rules are to try to prevent abuse of privilege by ensuring that
a misdemeanor cannot be performed by a single individual and would require
collusion.

4.4 The Clark Wilson Model

Clark and Wilson propose a significantly more elaborate framework designed to
capture policies of relevance in a commercial environment [9]. This embraces not
only confidentiality and integrity requirements but also notions of separation of
duties and well-formed transactions. Rather than the access-control lists or ma-
trices of the previous models they use access-triples. These define the programs

10 Peter Y. A. Ryan

(well-formed transactions) that a user may invoke to access certain data objects.
Good references for further reading are: [46,86,23].

4.5 The Biba Model

Thus far we have only considered secrecy, or if you prefer, confidentiality. In some
applications, ensuring the integrity of data is also often of concern. A simple form
of integrity policy was proposed by Biba which is really just a dual of BLP [4].
The elements of the model are identical to BLP except that we invert the simple
and * properties and think of the lattice as representing integrity levels rather
than security levels. The effect then is to ensure that information cannot flow up
in terms of the integrity lattice. In other words a low-integrity subject cannot
alter an object whose integrity level is higher.

4.6 Drawbacks of BLP

BLP has the advantage of being intuitively appealing and simple to understand.
The fact that it is so simple and intuitive, however, conceals a number of sub-
tleties and problems.

Firstly it relies heavily on our intuition as to the meaning of the terms read
and write. These are not given precise, let alone formal, definitions but it is clear
that it is being assumed that they constitute one-way flows of information. Thus
if Anne reads a file X we are assuming that information only flows from X to
Anne and that there is no flow from Anne to X . Similarly if Anne writes to X
we are assuming that there is no flow from X to Anne. This sounds plausible
and in line with our intuitive undestanding of the terms. However, interactions
are rarely one-way, particularly in a distributed context. Communication usu-
ally involves protocols with messages passing back and forth to establish and
maintain channels.

Let us take an extreme example: devices like the CESG One-Way-Regulator
or the NRL Pump, [40], were developed to enforce one way flow of information,
from L to H , say. Even these devices require some regulatory signals flowing
from H to L to avoid buffer overflows and other problems. Thus, even here,
there is two way flow of information, albeit of a very low bandwidth in one
direction.

Our intuitions can be deceptive. Consider an even more extreme example.
We could completely invert the usual semantics of read and write. This would
give an entirely consistent BLP-style model but systems that satisfied it would
be the antithesis of what we had in mind for a system that maintains secrecy.
In fact, essentially this occurs when we try to define the notion of integrity as
in the Biba model above. The saying “people in glass houses shouldn’t throw
stones” makes good sense, but then so does: “people who live in stone houses
shouldn’t throw glasses.”

A further difficulty stems from the fact that when we come to map the
model down onto a real system we have to try to identify all the channels by
which subjects can access objects. In a complex system it is clearly difficult to

Mathematical Models of Computer Security 11

be sure that all such channels have been identified. This, along with the issue
raised earlier-that even supposing that we have identified all the channels we
may still have failed to model them accurately-makes analysis very difficult.
Thus there may easily be information flows in the system that we fail to identify
and that might then allow illegal information flows to go undetected. Arguably
things are better in an object-oriented framework in that the methods should
constitute the full set of access modes to an object. In fact, closer examination
of implementations reveals other access channels not explicitly represented at
the object-oriented level of abstraction.

Consider a further example: suppose that a user with a low clearance requests
to create a file of a given name and suppose that a highly classified file of the
same name already exists. The system might well reply to the request with
a “request denied” or, arguably worse still: “request denied, file of that name
already exists.” This results in an information flow from H to L. It may not be
a particularly useful flow as it stands but it does represent a channel that could
potentially be exploited by some malicious code executing at the high level to
signal to a low process. Such malicious code is referred to as a trojan horse.

Such channels are well known and standard solutions to this particular prob-
lem have been proposed-for example, using poly-instantiation: allowing a file of
a given name to have instantiations at several security levels. However, it is also
clear that the system may well harbour many other, possibly far more subtle
flows of this kind. Such channels are known as covert channels and they typically
arise from the sharing of resources.

The traditional reaction to such problems is to perform covert channel anal-
ysis. Conceptually, the known channels are severed and the system is then stud-
ied to see what channels across security-relevant boundaries remain, [41,54,55].
These can either be eliminated or, if they are difficult or impossible to elimi-
nate, then their channel capacity can be limited to an acceptable level. Thus,
for example, random delays could be introduced on response signals to intro-
duce noise and so lower the channel capacity, see [65] for example. This tends to
have a tradeoff in terms of performance but such tradeoffs are all too familiar in
security in any case.

Further objections to BLP have been raised, for example McLean’s System Z
but these need not concern us here [58]. BLP stands as an important and seminal
work in the area of security models and indeed continues to play a useful role in
the design and evaluation of secure systems. In the next section we will present
a radically different approach to modelling computer security that attempts to
address some of these objections: the notion of non-interference.

5 Non-interference

5.1 Goguen Meseguer

In response to the concerns raised about BLP and access control style models
in general, Goguen and Meseguer in, based on some earlier work of Feiertag and

12 Peter Y. A. Ryan

Cohen, proposed the idea of non-interference [26,27,18,11]. It can be thought of
as an attempt to get to the essence of what constitutes an information flow in
a system and, more to the point, how to characterise the absence of any flow. In
this sense it resides at a more abstract level than the access-control models and
can be thought of as providing a formal semantics to the one-way-flow intuition
behind terms like read and write. In particular, it abstracts completely from the
inner workings of the system in question and formulates the property purely in
terms of user interactions with the system interfaces.

The underlying idea will be familiar to anyone with a mathematics back-
ground as it is really a reworking in the context of simple model of computation
of the standard device for characterising a function’s independence with respect
to a particular variable.

The model of computation assumed, at least in the original formulation, is
a rather simple one. In particular it assumes that all computations are deter-
ministic. In particular the outputs are a simple function of the state and the
input. That is, given a state along with an input the resulting output is unique
and well defined. We will come to non-deterministic systems a little later. Non-
interference seeks to formalise the intuition that the interaction of high-level
users with a system S should not influence the interactions of low-level users.
We will paraphrase the original formulation to make the transition to later ma-
terial a little smoother.

Histories of user interactions with the system will be recorded as traces, i.e.,
sequences of actions. We suppose that the set of users of the system is partitioned
into two sets: high users and low users. We suppose further that the high and
low users interact via separate interfaces and, in particular, low users cannot
directly observe high actions. The whole point is to examine how much a Low
user can infer about High actions purely from his (low’s) interactions with the
system. Clearly if he can directly observe the High actions the whole exercise
becomes rather futile.

Notice that we will be assuming that we know the exact design of the system
and, perhaps more importantly, that any hostile agents have a complete under-
standing of the system design. In practice neither we nor the hostile agents will
have such a full understanding but it is a safe assumption to make: the less
hostile agents know about the system design the less precise the inferences they
can make. As with cryptography, we should not seek security through obscurity.

In accordance with the original formulation we will also assume that actions
are partitioned into inputs and outputs. For the moment we will put aside the
question of what the semantics behind this distinction might be. Intuitively we
are thinking of inputs as being wholly under the control of the user, and outputs
as wholly under the control of the system. This is similar to the BLP use of read
and write.

We now think of the system as a finite state machine described by a function
that, given a state and an input, returns a transition to a new state and an
output. Given that we are assuming the system to be deterministic this really is
a function, i.e., the state transition and output associated with an initial state

Mathematical Models of Computer Security 13

and input are uniquely defined. Furthermore, assuming a unique starting state
of the system, we have a one-to-one correspondence between traces and states
and so we can identify states with traces.

We now restrict the range of the output function to just outputs visible to
Low. Thus:

OutputL(S , tr , i)

gives the Low output from system S when input i is applied to the state
corresponding to trace tr .

The final piece of plumbing that we need is the notion of the purge of a trace.
Informally, purgeHI takes a trace and returns a trace with all High inputs, de-
noted HI, removed.

A system S is said to be non-interfering from High to Low iff:

∀ tr ∈ I ∗, c ∈ I •OutputL(S , tr , c) = OutputL(S , purgeHI (tr), c) (1)

In other words, for any possible history of inputs to the system and next
input, the output visible to Low will be the same as if we had stripped out
all the High inputs. Thus, changing High inputs leaves Low’s view of the sys-
tem unchanged. This is analogous to the standard way of defining a function’s
independence with respect to one of its variables.

It might seem that we have lost generality by assuming that the alphabet of
the system is partitioned into High and Low. In fact we can deal with more gen-
eral MLS-style policy with a lattice of classifications by a set of non-interference
constraints corresponding to the various lattice points. For each lattice point l
we define High to be the union of the interfaces of agents whose clearance dom-
inates that of l . Low will be the complement, i.e., the union of the interfaces
of all agents whose clearance does not dominate that of l . Notice also that we
are assuming that we can clump all the high-level users together and similarly
all the low-level users. There is nothing to stop all the low users from colluding.
Similarly any high-level user potentially has access to the inputs of all other high
users. We are thus again making a worst-case assumption.

Non-interference takes a very abstract view of the system, effectively treating
it as a black box and formulating the property purely in terms of its external
behaviours. This has advantages and disadvantages. It means that the definition
is wholly independent of the details of the system, so, for example, we don’t have
to worry about what exactly are the internal information-flow channels. On the
other hand its abstractness means that it is very remote from real implementa-
tions.

A further aspect of reality that has been abstracted away is time. Time simply
does not appear in the definition or the underlying model of computation. We
are, in effect, assuming that any adversaries have no way of observing the timing
of actions. Similarly we have abstracted away from any issues of probability and
are really just thinking in terms of what events are possible. We are thus working
in what is sometimes referred to as a possibilistic framework. This is, of course,
wholly unrealistic, but we have to start somewhere. We will discuss later how

14 Peter Y. A. Ryan

one might extend the work presented here to address questions of time and
probability.

Notice that non-interference is asymmetrical: we are saying nothing about
how Low events might influence High outputs. Thus information is allowed to
flow from Low to High. This is typically what we want for an MLS style policy.

Non-interference side steps the problems that BLP and other models have
with covert channels, but does so at the expense of working at a very high level
of abstraction. Leaving aside questions about input/output distinctions, non-
interference will capture covert channels. Indeed the motivation for the approach
was in large part to address the covert channel problem. In particular it addresses
the possibility that a high user or process may deliberately try to signal to a low
user.

Note that non-interference is really about characterizing the absence of causal
flows rather than information flows. Absence of causal flow implies absence of
information flow but there may be situations in which we have a causal flow
without an associated flow of information. The canonical example of this is an
encrypted channel. Here a secret plaintext will influence a ciphertext that is
communicated over open channels: altering the plaintext input will alter the
corresponding ciphertext output and so, naivly at least, non-interference is vi-
olated. However if the encryption algorithm is sufficiently strong, keys are not
compromised etc, then we can think of this as not representing any information
flow from classified to unclassified. We are ignoring for the moment questions of
traffic analysis. Being sure that such a causal flow doesn’t harbour some subtle
information flow is very delicate and brings in considerations of cryptanalysis
amongst other things. There are a number of delicate issues here and we will
return to this point later.

5.2 Unwinding

Goguen and Meseguer also introduce the notion of unwinding a non-interference
property. As it stands, non-interference is not very useful from a verification point
of view as it involves quantification over all possible histories of the system. It
is defined purely in terms of the system’s interactions with the environment
and without any reference to its internal construction etc. It thus constitutes
an elegant and abstract definition is not easy to verify directly. Given a black
box system, to determine if it obeys the non-interference property we would
be reduced to attempting exhaustive testing, clearly an impossibility. In order
to render the verification tractable we are forced to assume some (minimal)
structure on the state of the system.

The idea of unwinding is to replace the original formulation with conditions
on state transitions. It is analogous to the standard technique of defining an
invariant that can then be used to prove a property of all reachable states via
a structural-induction-style argument.

A few remarks are in order: it is necessary to introduce an equivalence re-
lation over the states of the system. This is the relation induced by the purge
function along with the correspondence between traces and states. Two traces

Mathematical Models of Computer Security 15

are regarded as equivalent if they have the same purges, i.e., are identical in
their low-level actions and high outputs.

Unwinding is now stated as a pair of rules. A system S is non-interfering if:

∀S1,S2 ∈ traces(S), a1, a2 ∈ A
• purgeHI (a1) = purgeHI (a2) ∧ S1 ≈ S2 ⇒ S ′

1 ≈ S ′
2 (2)

where S ′
1 denotes a state reached from S1 after the action a1 and similarly

for S ′
2. A denotes the full alphabet of S , i.e., inputs and outputs. Thus A = I ∪O

and:

∀S1 ≈ S2and ∀ a ∈ I • OutputL(S1, a) = OutputL(S2, a) (3)

The effect of the first rule is to ensure that the equivalence on the state space
of S is exactly that induced by the purge of the traces. A simple induction on the
length of traces along with the one-to-one correspondence between traces and
states (given that S is deterministic) establishes this. That these together imply
the original property now follows from this observation along with the second
rule. In this simple context of a deterministic system it is also straightforward
to show that these rules are necessary. Things become much more interesting
when we extend such results to the non-deterministic context later.

5.3 Non-interference Is Not a Trace Property

An important observation is that non-interference is not a trace property, that
is, it cannot be framed simply as a predicate on traces. More precisely, in or-
der to determine whether a system satisfies non-interference we cannot examine
it trace by trace to determine whether each trace satisfies a certain predicate.
Many useful system properties can be stated as such predicates, so-called safety
properties. These often arise in specifying safety-critical systems where we are as-
serting that certain undesirable behaviours should not be allowed, in which case
we can formulate a predicate whose characteristic class is equal to, or perhaps
is a subset of, the set of acceptable behaviours.

Non-interference is a property of the space of behaviours. It is really asserting
that if certain behaviours can occur then it must be the case that other, related
behaviours must also be possible. Take a trivial example. Suppose that an allowed
behaviour is h followed by l , with h a High action, l a Low action. If the system
is to be non-interfering then it must also be possible for just the l to occur
without the prior h event. Whereas a trace property can be expressed as a set
of acceptable behaviours, non-interference must be expressed as a set of sets of
behaviours.

Conventional refinement techniques are designed to handle safety-style prop-
erties. A system Q is said to refine P , roughly speaking, if the allowed be-
haviours of Q are contained in P . A consequence of this observation is that
non-interference tends not to be preserved by (conventional) refinement. This
will be discussed more fully later.

16 Peter Y. A. Ryan

5.4 Relationship to Bell LaPadula

It has been claimed that BLP and non-interference are equivalent, [31] for exam-
ple. The proof depends on some rather strong assumptions about the system’s
commands and their correspondence with the access modes of the model. In
general it is difficult to establish such a firm correspondence. On the other hand
there is a sense in which BLP can be viewed as a mapping of a non-interference
property to an implementation architecure. This mapping is necessarily rather
informal, given the lack of precise semantics of BLP and the difficulty in identi-
fying all internal channels of information flow in the actual architecture.

There are some interesting issues here: in moving from a non-interference
formulation to an access-control formulation like Bell LaPadula we are some-
how moving from a non-trace property to a trace property. The step involves
introducing assumptions about the architecture and the access modes, etc. In
effect we are mapping the abstract state space and equivalence relations onto
the architecture in question. In particular, equivalences at the abstract level will
typically correspond to states of the system that are indistinguishable under cer-
tain projections, for example, in certain pieces of memory. This is discussed in
some detail by Rushby [74]. Certain issues remain however. For example in [21]
it is shown that an access monitor that obeys the BLP rules can still leak infor-
mation as a result of deadlocks. We will not discuss these issues further here as
they would take us too far from the main thrust of the lectures.

5.5 Generalisations to Non-deterministic Systems

The fact that the original Goguen Meseguer formulation was restricted to deter-
ministic systems is a serious limitation. Most systems of interest will manifest
non-determinism, either because it is deliberately introduced for, say, crypto-
graphic reasons, or because it arises as a result of abstracting internal details
of the system. The first person to investigate how the Goguen and Meseguer
formulation could be extended to deal with non-deterministic systems was Mc-
Cullough [52,53]. He proposed a generalized version of non-interference but found
that this, at least with respect to the definition of composition he proposed, failed
to be compositional. Compositionality is widely regarded as a desirable feature
of a security property: i.e., given two systems that each satisfy non-interference,
then some suitable composition of them should also automatically satisfy it.
Whether it is reasonable to assume that a valid definition of non-interference
should be compositional is still a matter for debate. We will return to the ques-
tion of compositionality later.

Problems of compositionality, non-determinism and the semantics of in-
puts and outputs have prompted a proliferation of variations on the original
non-intereference formulation. These include: generalised non-interference [52],
non-deducibility [88], non-inference [66], restrictiveness [53], forward correctabil-
ity [39], non-deducibility on strategies [90], trace closure properties [45] and
McLean’s selective interleavings [59]. We will not go into the details of all of
these as this would involve presenting a whole raft of models of computation

Mathematical Models of Computer Security 17

and would take us off the main thrust of these lectures. We will see a little
later how several of these can be related when viewed in a process algebraic
framework.

6 The Process Algebraic Approach

A central message that we want to convey in these lectures is that process alge-
bras provide very effective frameworks in which to specify and analyse security
properties, especially of distributed systems. There are a number of reasons for
this. Process algebras are specifically designed for reasoning about systems inter-
acting via the exchange of messages. They deal carefully with issues that we will
see shortly are crucial to the study of security: non-determinism, composition,
abstraction and the equivalence of systems. Added to these theoretical consid-
erations is the fact that over the past decade or so the tool support for process
algebras has improved dramatically: both theorem-proving and model-checking
verification tools are now available.

6.1 Introduction to CSP and Process Algebra

We will base most of our discussion around the process algebra CSP. However,
we will find that concepts from other algebras such as CCS and the pi-calculus
are also useful, [61] and [63]. We start with a simple introduction to those aspects
of CSP that we require.

Communicating Sequential Processes (CSP) was originally developed by
Hoare to reason about concurrent systems interacting via hand-shake commu-
nications [36]. This was developed further by Roscoe and Brookes [7], and oth-
ers. Timed CSP was originally proposed by Reed and Roscoe in [70] and fur-
ther developed by Davies and Schneider [13]. For more up-to-date expositions,
Roscoe [73] or, with more about Timed CSP, Schneider [82].

The interface of a process P is represented by its alphabet, denoted by αP ,
which is a collection of externally visible events (or actions) through which it
can interact with the environment. Interaction takes the form of synchronisation
on events. Thus, in order to interact, two processes simultaneously participate
in some event, a say, and both move together onto the next state. This is an
abstraction of the notion of a handshake communication and is well suited to
many situations. Sometimes we really want to represent interaction in a more
asynchronous fashion in which a process outputs some signal into the ether
that might or might not be received by some other remote process at some
later time. Typically this situation can be modelled within the CSP framework
by introducing a medium with which the processes interact synchronously but
which may delay or even lose messages, thus mimicking the effect of asynchronous
communication between the end-points.

18 Peter Y. A. Ryan

6.2 CSP Syntax

The basic syntactic constructs that will be of interest to us are as follows:

Prefix:

a → P

Prefix choice:

a : A → P(a)

Communication (input):

c?x → P(x)

External choice:

P ✷ Q

Non-deterministic (internal) choice

P 	 Q

Parallel composition over the alphabet A:

P ||A Q

Interleave

P ||| Q

Hide events from the set A:

P \ A

Rename:

P [a/b]

P after trace tr:

P/tr

Let us explain these more fully:

Prefix The process term a → P can initially participate in the action a after
which it behaves as the term P .

Mathematical Models of Computer Security 19

Prefix Choice This is similar to prefix except that we provide a set of events A
from which the choice of prefix event must be drawn. Note that the continuation
after the event a may be dependent on a.

Communication It is sometimes convenient to think in value-passing terms in
which values can be communicated over channels rather than simply synchro-
nisation on events. Channels will have types assigned to them. Let us denote
the type of c by T (c). Thus the term c?x → P(x) can accept a value, x : T (c),
over the channel c after which it behaves as the term P with appropriate inter-
nal variables bound to the value x . It is thus very similar to prefix choice but
provides a syntactic sugar. In particular we can have channels with compund
types.

External Choice P ✷ Q represents a choice of the two processes P and Q .
If the initial events of P and Q are distinct the choice can be made by the
environment, hence the name. Thus suppose that:

P := a → P ′

and
Q := b → Q ′

If the environment offers a to P ✷ Q then a will occur and P ✷ Q will
thence behave like P ′. Similarly if the environment offers b, then b will occur and
P ✷ Q will subsequently behave like Q ′. If the environment offers both a and b
the choice will be made arbitrarily. Also if the intersection of the alphabets of P
and Q is non-empty and the environment offers an event in this intersection then
again the choice of continuation will be arbitrary.

Internal Choice Like P ✷ Q the term P 	 Q represents a choice between
P and Q but this time the choice is made internally and the environment has
no influence over this choice. Consider P and Q above and suppose that the
environment offers the event a to P 	 Q . It may be that the internal choice goes
for the right-hand branch, i.e., b → Q ′ and so the event a is refused. As long as
the environment insists on offering a there will be deadlock.

Parallel Composition In the alphabetised parallel composition of two pro-
cesses P ||A Q , P and Q synchronise on all events from the set A, with A ⊆
αP ∩ αQ . Thus, for any event from A both P and Q must simultaneously be
prepared to participate for the event to occur. When such an event does occur
both P and Q move together to their next states. Any events outside the set A
can occur quite independently in either P or Q .

20 Peter Y. A. Ryan

Interleave In the interleaved composition of P and Q , P ||| Q , both processes
can make progress entirely independently of the other. There is no synchronisa-
tion and hence no interaction between them. In fact we have:

P ||| Q = P ||{} Q

i.e., interleave can be thought of as parallel composition over the empty
alphabet.

Hiding Hiding over a set C simply removes events from C from view of the
environment. Such hidden events are internalised: the environment cannot (di-
rectly) see or influence their occurrence. It is usual to refer to such internal,
hidden events as τ events.

Renaming Renaming alters the identity of events. In general we can perform
a renaming with respect to a relation on the events. More typically we will
rename with respect to a one-to-one function. Sometimes also we will find it
useful to rename several distinct names to a single name. We will refer to this
last as projection.

Renaming is useful when writing CSP specifications as an alternative to
parametrised specifications where, for example, the specification involves repli-
cated components. In the context of security we will see that it is a rather useful
abstraction operator that allows us to neatly capture a number of requirements.

After P/tr , where P is a process term and tr a trace, denotes the process P
after it has performed the trace tr . For a non-deterministic system, P/tr will
correspond to a set of states reachable by the trace tr . We will explain this more
fully when we introduce the notion of a Labelled Transition System (LTS).

Constructs also exist for (mutual) recursive definitions of processes but these
will not concern us.

6.3 Semantics

The semantics of CSP processes is traditionally presented in a denotational style,
that is, a denotational space is constructed along with a mapping from the lan-
guage to this space. In fact a number of denotation spaces, or models, have been
constructed for CSP and which is appropriate for a given application depends on
the kinds of property of interest and the kinds of distinctions between processes
that are relevant. The simplest model is the traces model. A trace is simply
a sequence of (visible) events representing a possible behaviour. In this model
a process is mapped into the set of traces that correspond to its possible be-
haviours. Such a trace set must always contain the empty trace: for any process
not having done anything must be a possible behaviour. Furthermore such a set
must be prefix closed: if a certain behaviour is possible for a process S then any
behaviour leading to that behaviour must also be possible:

Mathematical Models of Computer Security 21

〈〉 ∈ traces(S)

and

s � t ∈ traces(S) ⇒ s ∈ traces(S)

Consider a simple example:

P := a → b → c → STOP

Where STOP is the process that does nothing (so traces(STOP) = {〈〉}).
The traces of P are:

{〈〉, 〈a〉〈a, b〉, 〈a, b, c〉}

We can calculate the traces set for a process term P , denoted traces(P), by
structural induction on the syntax. Details can be found in [73] or [82]. Trace sets
are thus much like the acceptance languages associated with finite automata.
The traces model is well suited to reasoning about safety properties, that is,
where we want to specify and check that certain undesirable behaviours are not
possible. For deterministic processes the traces model is sufficiently rich to fully
characterise processes. A process P is said to be deterministic if, for any possible
trace, the set of events it is next prepared to participate in is well defined. Thus
there is no trace tr after which in one run event a is offered by S whilst in
another run which is identical as far as the visible trace tr is concerned, a is
refused by S . Branching can occur, but it is controlled by the environment.

Where we are concerned with non-deterministic behaviour the trace model
is not rich enough, indeed it is not rich enough to characterize when a system
is deterministic. A simple example illustrates this. Consider the two processes
P and Q (different to those earlier) defined by:

P = a → (b → STOP ✷ c → STOP)

Q = a → (b → STOP 	 c → STOP)

These have the same trace sets:

{〈〉, 〈a〉, 〈a, b〉, 〈a, c〉}

But a system trying to interact with them will typically be able to distinguish
between them: in particular Q ||c STOP could deadlock after a (if Q internally
decides on the right-hand branch of the choice), whilst P ||c STOP can’t, it must
continue to offer b. Thus, although the space of potential behaviours is identical
a user’s experience of interacting with these two processes could be completely
different. If the user is set on Q doing b, say, but Q has chosen the RHS of the

22 Peter Y. A. Ryan

	 and so is only prepared to offer c, then the user will probably end up kicking
Q in frustration. This could not happen with P .

To reason about, and indeed distinguish, non-deterministic behaviours and
liveness we need a richer model: we need to look at what a process may choose
to refuse (or conversely, accept) as its behaviours unfold. To achieve this we now
introduce the notion of a refusal set.

Suppose that the environment E initially offers the process P a set of
events X , if P || E can deadlock immediately then X is said to be a refusal
of P . Thus {a} is a refusal of a → STOP 	 b → STOP . So is {b} but {a, b}
isn’t. Note that if X is a refusal for P then any subset of X will also be a refusal.
The set of such refusal sets is denoted by refusals(P).

This gives us information about what P may choose to refuse at the outset.
We now extend this idea to give us refusal information as the behaviours of
P unfold by introducing the failures of P .

A failure is a trace along with a refusal set. Thus:

failures(P) = {(tr ,X) | tr ∈ traces(P) ∧ X ∈ refusals(P/tr)}

Consider a simple example:

P = a → STOP ✷ b → STOP

Q = a → STOP 	 b → STOP

Thus

failures(P) = {(〈〉, {}), (〈a〉, {a, b}), (〈b〉, {a, b})}

Whilst:

failures(Q) = {(〈〉, {a}), (〈〉, {b}), (〈a〉, {a, b}), (〈b〉, {a, b})}

And so we see that the failures sets for P and Q are distinct in the failures
model. Here for brevity we have just given the maximal refusals. The sets should
be filled out with the subset closures of the refusal sets. We find that the failures
of Q include the elements:

(〈〉, {a})and(〈〉, {b})

These are absent in the failures of P . This precisely reflects the fact that
Q could, at the outset, decide to refuse a or to refuse b. P by contrast cannot
refuse either.

Given the failures model we can state formally what it means for a process
to be deterministic:

Mathematical Models of Computer Security 23

Definition S is deterministic iff:

∀ s ∈ traces(S) ∧ a ∈ αS¬ (s � a ∈ traces(S) ∧ (s , {a}) ∈ failures(S))

In other words, we should not be able to find a trace after which some event
might, in one run, be accepted, whilst in another, be refused by S , i.e., a be-
haviour after which the process can internally choose either to accept or refuse a.

An important point to note is that refusals, and hence failures, are defined
on stable states. Stable states are ones in which no internal progress is possible.
A stable state is one from which there are no outgoing τ transitions. The reason
for this is that it is difficult to meaningfully assign refusals to unstable states
as any internal transitions (invisible to the environment) may change these.
Refusals are thought of as sets of events that, if offered to the process will never
be accepted, at least before any external process has occurred. For unstable
states such a definition is inappropriate.

Non-determinism can arise in three ways: explicitly from the internal choice
operator, from hiding, or from ambiguous external events, e.g.:

(a → b → STOP ✷ a → c → STOP)

Other semantic models exist, for example, the failures/divergence model de-
signed to reason about internal thrashing, i.e., situations in which infinite se-
quences of internal events are possible without any external progress taking
place. We will not need these for what follows.

Refinement Refinement, denoted � with a subscript to indicate in which model
it is defined, is defined as set containment in the appropriate denotational model.

In the traces model:

P �T Q ⇒ traces(Q) ⊆ traces(P)

In the failures model:

P �F Q ⇒ failures(Q) ⊆ failures(P)

Refinement can be thought of as making processes more predictable. In the
traces model we are simply asserting that a refinement cannot introduce new
behaviours. In the failures model we are asserting this but also asserting that
the refined process will never refuse events that were not refusable by the spec-
ification. This allows us to make assertions about the liveness or availability of
the system to the environment (e.g., the users of the system). In particular, re-
finement should not introduce new ways for the system to deadlock. Refinement
is monotonic with respect to the CSP operators, e.g.:

P �T P ′ ∧ Q �T Q ′ ⇒ P || Q �T P ′ || Q ′

P �T P ′ ⇒ P \ C �T P ′ \ C

24 Peter Y. A. Ryan

Some Useful Processes A few useful processes that we will need include:
STOP , that refuses to do anything:

traces(STOP) = {〈〉}

RUNA, always prepared to do any event drawn from A. Thus:

RUNA = x ∈ A → RUNA

and

traces(RUNA) = A∗

Where A∗ is the set of all finite sequences with elements drawn from A.
The process CHAOSA may at any time choose to accept or reject any event

from A. Thus:

CHAOSA = STOP 	 ((x ∈ A → CHAOSA)

and

failures(CHAOSA) = {(tr ,X) | tr ∈ A∗ ∧ X ⊆ A}

6.4 Labelled Transition Systems

In what follows it will often be useful to think in terms of an underlying labelled
transition system (LTS). This is somewhat alien to the usual spirit of CSP,
which is to concentrate on the external observations that can be performed on
the system and abstract from all internal details. However, in the context of
security, these internal details will often include the high-level user and so we
have to be careful how we treat them. In particular we can’t simply abstract
them away.

In an LTS representation a process is thought of a collection of nodes, some
of which are linked by labelled, directed arcs. A pair of nodes that are linked by
a directed arc with label µ will represent the possibility of a transition between
them associated with the event µ in the direction of the arc, where µ can be an
internal τ event.

In general, a process term will correspond to a set of nodes of the underlying
LTS. For example, P/tr will in general correspond to a set of (stable) states
reachable by P executing the visible trace tr .

6.5 Acceptances and Ready Sets

The standard way to capture non-determinism in CSP is to use refusals. At first
glance this may seem a little counter-intuitive and begs the question: why not
think in terms of what the process will accept rather than what it will refuse?
There are good technical reasons to use refusals for CSP rather than acceptances

Mathematical Models of Computer Security 25

P Q

a b a a b b

τ τ τ τ τ

Fig. 1. Refusals vs ReadySets

as explained in [73]. For our purposes it is more intuitive to think in terms of
what the system will accept. In particular this sits more comfortably with the
bi-simulation approach to defining process equivalence that we will see shortly.

Acceptance sets are defined in a fashion dual to the defintion of refusal sets:
X is an acceptance set of P if, when the environment offers the set X to P , an
event in X will be accepted. Acceptance sets are defined to be superset closed,
where closure is taken with respect to the universal alphabet Σ. The idea is
that if an element of a set A will be accepted then if a larger set is offered then
something from this larger set should again be accepted.

We will also need to define the idea of a ready set. This is defined in terms
of the underlying LTS. Each node of the LTS has associated with it a ready set:
the set of events that the system offers to the environment when in this state.
It is thus the set of labels on the outgoing arcs from the node.

The distinction between acceptances and ready sets is that in the case of
ready sets we do not take superset closure. Ready sets allow us to draw finer dis-
tinctions between processes than is possible with either acceptances or refusals.
The subset or superset closure associated with the acceptances wipes out certain
distinctions that are preserved when working purely with the ready sets. Figure 1
serves to illustrate this: the refusals of P and Q are identical, i.e., {{a}, {b}, {}},
whilst the ready sets of P are {{a}, {b}} and for Q they are {{a}, {b}}, {a, b}}.

In the context of security the ready sets model seems the most appropriate.
It is slightly more discriminating than either the failures or acceptances, i.e., it
draws finer distinctions between processes and so allows hostile agents to draw
more inferences about the state of the system. Thus, from a security point of
view, it is a safer model to work with.

Usually refusals, acceptances and ready sets are defined only over stable
states. This corresponds to assuming that internal events occur eagerly as soon

26 Peter Y. A. Ryan

as they are available. However for our purposes we will not want to treat all
internal events as eager as we will want to think of some of them as under the
control of the High user. Consequently we regard ready sets as being defined on
unstable states as well as stable. In some contexts we want to include τ ’s in the
ready sets.

Where we need to consider a process term corresponding to sets of nodes of
the LTS we need to consider the corresponding sets of ready sets. Let Nodes(P)
denote the set of nodes, both stable and unstable, corresponding to the term P .
Then

ReadySets(P) = {Ready(p) | p ∈ Nodes(P)}

Often we will want to restrict the ready sets to some subset of the alphabet
and we use a subscript to indicate this. Thus ReadyL denotes the acceptance set
restricted to L. ReadyLτ will denote the ready set restricted to L ∪ {τ}.

One final piece of notation we will need is that of initials. The initials of
a process term P are the events P might be prepared to participate in next,
ignoring non-determinism:

initials(P) = {a | 〈a〉 ∈ traces(P)}

We have now set up all the necessary machinery to introduce various process
algebraic definitions of non-interference.

7 CSP Formulations of Non-interference

We now present a formulation of non-interference in CSP, originally presented
in [75], that stays close to the spirit of the original Goguen-Meseguer formula-
tion but takes account of non-determinism and dispenses with any distinction
between inputs and outputs.

∀ tr ∈ traces(S) • ReadySetsL(S/tr) = ReadySetsL(S/(tr � L)) (4)

tr � L projects the trace tr down onto the event set L. It thus has much the
same effect as purgeHI (tr) except that here we do not draw any input/output
distinction and so we in effect “purge” all high events. The ready sets projected
onto Low’s alphabet encode the non-determinism visible to Low. This formu-
lation therefore seems to be the natural way to extend the Goguen-Meseguer
formulation into a CSP framework in a way that accounts for non-determinism.

The same reference also gives a more symmetric formulation:

∀ tr , tr ′ ∈ traces(S) •tr ≈ tr ′ ⇒ ReadySetsL(S/tr) = ReadySetsL(S/tr ′)) (5)

Where

tr ≈ tr ′ ⇔ tr � L = tr ′ � L

Mathematical Models of Computer Security 27

These are closely related but differ in some subtle ways that we will discuss
shortly. Where the system S is known to be deterministic we can get away with
just using initials in place of ReadySets.

Both of these look a little inelegant as they involve quantification over traces
and we would like to give an algebraic formulation. An obvious formulation to
try is:

S \ H =ReadySets (S ||H STOPH) \ H (6)

The idea here is that composing S in parallel with STOP over the H alphabet
has the effect of preventing the occurrence of any H events in the RHS of the
equality. The RHS thus represents the system with all H events prevented. On
the LHS of the equality S ’s interactions with H can proceed unhindered. At first
glance this seems as though it should give us what we want: that the original
system from Low’s point of view is indistinguishable from the system with no
High activity.

It actually turns out to be a weaker property for rather subtle reasons to do
with the standard semantics of CSP. As remarked earlier, the standard failures
semantics of CSP only applies to stable states, i.e., states from which no τ tran-
sitions are possible. The H ’s have been hidden and so are abstracted eagerly and
so Equation 6 only constrains the ready sets on stable states. The quantification
over all traces in Equation 4, on the other hand, ensures that this definition also
constrains states from which High can perform an action. Clearly the latter is
appropriate: such H actions could potentially influence the events available to
Low.

One way to rectify this, proposed by Roscoe [72], is by using the CHAOSH

process in place of STOPH :

S \ H =ReadySets (S ||H CHAOSH) \ H (7)

CHAOSH can choose to deadlock on an event from H at any time, including
at any state from which S would accept an H event, and so this formulation, in
effect, gives quantification over all traces.

Alternatively we can give a formulation that mirrors the symmetric formu-
lation of Equation 5 with:

∀U ,U ′ ∈ ProcessH •(S ||H U) =ReadySets (S ||H U ′) (8)

This is actually a very intuitively appealing formulation as it is really saying
that Low has no way to distinguish between users who are interacting with the
system through the high-level interface.

These formulations raise a number of points that deserve further discussion.
Firstly, CSP draws no distinction between inputs and outputs. We deal simply
with events. The act of interaction between processes is thought of as a symmet-
ric, co-operative activity. Both processes must agree to participate in an event

28 Peter Y. A. Ryan

for it to occur. If either refuses the event then it will not occur. As soon as
both agree, it can occur. There is no concept of one of the processes causing or
controlling the occurrence of an event. We will discuss later some elaborations
of the usual CSP framework to allow us to draw causal distinctions if and when
appropriate.

Not drawing any input/output distinctions is a safe option: we won’t make
errors as a result of incorrectly categorising events. On the other hand, it may
be overly strong in some cases and we may find ourselves rejecting systems that
would seem to be secure.

A related point is that the formulations of Equations 4 and 7 imply that the
purge of any trace is itself a valid trace. At first glance this would seem right:
we are, in effect, saying that to Low the system always looks as though High
has done nothing. However, we have to be careful. Consider a system in which
an activity of Low triggers an alert message on High’s screen and let us suppose
that High cannot prevent or delay this message. Here Low will know when such
an alert event will occur at the High level (because he caused it) but we would
not usually regard this as representing a flow from High to Low. The point is
that the occurrence of the alert event cannot be influenced by High and therefore
cannot be used by him to signal to Low.

To illustrate this further consider the simple process:

S = l → h → l2 → STOP

Low can deduce that h has occurred when he sees l2. The purge formulation
would reject S as insecure. If h is a signal event (e.g., an alarm) over which High
has no control we really should regard this process as secure.

If h is not refusable or delayable by High, i.e., High can only passively observe
its occurrence, then, for the purge formulation, we should use the process S ′:

S ′ = l → ((h → l2 → STOP) ✷ (l2 → STOP))

H refusing h does not deadlock S . Or, equivalently, we could use the origi-
nal S with the symmetric formulation. Of course, if the occurrence of h can be
influenced by High then we would be right to regard S as insecure. Thus, by
suitable formulation of our models, we can capture distinctions between signal
and refusable events. We will discuss later how, using the framework of testing
equivalence, we can do this in a more systematic and general way.

Another difficulty with the formulations above is that they suffer from what is
sometimes referred to as the refinement paradox. That is, we can define a process
that satisfies them but for which a conventional refinement is insecure. Consider
the process defined by:

S = (h1 → (l1 → STOP 	 l2 → STOP)) ✷ (h2 → (l1 → STOP 	 l2 → STOP))

S satisfies our definitions of non-interference but is refined by:

S = (h1 → l1 → STOP) ✷ (h2 → l2 → STOP)

Mathematical Models of Computer Security 29

This clearly leaks information. We will discuss this problem in more detail
later. It is not unique to the formulations given above. The refinement problem
was noted long ago by McLean [59] and, in a different setting, by Jacob [37].
Intuitively the problem arises from the fact that conventional refinements re-
duce non-determinism, i.e., make the system more predictable. This is entirely
appropriate for safety-critical systems but can be disastrous for information secu-
rity: making a system more predictable potentially allows hostile agents to make
more precise inferences on the basis of limited information. A stream cipher
with predictable output is not one in which we should have much confidence, to
paraphrase Tom Stoppard in“Arcadia.”

We should also comment on our use of ready sets rather than refusal sets.
By using ready sets we are again making a worst-case assumption: that Low
may be able to directly observe exactly which events are on offer. Whether this
is appropriate really depends on the system in question. If, for example, the
system has a display of lights that indicate at each point which events it will
accept then the ready sets formulation is appropriate.

For other systems it may be appropriate to think in terms of Low performing
experiments by offering an event or set of events to the system and seeing if
anything is accepted. If it is accepted then the system moves on to the next
state and, having moved on, Low can obtain no further information about what
other events might have been accepted in the previous state. Thus typically the
information available to Low is much less in this model, hence his inability to
make such fine distinctions between processes. The subset closure of the refusal
sets (or alternatively the superset closure of the acceptance sets) encodes this:
certain distinctions that could be made working only with ready sets are masked
by the closure. There is a sort of Heisenberg uncertainty principle at play here:
observing certain parameters of the system tends to disturb it and so disrupt
the observation of other parameters.

On the other hand, if the environment can back-track to the initial state after
an event has been accepted and continue testing then it will be able to identify
the exact ready set for that state.

8 Abstraction

Process algebras provide elegant ways of abstracting away details and encoding
different views of a system. The most obvious way of abstracting is to hide a set
of events, C say:

P \ C

However, as previously remarked, the standard CSP semantics assumes that
hidden, internal events occur eagerly. As a result this form of abstraction works
fine for signal events, e.g., messages to the screen. In some situations, notably
security, we want to abstract certain events but not force them to be eager,
they may be under the control of High and so refusable or delayable. Here it is
appropriate to use lazy abstraction:

30 Peter Y. A. Ryan

LazyC (S) := (S ||C CHAOSC) \ C

Another, closely related, way to abstract events but without hiding them is
to camouflage them:

CmflgC (S) := (S ||| RUNC)

Here the environment can still see the events from C but cannot tell if they
are associated with S or are just spurious C events from RUNC .

Variants of these are possible, reflecting certain subtleties of the semantics
of CSP. A full discussion can be found in chapter 12 of [73].

Renaming can also be a useful abstraction operator. We can use it in two
principal ways: permuting a set of event names or renaming a set of events to
a single name. We can think of the latter as a sort of projection: Low knows an
event from the set in question has occurred but not which.

There are two main ways of using the permutation of a set of events: applying
the same permutation throughout an execution or using a fresh permutation
at each step of the execution. The latter really gives the same effect as the
projection. The former is potentially more interesting as it allows for Low to
correlate events. We will see later how these are useful for coding anonymity
and encrypted channels.

Mixes of these are also possible and, using certain coding tricks, it is, to
some extent at least, possible in CSP to allow for the abstractions to vary dy-
namically. This kind of modelling works rather better in a process algebra like
Milner’s π-calculus, which is specifically designed to handle dynamic networks
of processes.

9 Unwinding the CSP Formulation

The formulations above all involved quantifications over traces or processes. We
would prefer a more convenient definition for verification. In [27] the idea of un-
winding is introduced. The idea is to replace the original definitions by conditions
on individual transitions. Assuming that the class of possible transitions is essen-
tially finite this should give a more tractable formulation set to check. [75] gives
such conditions for the formulation of Equations 4 and 5. Let us consider the
latter, more symmetric version, as it will prove more suitable for what follows.

Unwinding (Symmetric Version)

– Rule 1:

∀Yi ,Yj ∈ States(S) • Yi ≈ Yj ⇒ ReadySetsL(Yi) = ReadySetsL(Yj)

Mathematical Models of Computer Security 31

– Rule 2:

∀Yi ,Yj ∈ States(S) • Yi ≈ Yj ⇒ ∀ e ∈ Initials(Yi), ∃ tr ∈ traces(Yj) •
e � L = tr � L ∧ Yi/e ≈ Yj /tr

Note that we have introduced an (abstract) state space and an equivalence
relation ≈ on it. Rule 1 has the effect of ensuring that equivalent states give rise
to the same ready sets when restricted to Low’s interface. Rule 2 ensures that≈ is
exactly that induced by the purge of H events. That is, states reached by traces
with the same purge are regarded as equivalent. A straightforward induction
argument on the length of traces establishes this correspondence. With this we
can readily proof that:

Rule1 ∧ Rule2 ⇒ NICSP

The implication in the other direction is more delicate however, i.e., to show
that the rules are necessary as well as sufficient. [75] gives a rather clumsy proof
of this by arguing that any process that satisfies the non-interference property
can be implemented as a machine that satisfies the rules.

In fact a far more elegant and insightful proof is possible when one observes
that the unwinding rules actually bear a striking resemblance to the notion
of bi-simulation, allowing us to borrow some results from the process algebra
literature. First we need to introduce a few ideas from the operation style of
process semantics.

10 Operational Semantics

An operational semantics is typically presented in the form of transition rules.

Thus P
µ−→ P ′ indicates that the process term P can make a transition labelled

µ to the process term P ′. The semantics can then be presented in terms of tran-
sition rules corresponding to the various syntactic operators. Simple examples,
with empty antecedents include:

(a → P) a−→ P

or

(a → P ✷ b → Q) a−→ P

and

(a → P ✷ b → Q) b−→ Q

The first simply asserts that a process term a → P can first perform the
action a and then behaves like the process P . The latter two simply assert that
the term a → P ✷ b → Q can perform an a in which case it subsequently
behaves as P or a b in which case it then behaves as Q .

32 Peter Y. A. Ryan

Notice that there are two different kinds of arrows here: inside the brackets
the arrows are CSP prefix arrows. The longer, labelled arrows denote labelled
transitions between process terms and are not part of the CSP notation but are
part of the notation needed to present the operational semantics.

10.1 Strong Bi-simulation

Given a denotational semantics, equivalence is simply that induced by the map-
ping into the denotational space: two processes are deemed equal if they map
to the same object in the space. In an operational style of semantics this device
is not available to us and we need alternative ways to characterise the equality
of terms of the algebra. The semantics is given purely in terms of what actions
a process term can perform, hence we need to define equality in these terms. The
usual approach is to use the notion of bi-simulation; intuitively that two terms
are equal if each is able to match the others actions.

More formally: processes P and Q are strongly bi-similar if ∃ a symmetric
relation R on the space of process terms such that:

PRQ ∧ P
µ−→ P ′ ⇒ ∃Q ′ • (Q µ−→ Q ′ ∧ P ′RQ ′)

Here µ is any transition label drawn from the set of actions of P , including
τ ’s.

In other words, assuming that they start off in equivalent states, if one can
perform an action µ then the other must also be able to perform the µ action
and, furthermore, after these actions they can end up in equivalent states. The
latter clause ensures that we can unfold this condition to ensure that they can
continue to simulate each other indefinitely. Thus each can mimic the other.
Notice that they will not necessarily end up in equivalent states. The condition
only requires that it is possible for them to reach equivalent states. Thus in
general there may be other transitions from Q also labelled µ but that end up
in states that are not related to P ′.

10.2 Weak Bi-simulation

Strong bi-simulation insists that the processes stay in step on all actions includ-
ing the hidden τ actions. Given that the τ actions are not observable by the
environment this tends to be too strong a criterion. We can have processes that
are observationally indistinguishable and yet are not strongly bi-similar. Strong
bi-similarity is thus drawing distinctions dependent on internal, unobservable
differences between implementations. This is not really in the spirit of the ab-
stract, implementation-independent, viewpoint of process algebra. The natural
weakening of this condition is to relax the requirement that the processes stay
in step on the τ ’s.

Weak bi-simlarity is defined in a similar way except that for visible events
we allow for arbitrary interleavings of τ events with the matching event to reach
equivalent states. A tau transition in one process can be matched by an arbitrary

Mathematical Models of Computer Security 33

sequence of tau’s, possibly of length zero. Where µ is a visible event we take

P
µ̂

=⇒ P ′ to indicate that P can transition to P ′ with a visible event µ interleaved
with arbitrary τ ’s, that is, an element of µ̂ ∈ τ∗. µ .τ∗, or where µ is a tau event
τ̂ is taken to denote a sequence τn of tau’s, where n could equal 0. We can now
define the weak-bisimulation relation on process terms.

Two process terms P and Q are weakly bi-similar if ∃ a symmetric relation
R such that:

PRQ ∧ P
µ−→ P ′ ⇒ ∃Q ′ • Q

µ̂
=⇒ Q ′ ∧ P ′RQ ′

Thus, if one process performs a visible event, we require that the other process
be able to match this but allow for interleaving with τ events to reach equivalent
states. If one process performs a hidden τ event, we require that the other be
able to perform some sequence of τ ’s, possibly none, to arrive at an equivalent
state.

10.3 Unwinding and Bi-simulation

There is a clear similarity between unwinding rules and (weak) bi-simulation.
Both introduce an equivalence on states and both require the possibility that
matching transitions from equivalent states lead to equivalent states.

The point about this analogy is that it potentially gives us a way of viewing
unwinding results in a process algebraic context. If we can frame the unwinding
rules in a bi-simulation style it also potentially gives us a more elegant and in-
sightful proof of completeness. Furthermore it could give us access to established
results and algorithms for establishing bi-simulation relations and for verifying
equivalences of processes.

There are, however, some differences: bi-simulation does not have an immedi-
ate analogy of rule 1 of the unwinding conditions, i.e., the matching of the ready
sets of equivalent states. In fact we will see how this follows from the requirement
for a bi-simulation that the processes be able to match visible transitions.

Another difference is that the unwinding rules work with ready sets. It is
well known that weak bi-similarity is stronger than failures equivalence and, as
discussed earlier, ready sets equivalence is stronger than failures.

Bi-simulation differs from failures equivalence in that it makes distinctions ac-
cording to where non-determinism is resolved, i.e., at what point internal choices
are made. Consider the following simple example that illustrates this:

P = (a → b → STOP) ✷ (a → c → STOP)

Q = a → (b → STOP 	 c → STOP)

In the first the branching occurs before the visible a event whilst in the
second it occurs after the a. They can easily be shown to be failures and test-
ing equivalent. These two processes are actually also ready sets equivalent as it

34 Peter Y. A. Ryan

τ τ

a

b c

Q’

a a

P’P’

P’’ P’’

b c

P Q

1

1

2

2

Q’’Q’’
1 2

Q’ Q’
1 2

Fig. 2. Processes P and Q

happens. Any process interacting with them but with no visibility of the inter-
nal mechanisms would be unable to distinguish them. It can easily be shown,
however, that no bi-simulation relation between them can be constructed.

At this point we could adopt the position that because bi-simulation gives
a stronger and therefore, arguably, a safer definition of secrecy and we could
simply adopt a bi-simulation definition of security. This would give a formulation
of secrecy along the lines of those proposed by Gorrieri et al, [19] and described
in the chapter by R.Focardi, R.Gorrieri of this volume.

In fact bi-simulation-style definitions of process equivalences have been for-
mulated that are precisely equivalent to the failures equivalence, and indeed
which, with a minor change, can also capture ready sets equivalence. We can
therefore utilise these to produce a bi-simulation-style formulation that is ex-
actly equivalent to our unwinding rules.

In the theory of automata it has long been known that a non-deterministic
finite state automaton can be converted into one that is deterministic and equiv-
alent with respect to the acceptance language model. The construction involves
lifting the model to the power set of the state space and working with sets of
nodes and transitions rather than single nodes. This is not quite what we want
as the accepting language model ignores non-determinism. It does, however, give
an indication of how to proceed.

Gardiner introduces a formulation of simulation that is equivalent to failures
refinement of CSP [24]. In a more recent paper this is extended to provide a con-
struction of bi-simulation that corresponds to failures equivalence and indeed,
by a slight tweak of the construction, also provides a construction that corre-

Mathematical Models of Computer Security 35

sponds to the ready sets equivalence [25]. The details are quite elaborate and
beyond the scope of these lectures. We will try to give the intuition and provide
a construction for processes that satisfy our definitions of non-interference.

10.4 Power Bi-simulation

The problem with the example earlier was the insistence on relating individual
states. If instead we think in terms of sets of states we can abstract away from
the details of where exactly internal choices are made. The key idea then is to
construct a bi-simulation relation on the power set of the state space: P States .

For a process S , set of states φ and visible event a define the spray of φ,
〈[φ]〉a , by:

〈[φ]〉a = {φ′ ∈ States(φ) | ∃ ã ∈ τ∗.a.τ∗ • φ
ã=⇒ φ′} (9)

That is, 〈[φ]〉a gives all states reachable starting from a state in φ with a
visible a, possibly interleaved with τ ’s.

A relation ≈ on P(S) × P(S) is a power bi-simulation relation for an LTS
of S if:

S1 ≈ S2 ⇒ 〈[S1]〉a ≈ 〈[S2]〉a (10)

This in itself is not so useful: trivial solutions for ≈ exist. In particular the top
relation that relates everything to everything satisfies this so the usual device of
taking the largest relation satisfying the property is singularly uninteresting in
this case. To get interesting solutions we need to impose additional constraints
on ≈ .

The intuition behind Gardiner’s construction is to find the largest symmetric
equivalence relation≈ satisfying 10 and such that for any pair of related elements
(sets of states) φ, φ′ and any subset s ∈ φ we can find a subset s ′ of φ′ such
that:

initials(s) ⊆ initials(s ′)

Thus, refering to figure 2 again, the node Q ′ must be matched up with the
pair of nodes {P ′

1,P
′
2}, whilst P ′

1 can be matched with just Q ′.
This gives a characterisation of equivalence that is exactly as discriminating

as failures equivalence. Alternatively we can obtain ready sets equivalence using
the slightly stronger requirement of = of initials rather than ⊆. It also turns
out that for the ready sets model the bound has to act on stable states rather
than arbitrary states as was the case for the failures equivalence. Gardiner shows
that such constructions give bi-simulation characterisations of equivalence that
correspond exactly to traces, failures or ready sets (depending on the choice of
bound).

36 Peter Y. A. Ryan

The construction is related to the normalisation performed by FDR, the
model-checker for CSP. FDR stands for Failures, Divergences and Refinement.
The tool, marketed by Formal Systems Europe Ltd performs refinement check
between pairs of CSP specifications [17]. The tool creats an LTS representation
of a CSP specification. During normalisation it converts the original LTS to
a Generalised LTS (GLTS), whose nodes correspond to sets of nodes of the
original with annotations (minimal acceptances) to carry the non-determinism
information.

10.5 Loose Bi-simulation

We now introduce a construction for the power bi-simulation relation for systems
satisfying the definitions of non-interference given by Equation 5, or equivalently
Equation 8.

Once again it is helpful to think in terms of an underlying Labelled State
Transition System (LTS) with internal transitions exposed, i.e., with labels
drawn from H ∪ L ∪ {τ}.

Define the relation ∼S on states of S by:

∼S = {(S/tr ,S/tr ′) | tr , tr ′ ∈ traces(S) ∧ tr � Lτ = tr ′ � Lτ} (11)

where Lτ = L ∪ {τ}
In effect this is the equivalence relation induced by purging the H ′s but

keeping the L’s and τ ’s visible.
We now define a variant of weak bi-simulation that we call loose bi-simulation:
P and Q are loosely bi-similar if ∃ a symmetric relation ∼S such that:

P ∼S Q ∧ P
µ−→ P ′ ⇒ ∃Q ′ • Q

µ
=⇒ Q ′ ∧ P ′ ∼S Q ′ (12)

Where, for µ ∈ L ∪ {τ}, µ denotes a sequence of events in H ∗. µ .H ∗, the
set of all finite sequences of H actions interleaved with a single µ. For µ ∈ H
we take µ to denote a sequence of H events, possibly of length zero. It is thus
analogous to weak bi-simulation but with τ and L events kept visible whilst the
H ′s are hidden. Thus the H ′s playing the role of τ ’s.

10.6 Power Bi-simulation for Non-interference

We now define a power bi-simulation relation on P States(S) × PStates(S) :

≈S := {({S | S tr=⇒ S ′}, {S | S tr ′
=⇒ S ′}) | tr , tr ′ ∈ traces(S)

∧ tr � L = tr ′ � L} (13)

i.e., abstracting the τ ’s and H ′s . Note that this relation acts on the power
set of the state space and so relates sets of states to sets of states.

Mathematical Models of Computer Security 37

Lemma 1. If S satisfies the loose bi-simulation w.r.t. ∼S then it satisfies
a power bi-simulation w.r.t. ≈S .

The proof follows straightforwardly from the definitions.

Lemma 2. If S1 ≈S S2 then for all s1 ∈ S1 there exists s2 ∈ S2 such that
s1 ∼S s2, and vice versa.

Again the proof is a straightforward, if slightly messy, induction argument.

Lemma 3.

s1 ∼S s2 ⇒ ReadyL(s1) = ReadyL(s2)

This follows immediately from the definition of loose bi-simulation: states
related by ∼S must be able to match transitions and so they must match ready
sets.

Lemmata 2 and 3 together immediately imply:

Lemma 4.

S1 ≈S S2 ⇒ ReadySetsL(S1) = ReadySetsL(S2)

Figure 3 may help illustrate what is going on. Here p1 and p2 are related by ∼
and so have matching ready sets on L∪ {τ}. p1 is an element of the set of nodes
Ψ1 and p2 is an element of Ψ2 with Ψ1 ≈ Ψ2. The diagram shows both p1 and p2

making transitions labelled mu to p′
1 and p′

2 respectively and, if the system
satisfies loose bi-simulation with respect to ∼, we have p′

1 ∼ p′
2. Furthermore

p′
1 and p′

2 will be elements of Ψ ′
1 and Ψ ′

2 respectively, where Ψ ′
1 = 〈[Φ1]〉µ and

Ψ ′
2 = 〈[Φ2]〉µ, with Ψ ′

1 ≈ Ψ ′
2. Finally note that ReadyLτ (p′

1) = ReadyLτ (p′
2).

We have thus established that S satisfies loose bi-simulation w.r.t. ∼S im-
plies S satisfies power bi-simulation w.r.t. ≈S and the ready sets bound which
in turn is equivalent to S satisfying the non-interference property of Equation 5.

In fact we see that Lemma 4 is really just a restatement of unwinding rule 1
and Lemma 1 is a restatement of rule 2.

We have thus constructed a power bi-simulation formulation equivalent to
the original non-interference property. Completeness, i.e., that this formulation
is both necessary and sufficient, now follows from Gardiner’s results that show
that the largest equivalence over the LTS of the CSP language that satisfies the
equality of initials bound on stable states gives the same equality of terms as
the ready sets model.

It is worth examining this construction more carefully. Although originally
designed as a rather formal exercise in recasting certain results in a process
algebraic framework and to give a more elegant and insightful proof of the com-
pleteness of an unwinding result, it actually has some useful spin-offs. Firstly
notice that we have, in effect, divided the hidden events into H ′s and τ ’s and
are thinking of these as the potential source of any non-determinism that may
be observable by Low.

38 Peter Y. A. Ryan

Fig. 3. Loose bi-simulation

Examining the loose bi-simulation property we see that it is asserting that
the occurrence of H ′s cannot influence the availability of τ ’s. We can think of
the τ ’s as representing internal, system sources of entropy giving rise to the
non-determinism visible to L, for example, due to a scheduler or to the output
of a stream cipher. For a system satisfying non-interference in this framework
the τ ’s are the sole source of any non-determinism visible to Low. Different
τ behaviours can resolve the non-determinism in different ways but differing
H behaviours cannot. The fact that H ′s do not interfere with the τ ’s ensures
that there cannot be an indirect channel from High to Low.

It may be appropriate to disambiguate the τ ’s. Usually, in CCS for exam-
ple, τ ’s are invisible and so can reasonably be regarded as indistinguishable.
In our construction above, however, we have, at some stages of the analysis at
least, exposed the τ ’s. Suitable disambiguation of the τ ’s could allow a closer
correspondence to be established between differing τ behaviours and differing
non-deterministic behaviours manifest to Low. In effect the τ ’s are doing the
book keeping that ensures that the non-determinism manifest to Low in states
equivalent under ≈ is consistent.

A pleasing feature of the power-bi-simulation approach is that it connects the
denotational, operational and testing formulations of process equivalence, and
hence of non-interference. In [33] it is argued that bridging different presentations
of semantics should be a major goal of theoretical computer science.

Unwinding results can be interpreted as special forms of bi-simulation and
so existing algorithms for constructing bi-simulations may be useful for estab-
lishing unwinding rules. Pinsky provides a construction for equivalence classes

Mathematical Models of Computer Security 39

in a somewhat different, predicate based framework [68]. These results can be
mapped across to Gardiner’s predicate transformer approach.

10.7 Composability

Reasoning about the composability of various formulations of non-interference
with respect to various forms of composition becomes much easier in a process
algebraic framework. Furthermore, having a bisimulation formulation appears to
help significantly. To illustrate we present a proof of composition for processes
satisfying our loose bisimulation formulation with respect to parallel composi-
tion. Parallel composition seems to be one of the more interesting operators to
consider, interleaving tends to be rather trivial for example. Note that for this to
make sense, we assume that High channels are linked to High channels and Low
to Low. Without this assumption non-interference would be trivially violated.

Suppose the S and T both satisfy loose bi-simulation w.r.t ∼H induced by
purgeH .

Thus

S1 ∼H S2 ∧ S1
µ−→ S ′

1 ⇒ ∃S ′
2 • S2

µ
=⇒ S ′

2 ∧ S ′
1 ∼H S ′

2

Similarly for T .
Now consider S ||Σ T where Σ = H ∪ L∪ {τ}. The Σ subscript on || will be

taken as implicit from now on.
and define ∼∗

H on S || T by:

S1 || T1 ∼∗
H S2 || T2 ⇔ S1 ∼H S2 ∧ T1 ∼H T2

Lemma 5.

S1 || T1 ∼∗
H S2 || T2 ⇔ ∃ s1, s2 ∈ traces(S) • S1 = S/s1 ∧ S2 = S/s2

where:
purgeH (s1) = purgeH (s2)

And similarly for T .
That is the ∼∗

H equivalence is the same as would have been induced by
purging the traces of the composed process.

Now we need to show:

S1 || T1 ∼∗
H S2 || T2 ∧ S1 || T1

µ−→ S ′
1 || T ′

1

implies ∃S ′
2 || T ′

2 such that

S2 || T2
µ

=⇒ S ′
2 || T ′

2 ∧ S ′
1 || T ′

1 ∼∗
H S ′

2 || T ′
2

Now
S1 || T1

µ−→ S ′
1 || T ′

1 ⇒ S1
µ−→ S ′

1 ∧ T1
µ−→ T ′

1

40 Peter Y. A. Ryan

so by Loose bisimulation of S and T we must have S ′
2 and T ′

2 such that:

S2
µ

=⇒ S ′
2 ∧ T2

µ
=⇒ T ′

2

so

S2 || T2
µ

=⇒ S ′
2 || T ′

2

but we also have:
S ′

1 ∼H S ′
2 ∧ T ′

1 ∼H T ′
2

so indeed:
S ′

1 || T ′
1 ∼∗

H S ′
2 || T ′

2

as required.
The structure of this proof follows largely from the nature of bi-simulation.

The only tricky part is in showing that the equivalence used in defining loose
bi-simulation for the composition of the processes is the same as that used
for the processes separately. In this case we had to show that the equivalence
∼∗

H defined above is the same as had we defined it directly from the purge of
traces of the composed process. In other words, the key step is to show that the
equivalence used in defining the loose bi-simulation lifts through composition
in the appropriate way. In this case the proof is straightforward but for the
subtler forms of non-interference we will meet later it may not necessarily be
so straightforward (or even necessarily true). Schneider discusses a variety of
compositionality results with respect to a number of styles of composition results
in the context of a framework based on testing equivalence [84].

10.8 The Roscoe-Woodcock-Wulf Approach

The fact that the formulations of non-interference given above fail to be preserved
under the usual refinement of CSP, or indeed most other styles of refinement,
is troubling. Various responses are possible to this: we could conclude that such
a formulation is flawed. We could conclude that this is just a fact of life and
security is not a property preserved under refinement. This would be a distinctly
depressing conclusion as it would deny us the possibility of step-wise development
and verification. Another is to accept that conventional refinements will not
preserve security and if we want security to be automatically preserved we will
need a new formulation of refinement. Yet another response is to conclude that
maybe it is unreasonable to expect security to be preserved automatically and
that we have no choice but to do further verification as we move down towards
the implementation during the design process: i.e., to generate and discharge
proof obligations at each refinement step.

We will discuss the latter reactions a little later. First we introduce an alterna-
tive CSP formulation of non-interference that is preserved under CSP refinement.
The approach is due to Roscoe, Woodcock and Wulf [71].

The key idea here is to assert that a suitable abstraction of the system that
represents Low’s view be deterministic. In our earlier formulations we sought

Mathematical Models of Computer Security 41

ways to allow some non-determinism at Low’s level but denying High any way
to influence the way this is resolved. In the this approach there simply isn’t any
non-determinism in Low’s viewpoint. Such a system is fully under the control of
the environment (as far as it’s externally observable behaviour is concerned) and
so it cannot be the source of any information or entropy. There may be entropy
being created and sloshing around internally but it never gets to leak outside.

Definition. A system S satisfies RWW non-interference, denoted NIRWW S , iff
AbstractH (S) is deterministic.

Where AbstractH denotes an appropriate abstraction of the H events giving
Low’s view of the system.

As remarked earlier, non-determinism is never increased by CSP refinement.
Consequently, any system that is deterministic to start will remain deterministic
under refinement. Thus any refinement of a system that satisfies the RWW
property of non-interference will necessarily also satisfy it. A further advantage
is that it can be automatically checked, indeed FRD has a button for this.

This makes the approach very attractive. It is stronger than the previous
formulations we have discussed: any system satisfying NIRWW will also satisfy
all of the formulations given previously. It also side-steps many of the rather
delicate issues that dog other formulations: in particular, what is the right notion
of equivalence to use? How can we be sure that there is not some subtle way
for High to influence non-determinism that is missed by our models. The latter
problem is another manifestation of the refinement problem.

For a system whose security can be formulated as NIRWW it is clearly sensi-
ble to use this formulation for the above reasons. The drawback is that it would
appear that there is a large class of systems of interest for which this formula-
tion is not appropriate, i.e., for which some residual non-determinism at Low is
unavoidable. The classic example is the encrypted channel that we will discuss
in greater detail later. Suppose that we consider a stream cipher (essentially
a one-time-pad). This is a source of pure entropy and it does leak to the outside.
However, a well designed cipher box properly incorporated in a secure architec-
ture should still be secure. In essence the entropy generated by the box cannot
be influenced or predicted by High.

Such an example cannot, in any obvious way at least, be formulated in the
NIRWW style. Actually it is not trivial to formulate in other weaker formulations
either and we will return to this point later.

Another appealing feature is that the definition of determinism is fairly un-
controversial and coincides for most process algebras.

It is possible to combine this approach with the loose bi-simulation approach
described earlier: consider an abstraction of the system with the H ’s abstracted
but the τ ’s kept visible and indeed disambiguated. We now require that this
abstraction be deterministic. This is stronger than the loose bi-simulation that
we introduced earlier and indeed implies it. The real system again has the τ ’s
abstracted and so can manifest non-determinism at Low’s interface. Again we

42 Peter Y. A. Ryan

know that any non-determinism visible to Low will be entirely due to differing
τ behaviours and furthermore we know that High’s activity cannot influence
the τ ’s. We thus get the best of both worlds: a simple and easily verifiable and
refinable property that still allows for some non-determinism at Low’s level.

For this to work we certainly need to disambiguate the τ ’s as we would
otherwise have non-determinism due to ambiguous branching on τ ’s. There seems
no reason not to do this and indeed the identification of all internal events with
a single event could itself be regarded as a modelling device, an entirely sensible
one for hidden events.

We also need to avoid non-determinism arising from ambiguous Low events.
In fact we can always transform a system with ambiguous visible events to one
in which such branching is replaced by τ branching.

10.9 The Jacob Security Ordering

A drastically different approach to formalising security was taken by Jacob,
[37,38]. Jacob suggests that there is, in fact, no way of saying categorically
whether or not a system is secure. In this approach security is considered to be
a purely relative property: at best all we can do is establish that one system is
at least as secure as another. To this end he introduces a security ordering based
on the notion of infer functions. Given a Low level projection of a trace the infer
function returns the set of system behaviours consistent with this observation.
Formally:

Given a trace tr ∈ trace(S)

inferS (tr) := {s | s ∈ traces(S) ∧ s � L = tr � L} (14)

The larger the cardinality of the set returned by infer the greater the uncer-
tainty about the system behaviour associated with that observation. The idea
now is, for a pair of systems P and Q , to compare the size of the infer function
for all possible Low observations. We will consider P to be at least as secure
as Q if:

∀ tr ∈ traces(Q) • inferQ (tr) ⊆ inferP (tr) (15)

In other words, for any given Low observation, the set resulting from the infer
function applied to P is always a superset of the corresponding infer function
for Q . Thus the uncertainty resulting from observations of P is always greater
than would be the case for Q .

The idea is very interesting, but it has failed to catch on, presumably because
people have tended to feel uncomfortable with not being able to characterise a
given system as either secure or insecure. Given that security is never absolute
this is really not a valid objection. To return to the safe analogy: it is not
meaningful to rate a safe as “secure,” but it may be meaningful to claim that
one safe is more secure than another, i.e., for all known forms of attack it will

Mathematical Models of Computer Security 43

withstand for a longer period. The time may be ripe to take a fresh look at this
approach.

10.10 Testing Equivalence

Another way of characterising process equivalence is the notion of testing. The
idea is highly intuitive: if no experiment that the environment can perform on
a pair of systems P and Q can distinguish between them then they are deemed
to be equivalent. This is really very compelling in the context of security as
we can think of these experiments as representing the efforts by Low to infer
something about High’s activity.

Schneider shows that several of the existing formulations of non-interference
style properties can be cast rather naturally as flavours of testing equivalence [84].
Indeed it seems that in several cases the authors of these were in effect inde-
pendently reinventing certain flavours of testing equivalence. We will show, for
example, how non-deducibility and non-deducibility on strategies emerge nat-
urally from thinking in terms of testing equivalences. First we give a formal
definition of testing equivalence.

A test is a process T with a distinguished success event ω. We allow the
system P to run in parallel with T and observe whether the resulting process can
reach a state in which the ω event is possible. We can then characterise processes
in terms of the set of tests they pass, which provides us with an alternative way
to assign meaning to process terms. In particular, we regard two processes that,
for all possible tests, pass the same set of tests as equivalent. We have to make
precise what we mean by all possible tests. Typically this will simply be the space
of tests that can be expressed in the process algebra. In some circumstances we
may want to constrain the space of possible tests to reflect limitations on the
capabilities of the environment (or hostile agents in the case of security).

To formally define the notion of a test we need to introduce a special
SUCCESS process which satisfies the transition rule: SUCCESS ω−→ STOP .
Thus, SUCCESS is a simple process that performs a success event ω and then
stops. ω is a special event that is introduced purely as a device to define the
success of a test and will not be part of the universal alphabet Σ.

Success of a test is now characterised by whether the process:

(P ||Σ T) \ Σ

can perform ω. Where T is constructed from the CSP operators along with
the SUCCESS process. Thus the occurrence of the ω event signals that P has
agreed to perform some behaviour offered by T . You can think of T as repre-
senting some abstract test harness that is attached to P .

10.11 May Testing Equivalence

There are three possible outcomes of such a test when applied to a particular
process: it might always succeed, always fail or sometimes succeed.

44 Peter Y. A. Ryan

If (P ||Σ T) \ Σ can perform ω then we will say that P may pass T , written
PmayT . That is, ∃ an execution of (P ||Σ T) \ Σ that results in ω. It is possible
that there are executions of P that do not result in ω so success is not guaranteed,
hence the name may testing.

P and Q are now deemed to be may testing equivalent, written P =may Q ,
iff:

∀T • PmayT ⇔ QmayT

In other words the set of tests that P may pass is exactly the same as the set
that Q may pass. May testing equivalence is known to give the same equivalence
as the traces model [10].

An analogous notion of must testing can be defined by requiring that all
(maximal) executions of (P ||Σ T) \ Σ result in an ω. This gives an equivalence
that corresponds to the failures model of CSP. The condition of maximality is
required because there will always be the possibility of short runs that have not
reached the success state but would if allowed to continue and so should not be
regarded as a failure of the test.

10.12 May Testing Non-interference

We can use the form of equivalence given by may testing to give another state-
ment of non-interference.

Definition: S is mayNI if for all High processes H1 and H2, with αHi ⊆ H :

H1 ||H S ||L T =may H2 ||H S ||L T (16)

With αT ⊆ L
This gives a weaker characterisation than those given above as may testing ig-

nores distinctions that Low may draw based on observations of non-determinism.
We can give a formulation similar to, say, Equation 9 by requiring must testing
equivalence [84].

10.13 Non-deducibility

Equation 17 is the natural thing to write down in a may testing framework.
However, by altering this slightly, we can mimic one of the early formulations:
non-deducibility due to Sutherland, [88]. The essential idea is to stipulate that
whatever observations Low may make of the system the space of possible High
level inputs consistent with those observations is unchanged. Intuitively this
is rather appealing and appears to address the encryption problem: whatever
ciphertext Low observes he cannot reduce the space of plaintexts compatible
with this ciphertext.

We need to partition the High level events into inputs and outputs. We then
restrict the high-level processes in the definition to ones with an alphabet drawn

Mathematical Models of Computer Security 45

only from High inputs and we use this in the definition of Equation 17. This
is not really a natural thing to do in a process algebraic framework and indeed
it and Sutherland’s original formulation are found to be flawed, as observed by
Johnson and Wittbold [90].

Unsurprisingly, the problem arises from ignoring the High outputs. Wittbold
et al, construct a system that satisfies non-deducibility but for which High can
modify his behaviour based on observations of High outputs in such a way as
to signal to Low. The construction amounts to a stream cipher that High can
induce to stutter. This allows him to predict certain bits and so leak plaintext
to Low. In fact, as remarked in [77], this is really conceptually this same as High
somehow being able to observe the bits of a cipher stream before he submits
his plaintext. If he can somehow achieve this he can now exclusive or these into
the High inputs (plaintext). The self inverse property of Vernan encryption then
results in raw plaintext being visible to Low.

It might seem unlikely that such a flawed installation of a cipher device would
be implemented in a secure system but the point is that the non-deducibility
formulation fails to detect this problem.

10.14 Non-deducibility on Strategies

The difficulty with non-deduciblity as originally presented is that it takes no
account of possible malicious behavious by High, maybe in collusion with Low.
Notice that the counter-example provided by Johnson and Wittbold still satisfies
non-deducibility in the sense that, assuming that any cipher stream is possible,
then any plaintext is consistent with the ciphertext that Low observes.

Having made this observation, Johnson and Wittbold propose a more refined
version of non-deducibility: they introduce the notion of High strategies and use
this to define non-deducibility on strategies. In effect High is allowed to make his
choices at run time on the basis of observations he can make on the system. They
now require of the system that it satisfy non-deduciblity, whatever strategy High
may adopt.

Note that if High had to resolve all his choices ahead of time, for example,
had to decide on what text to submit to the cipher box before getting a chance
to observe any of its outputs, then he could not communicate with Low.

The strategies of Wittbold et al, are really just instances of High CSP pro-
cesses. As a result, NDoS turns out to be equivalent to our Equation 17. Thus
the CSP testing approach rather naturally shows up the flaw of non-deducibility
and leads naturally to the notion of non-deducibility on strategies.

It is also interesting to consider this example in the context of our power-bi-
simulation framework. If we think of the τ ’s as encoding the output of the stream
cipher, the loose bi-simulation property ensures that High cannot influence them.
High’s exclusive-oring of predicted bits into the plaintext is tantamount to tam-
pering with these τ ’s. There are however some subtle issues here of causality.
It is not clear that this has really been precisely captured in the formalism. We
would like to show, for example, that predicting and compensating for the bits

46 Peter Y. A. Ryan

is equivalent to High forcing the bits to all equal zero and just using the original
plaintext. How to capture the act of prediction is rather delicate.

A formulation that is basically equivalent to Equation 17, called non-
deduciblity on composition (NDC), can be found in Gorrieri et al, [19] except
that they use a conventional bi-simulation, so theirs is slightly stronger. Their
formulation predates ours but it is nice to see essentially the same formulation
emerging from a different approach.

An elaboration of testing equivalence, due to Schneider [83], allows for non-
refusable Low events. In effect we constrain the space of tests to processes that
are receptive on the L non-refusable events. We could also consider constrain-
ing the space of High processes and we will return to this in the section on
generalisations of CSP non-interference.

10.15 The Lowe Approach to Information Flow

Lowe points out some of the limitations of existing formulations of NI [48]. None
seem to give just the right characterisation. He traces part of the problem to the
way non-determinism can be resolved in CSP. Consider:

P = h → STOP ||| (l → STOP 	 l ′ → STOP)

Intuitively this should be secure: the intuition behind the interleave operator
is that it allows both processes to execute entirely independently. However if
one considers the LTS, figure 4 upper diagram, we see that there appear to be
two internal decision points. If these two choices are resolved differently, lower
diagram, we get an information flow.

Thus the choice has been resolved differently before and after the occurrence
of the h. In fact the original CSP specification only really had one choice but
the LTS representation appears to have two. These are really the same and so
should really be resolved consistently. The inconsistent resolution has in, effect,
introduced a spurious causal relationship between the high and the low events
not intended in the original specification.

Lowe’s solution is to introduce a demon that ensures that such choices are
resolved in a consistent way. He introduces additional labels on the LTS to carry
this syntactic information. This allows him to define the notion of consistent
refinement and then defines a system to be non-interfering iff any consistent
refinement satisfies non-interference in the sense of Equation 5 (except that in
this case a formulation suitable for deterministic systems is appropriate and so
it is enough to require that the initials match rather than that the ready sets
match).

11 Generalisations

Thus far we have dealt with the problem of characterising the complete absence
of information flows through a system. We have seen that even in this com-
paratively simple situation it is remarkably difficult to arrive at a satisfactory

Mathematical Models of Computer Security 47

Fig. 4. The Labelled Transition System for P and its “refinement”

characterisation, even where we have abstracted from questions of time or prob-
ability. Later we will discuss ways to incorporate these aspects too but in this
section we will address generalisations of what we have developed so far.

11.1 Limitations of Non-interference

Up to now we have used the idea of non-interference to characterise the com-
plete absence of information flow or indeed stronger, the absence of any causal
flow. Typically this is too strong for practical applications. We have already en-
countered the encrypted channel example in which we have causal flow but no
(significant) information flow. Other situations also call for restricted or con-
trolled flows. Sometimes this will be due to policy requirements. Downgraders
are an example in which certain flows are allowed under certain circumstances,
i.e., the classification of a previously sensitive file is reduced to unclassified by
a security officer or maybe just due to the passage of time. Another example is
the downgrading of statistical imformation derived from an otherwise sensitive
database.

Sometimes it is more a question of functionality. Typically strict non-
interference simply isn’t feasible due to clashes of resource demands, etc. A sim-
ple example is the One Way Regulator or NRL pump. This is a device intended
to allow information flow from Low to High but not from High to Low. In fact
some flow from High to Low is necessary to regulate the flow from Low and

48 Peter Y. A. Ryan

avoid buffer overflow. For the NRL Pump the bandwidth of the High to Low
regulating channel is severely restricted.

More generally there is a trend away from simple MLS-style policies to richer
styles of policy involving finer granularity and more subtle, dynamic (possibly
history- or location-based for example) controls of accesses. A simple example
is the Chinese-Walls-style policy, mentioned earlier, in which an access to one
class of file denies access to files in a conflicting class.

In this section we investigate to what extent these policies and requirements
can be captured in a non-interference framework. There is ,of course, a question
as to whether such a framework is the appropriate. It may well be that a large
class of such policies simply do not fit naturally or indeed at all into a non-
interference framework. It is interesting however to investigate how far we can
push things.

The following generalisation of Equation 5 suggests itself:

∀ tr , tr ′ ∈ traces(S) • tr ≈ tr ′ ⇒
AH ((S || Constrain)/tr) ≡ AH ((S || Constrain)/tr ′) (17)

Firstly observe that ≈ can be an arbitrary equivalence on traces, including
but not confined to those induced by purge-like functions. We will discuss some
of the possibilities that suggest thenselves shortly.

AH denotes the operator chosen to abstract parts of the interface to S : eager,
lazy, projection or some mixture.

Constrain denotes the envelope of behaviours that we are concerned about
(not necessarily itself a process). High behaviours outside this envelope are al-
lowed to interfere with Low under such a definition.

≡ denotes an appropriate process equivalence.
Alternatively we could seek to generalise Equation 8:

U1 ∼ U2 ⇒ AH (S || U1 || Constrain) ≡ AH (S || U2 || Constrain) (18)

where ∼ denotes a suitable equivalence over High processes.
Using a testing approach allows us to delimit the space of tests, as in Schnei-

der’s work, or indeed to constrain the space of high users that we quantify over.
The latter freedom renders redundant the Constrain term that we used above.

11.2 Encrypted Channels

As a first example of how such generalised formulations of non-interference might
be applied let us return to the encrypted channel in which High feeds a classified
plaintext into an encryption device and the resulting ciphertext is transmitted
over some open channel c. We will suppose that the encryption algorithm is
secure and any keys that might be involved are uncompromised. Indeed we could
simply assume that we are dealing with a one-time-pad encryption.

Mathematical Models of Computer Security 49

Here we instantiate the equivalence relation ≈ in definition 18 by:
≈ is defined by:

tr ≈ tr ′ ⇔ #(tr � H) = #(tr ′ � H)

that is, plaintexts of equal length are regarded as equivalent, and define AH

as projection on the channel c: renaming 0’s and 1’s to some single symbol, • say.
A secure encryption channel now passes the form of non-interference defined

in Equation 17 instantiated with these abstractions and equivalences. Indeed
the information flow seems to have been quite accurately encoded: Low can
determine the length of a High message transmitted over c but not its contents.
It does, however, fail to take account of the fact that Low could detect when
identical cipher-texts have been transmitted. Presumably if we really are dealing
with a one-time-pad this is not relevant: the occurence of identical cipher-texts is
firstly extremely unlikely and secondly signifies nothing. On the other hand, for
a block cipher in, say, electronic code book mode it could be highly significant.
To capture this situation we can alter the abstraction applied to the c channel.
We now allow for process equivalence up to renaming on the alphabet of c. We
should now think of the alphabet of c as being the bit strings of length l , where l
is the length of the cipher blocks. For electronic code book mode it is appropriate
to consider the renaming to be constant on the blocks. This is analogous to our
encoding of pseudo-anonymity that will be discussed later.

This last example suggests that it might be useful to consider process equiv-
alence up to isomorphism, where the isomorphism could be more general than
simple renaming that we considered above.

11.3 Downgrading Statistical Information from a Sensitive
Database

Another situation that can be encoded rather naturally is one in which unclas-
sified statistical information is extracted from an otherwise classified database.
Here we simply choose an equivalence over the state space of the database such
that states giving rise to the same statistical values are regarded as equivalent.

11.4 File Editing

In general many different editing sequences can lead to the same final text, ig-
noring mark-up features. Certain edit commands will commute, some will negate
others. Thus, editing sequences leading to identical final texts could be classed as
equivalent. More generally we could define equivalence under arbitrary rewrite
rules on traces, but this might hit decidability problems.

11.5 Operating Systems

The purpose of an operating system can be thought of as maintaining the illusion
for each user that they are interacting with their own private system. Thought

50 Peter Y. A. Ryan

of this way we see that this kind of requirement is remarkably close to the idea of
non-interference: the user’s experience of interacting with the system should be
largely unaffected by the presence of other users. In fact it is possible to get away
with a weaker requirement here as we are not really worried if the user can infer
something about the existence and behaviour of other users as long as he still
gets the functionality he expects. We will see shortly that this is closely related
to fault-tolerance requirements. We thank John McHugh for this observation.

11.6 Intransitive Non-interference

In [74], Rushby discussed what he calls intransitive non-interference. The name
is actually rather deceptive as it is really about intransitive information flow
policies. In some situations it is desirable for information to be allowed to flow
in certain circumstances from H to L via some intermediate process, D say, that
controls or as least audits the flows. No direct flows from H to L are allowed.
At first this seems somewhat bizarre as we are in effect stipulating that H ⇒ D
and D ⇒ L whilst denying H ⇒ L.

Rushby gives a couple of examples where this kind of requirement arises:
downgraders and crypto boxes. Thus, in the case of a down-grader, we allow
certain files to flow from a high classification to a lower classification but only if
this is controlled by a downgrading device.

What really seems to be asserted here is that any flow from H to L should
be regulated or at least audited by D . Rushby deals with this by introducing an
ipurge function that no longer acts point-wise on individual events but accounts
for downgrade events: thus we do not purge events that have been downgraded.

In [28] Goldsmith and Roscoe critique this, pointing out the Rushby’s for-
mulation can allow undesired flows. They give an alternative formulation using
their determinism approach.

We can use the equivalence induced by ipurge to cast Rushby’s examples into
our generalised formulation. It may be possible to capture more general forms of
intransitive information flow policies by suitable choices of traces equivalence.

11.7 Fault-Tolerance

Fault-tolerance and masking can also be encoded as non-interference style prop-
erties: roughly speaking, faults should not interfere with users. This idea crops
up in [89] and later in [73,87]. For fault-tolerance, however, a weaker version may
be acceptable as we are not really concerned with the possibility of information
flowing from the faults to the users. It is thus not necessary in the definitions to
demand equivalence, refinement is enough: that user functionality is unaffected.
We are not really concerned if the errors may be able to resolve some of the
non-determinism seen by the users. Indeed we might want information about
the error behaviour to flow to the users in the form of warnings, alarms, etc.

We can thus define S to be tolerant of fault behaviours within a certain
envelope defined by the process FAULTS by:

Mathematical Models of Computer Security 51

(S ||faults FAULTS) \ faults �F (S ||faults STOP) \ faults (19)

Thus FAULTS (αFAULTS = faults) is a process that encodes the failures
behaviours we hope to be able to mask or tolerate. For example, for a Byzantine
agreement algorithm, FAULTS might specify the number and type of failures
to be tolerated. The RHS of the refinement represents the fault-free behaviour
of S . We are thus saying that as long as the fault behaviours stay within the
envelope defined by FAULTS , the system should continue to be a refinement of
the fault-free system, i.e., continues to provide the same functionality. We are
assuming that the fault-free system provides the required functionality though
strictly speaking this would need to be seperately verified against a suitable
requirements specification.

Note the use of refinement in this definition rather than equality as used in
the definitions of secrecy.

Alternatively, suppose that MISSION encodes the mission critical function-
ality, then we could require:

S ||faults FAULTS �F MISSION (20)

Thus, even in the presence of a faults scenario within the envelope defined by
FAULTS the mission critical functionality should remain. We could formulate
a series of such requirements specifying acceptable degradation of functionality
under increasingly severe fault scenarios:

S ||faults FAULTSi �F MISSIONi (21)

11.8 Intrusion-Tolerance

In principle we could apply this approach to defining intrusion-tolerance with
something analogous to FAULTS to encode attack scenarios. It is not really
clear that attack scenarios can be so readily modelled. One could, in principle,
try to model hostile capabilities (cf security protocols analysis [78]) maybe even
including cost factors (which, inter alia, might help reduce the search space).
This remains an avenue for research.

11.9 Anonymity

Another property that can be given an elagant non-interference-style formulation
is anonymity. It is a sort of converse to authentication: authentication is about
a process being assured of the identity of agents or processes with which it
is interacting. Anonymity is concerned with preventing identities from being
revealed. As with authentication, anonymity comes in many flavours depending
on the application and requirements.

52 Peter Y. A. Ryan

It is clear that anonymity has much in common with confidentiality. The lat-
ter can be thought of as a kind of anonymity over a message space. Indeed our
Equation 8 could be interpreted as a statement of anonymity: Low cannot dis-
tinguish which of two possible users are interacting with the system through the
High interface. This is actually a little strong for the usual meaning of anonymity
as it requires that any user be indistinguishable from no user. More typically
anonymity means that you know that an action has been performed but are
unable to tell who is associated with it. Process algebraic definitions of various
flavours of anonymity can be found in [85].

Pseudo-anonymity can be similarly formulated using a constant permutation
in the renaming abstraction rather that just projection. This allows correlation
between pseudonyms across time.

11.10 Dynamic Separation of Duty

Earlier we mentioned dynamic separation of duty policies. It turns out that
such policies can be remarkably simply stated in a process algebra. As a simple
example, suppose that an agent A can choose between two roles, Role1 and Role2,
but that these are declared mutually exclusive. Once we have expressed these
roles as CSP processes, we can express this in the CSP notation as:

A = Role1 ✷ Role2 (22)

This gives a Chinese walls style policy for these two roles. Various generali-
sations to multiple roles and to situations in which the choices are constrained
in certain ways are obvious.

11.11 Dealing with Probability

In principle it seems straightforward to extend the framework presented ear-
lier to deal with probability by asserting that, for example, the probabilities of
transitions for related states should be equal. In practice the formalism and ver-
ification gets cumbersome. One rather natural way to introduce probability is
using the testing framework:

Let

S ∗
i := AbstractH (S ||H Ui)

Then we could assert that S is probabilistically non-interfering if:

∀U 1 ≈ U 2 ∧ T ∈ Tests •
Prob(Success(S ∗

1 ||L T)) = Prob(Success(S ∗
2 ||L T)) (23)

It is far from clear that such a property would be tracable from a verifi-
cation point of view. However unwinding this definition to some appropriate

Mathematical Models of Computer Security 53

bi-simulation property might prove more tractable. Here one would be dealing
with the deltas in probabilities, in particular asserting that probabilities are un-
changed by the occurrence of High events, as the system evolves. Thus we might
assert something along the lines of:

S1 ≈ S2 ⇒ Prob(S1
h−→ S ′

1) = Prob(S2
h′
−→ S ′

2) ∧ S ′
1 ≈ S ′

2 (24)

where Prob(S1
h−→ S ′

1) denoted the probability of a transition labelled h from
the state S1 to S ′

1. Note that such probabililites will only really make sense
where they arise due to “essential” non-determinism of the system rather than
non-determinism that can be resolved by agents or processes interacting with
the system. This might sidestep the need to assign absolute probabilities to
transitions. We are grateful to Cathy Meadows for pointing this out.

11.12 Dealing with Time

Similarly we could move to a (discrete) timed model, using, for example, the tock
dialect of CSP, with assertions that the times at which events become available
to Low are independent of High activity. Again things rapidly get very complex-
certainly difficult to model-check. Toy examples, for example, encrypted channels
and maybe the One-Way-Regulator, can probably be pushed through but real
systems seem out of reach for the moment.

12 Future Directions

In this section we outline some directions for future work.
CSP draws a distinction between internal and external non-determinism.

These are similar to the don’t know, don’t care style of distinctions drawn in
many formal methods. We have seen that these two flavours, although they are
fine for investigating safety and liveness properties, are not enough to capture
some aspects of information security. In particular, for security, we often need
to distinguish probabilistic or essential non-determinism. We need to be very
careful how we refine non-determinism: some non-determinism may be vital to
security, for example, that arising from a stream cipher.

We have mentioned a number of approaches to formalising secrecy and hinted
at possible connections. These need to be more fully investigated and understood.
Besides these a number of other, recent proposals have appeared that appear to
be related, for example: Sabelfeld and Sands [79], Mantel [51], and Pinsky [69].

We have illustrated how a few requirements and examples can be encoded
in our generalised form of NICSP . It remains to try to tackle some more re-
alistic examples in this framework: the Java security model, databases, smart
cards. It would also be interesting to investigate more fault-tolerance and even
intrusion-tolerance examples. It would also appear that a number of non-security
applications may be usefully addressed using this kind of framework. Indeed it

54 Peter Y. A. Ryan

seems that, although these ideas were developed in a security context, they may
turn out to be at least as useful applied in other contexts.

A major challenge is to extend such techniques to address time and probabil-
ity. In principle this seems straightforward. To extend the models in a way that
remains tractable is far from straightforward. Even without time and probability
we are straining the limits of what is tractable from a verification point of view.
On the other hand some of the subtleties that arise are due to the abstraction
that we make of, for example, time. Thus in some respects models that include
time may be simpler, at least in a conceptual if not complexity sense.

12.1 Composition Results

We saw earlier how using a bi-simulation formulation of non-interference leads to
a very simple and elegant proof of a composition result. It seems likely that using
such a bi-simulation formulation of the generalised forms of non-interference
could similarly lead to simple proofs of compositionality, or alternatively, where
compositionality fails, shed light on exactly why it fails. Indeed it seems likely
that one could give a useful characterisation of the class of equivalence relations,
i.e policies, that give rise to compositionality.

12.2 Links to Cryptographic Analysis Techniques

To date the cryptographic definitions of secrecy and the formal definitions that
we have presented have been developed entirely independently. This is particu-
larly clear in the area of security protocol analysis in which we understand very
well how to analyse the strength of the cryptographic algorithms and primitives
on the one hand and the protocols on the other. The latter tends however to ab-
stract away from the details of the cryptographic primitives and it is still poorly
understood how to link the results of the two styles of analysis. As a result it is
possible for subtle interactions between the crypto primitives and the protocol
design to slip through analysis. It is quite possible to have a protocol that is
perfectly secure inplemented with algorithms that in themselves are secure and
yet the whole is seriously flawed. An example of this can be found in [12].

Ideally we would like to be able to tie together the two styles of analysis in
a way that remains tractable. An attempt to do this is Lincoln et al [47] but the
resulting framework is very elaborate and it is unclear that anything but rather
simple examples can be handled. [16] applies the idea of non-interference to the
analysis of cryptographic protocols.

Typically the cryptographic definitions and proofs involve reduction argu-
ments and in some cases testing style definitions. The spy is allowed to submit
an arbitrary number of plaintexts of his choice to an encryption device and to
observe the resulting ciphertexts. His choices can be adaptive: they can depend
on the outcomes of previous experiments. He then finally submits a pair of dis-
tinct plaintexts and gets the resulting ciphertexts back in an arbitrary order. If
he is able to guess which ciphertext corresponds to which plaintext with a sig-
nificantly greater than 0.5 probability the device is deemed insecure, otherwise

Mathematical Models of Computer Security 55

it is deemed secure. The details of the definition of significantly greater than 0.5
is rather technical and need not concern us here. See for, example, [30,3].

The testing style definitions of non-interference that we have presented above
may provide a point of contact bewteen the cryptographic and formal methods
approaches. This is a topic for future research. One can think of non-deducibility
on strategies in terms of the definition of resistance against adaptive chosen plain-
text attack: Low is allowed to repeatedly input High behaviours to the system
and observe the resulting behaviours through his interface. If eventually he can
glean enough insight into the behaviour of the system to be able to make better
than evens guesses as to which of a pair of High behaviours has occurred then
the system is deemed to be flawed. The analogy is rather subtle and there are
some interesting and illuminating differences.

12.3 Subliminal Channels and Information Hiding

Another topic that may be worth investigating using the techniques presented in
these lectures is that of subliminal channels and information hiding. An attempt
to formally define such channels is given in Desmedt [14]. It would be interesting
to see if similar formalisation might be possible using one of the generalised
forms of non-interference described here. The idea behind information hiding is
to conceal the existence of information in a message or in data. This involves
trying to make messages with different hidden information look indistinguishable
to an observer lacking some appropriate key. It is clear that this has a similar feel
to some of the properties and policies that we have been trying to capture: that
behaviours in a given equivalence class be indistinguishable to certain observers.

12.4 Automated Support

Besides the theoretical problems that remain there is still the question of de-
veloping suitable tools and techniques to make the verification of significant ap-
plications feasible and ideally routine. Significant strides have been made with
the usability of theorem provers but they still require specialist expertise to use.
Similarly major strides have been made in the application of model-checking to
security, see [78]. Model-checking holds out more promise as far as the degree
of automation typically achievable but here too highly specialised expertise is
still required to keep the state spaces of the model down to managable sizes.
Important advances are being made in this area using data independence, for
example Lazic et al [44], combining data independence and induction techniques,
Broadfoot [6], and using predicate abstraction, Saidi [80].

12.5 Links to Other Process Algebras

We have seen that CSP is highly effective at capturing many of the properties
of concern but also that we have found ourselves hitting the limits of the frame-
work and having to introduce constructs usually regarded as outside conventional

56 Peter Y. A. Ryan

CSP. CCS has also been applied with great effect to information security, see
the chapter by Focardi and Gorrieri in this volume. It seems likely that no sin-
gle, existing process algebra will provide us with all the machinery we need for
information security applications. For example, besides the problems of distin-
guishing flavours of non-determinism, we need to be able to address mobility.
Mobility and dynamic networking is an increasingly pervasive aspect of modern
systems and the research community needs to get to grips with it. A number
of process algebras have been proposed to address issues of mobility, location
etc. These include the pi-calculus [64], the ambient calculus [8]. The chapter by
Andy Gordon in this volume provides more on this topic. We need to see what
features of these we can adapt or incorporate.

Asynchronous algebras may also prove fruitful to investigate. The asyn-
chronous model of communication is similar to our notion of non-refusable
events. We no longer assume a hand-shaking model of communication in which
both sides synchronise on an action. Actions are launched into the ether and
their reception is not guaranteed. This is in many respects a highly appropriate
model for security applications in a distributed environment.

12.6 Static and Typing Analysis

Another rather different approach to defining secrecy is represented by the static
analysis and typing analysis techniques of Volpano [91] and others, for exam-
ple [35]. Here non-interference properties are cast in terms of static or typing
conditions on a programming language or process algebra.

13 Conclusions

In these lectures I have sought to give the reader an overview of the evolution
of mathematical formulations and frameworks for a number of security require-
ments and policies. We have concentrated on the notion of secrecy or confiden-
tiality and, in particular, variants of the idea of non-interference as a way to
formally characterise the absence of information flows.

The central thesis of these lectures is that characterising non-interference
reduces ultimately to characterising the equivalence or indistinguishability of
processes. Several corollaries flow from this observation:

Establishing how to characterise the equivalence of processes is itself a fun-
demental and delicate question. Indeed the whole question of what we mean by
a process is intimately related to what processes should be regarded as equal.
We should not therefore be too surprised that the problem of what formulation
of non-interference is correct has remained controversial in the information se-
curity community for more than 20 years. Indeed it seems likely that there is no
single, Platonic formulation of secrecy. There are no Maxwell’s field equations
for secrecy, as it were.

Which form of process equivalence is appropriate seems to depend on what
model of computation we adopt and what observations and experiments we deem

Mathematical Models of Computer Security 57

the environment capable of performing on the system. In some cases it will even
depend on what computational capabilites we assume of the environment. To
some extent this is just the standard problem facing any exercise in mathematical
modelling: any model will necessarily be an abstraction of reality. As far as
possible we seek to make our models faithful, at least as far as the properties
of interest are concerned. Usually in the interests of tractability, we are often
forced to make sweeping assumptions and approximations.

On the more positive side, thinking in process algebraic terms and in terms
of process equivalence provides many insights and ready-made results. Process
algebras deal carefully with questions of non-determinism, process equivalence,
composition and so on. We have seen that the idea of unwinding is closely anal-
ogous to that of bi-simulation and that many of the historical formulations of
non-interference can be cast as flavours of testing equivalence.

We have seen that a process algebraic framework provides an excellent basis
from which to explore various generalisations of the original, rather binary con-
cept of non-interference. It also provides an effective framework for reasoning
about compositionality.

It should also be acknowledged that we have found ourselves straining the
machinery of, for example, CSP to try to capture all the subtleties that informa-
tion security throws up. Indeed it would appear that no existing process algebra
is entirely suited to capturing all the aspects of information security. We have
also seen that questions of causality seem not adequately addressed by existing
process algebras. This has its plus side: the fact that we are testing the limits
of existing theory when trying to apply it to security problems provides new
challenges for the theory and stimulates further research.

Significant advances have been made in recent years in the specification and
verification of security requirements, protocols, etc,, [78]. I hope at least to have
conveyed the point that information security raises some fascinating and funda-
mental challenges both at the theoretical level and at the practical level of tools
and techniques for verification.

The concept of non-interference has been a major preoccupation of the infor-
mation security community for more than 20 years. We have discussed at length
the problems in obtaining a satisfactory definition. Besides this there remains the
question of what purpose, if any, non-interference actually serves in the speci-
fication and development of secure systems. It has been pointed out that no
real security policy ever mentions the notion explicitly and in any case it is, in
practice, impossible to realise in any real system: contention for resources means
that it can never be fully attained in practice. Add to these concerns the point
that non-interference is such an abstract notion that it is generally extremely
difficult to map it down to the implementation level. All this might suggest that
non-interference is little more than a rather elegant, theoretical debating point.

On the other hand, information security policies are concerned with what
information flows are allowed and which are illegal. Thus, information-flows and
their absence are central to such policies. It would seem, therefore, that some-
thing akin to non-interference, characterising the absence of information flow,

58 Peter Y. A. Ryan

must be a fundamental element of any such policy. If we cannot get the speci-
fication and verification of the absence of certain information flows right, then
we really do not understand the foundations of our subject.

It should also be remarked that we are starting to see a number of applica-
tions of non-interference-like concepts for a far wider class of applications and
requirements. Maybe the concept will actually prove to be more useful beyond
the realm of information security, in which it was conceived. The proof of the
usefulness of the concept will only really be established when it has found an
effective role in the specification and verification of real applications.

14 Acknowledgements

The author would like to thank the following people who have contributed
to the ideas described here, commented on drafts and with whom I have had
many enjoyable and fruitful discussions: Sven Dietrich, Simon Foley, Paul Gar-
diner, Michael Goldsmith, Roberto Gorrieri, Joshua Guttman, Gavin Lowe, John
McHugh, John McLean, Cathy Meadows, Sylvan Pinsky, Bill Roscoe, Pierangela
Samarati. A particular thanks to goes Steve Schneider, with whom many of these
ideas were developed. A special thanks also goes to Jeremy Jacob, who was in-
strumental in stirring my interest in applying CSP to the problems of information
assurance.

Thanks also to MSR in Cambridge, UMBC Maryland and NR Oslo for hos-
pitality during the preparation of parts of this material. Finally a thanks goes to
the DERA Strategic Research Programme for support during the development
of many of the ideas presented here.

References

1. Abadi, M. and Gordon, A.: A calculus for Cryptographic Protocols: the Spi Cal-
culus, Information and Computation (1999)

2. Bell, D. E. and LaPadula, L. J.: Secure Computer System: Unified Exposition and
Multics Interpretation, Tech report ESD-TR-75-306, Mitre Corp, Bedford, Ma.
(1976) 7

3. Bellare, M. and Rogaway, P.: Entity Authentication and key Distribution, Ad-
vances in Cryptography- Proceedings of Crypto (1993) 55

4. Biba, K. J.: Integrity Considerations for Secure Computer Systems, US Airforce
Electronic Systems Division (1977) 10

5. Brewer, D. F. C., Nash, M. J.: The Chinese Wall security policy, in Proceedings of
the IEEE Symposium on Security and Privacy, (1989) 206-214 9

6. Broadfoot, P. et al: Automating Data Independence, European Symposium on
Research in Computer Security, LNCS vol 1895, Springer (2000) 55

7. Brookes, S. D. and Roscoe, A. W.: An Improved Failures Model for Communi-
cating Sequential Processes Springer Verlag, Proceedings NSF-SERC Seminar on
Concurrency (1985) 17

8. Cardelli, L.: Mobility and Security, Lecture Notes for the Marktoberdorf Summer
School (1999) 56

Mathematical Models of Computer Security 59

9. Clark, D. R. and Wilson, D. R.: A Comparison of commercial and military com-
puter security policies. In Proceedings of the IEEE Symposium on Security and
Privacy, (1987) 184-194 9

10. Cleaveland, R. and Hennessy, M.: Testing equivalence as a bisimulation equiva-
lence. Formal Aspects of Computing, Volume 5, (1993) 1-20 44

11. Cohen, E.: Information Transmission in computational Systems. Sixth ACM Symp.
on Operating Systems Principles, November (1977) 133-139 12

12. Coppersmith, D. et al.: Low-exponent RSA with related messages. In Advances
in Cryptology - EUROCRYPT ’96 (Lecture Notes in Computer Science 1070),
Springer-Verlag, (1996) 1-9 54

13. Davies, J., Schneider S. A.: A Brief History of Timed CSP, Theoretical Computer
Science, 138, (1995) 17

14. Desmedt, Y. and Yung, M.: Minimal cryptosystems and defining subliminal-
freeness. In Proceedings 1994 IEEE International Symposium on Information The-
ory, p. 347, Trondheim, Norway, June 27-July 1, (1994) 55

15. US Department of Defense: DOD Trusted Computer Security System Evaluation
Criteria (The Orange Book), DOD 5200.28-STD, (1985) 7

16. Durante, A. et al: A Compiler for Analysing Cryptographic Protocols using Non-
Interference, ACM Trans. on Soft.Eng. and Method, 9(4) (2000) 1-9 54

17. http://www.formal.demon.co.uk/ 36
18. Feiertag, R. J.: A technique for Proving Specifications are Multi-level Secure Tech-

nical report CSL109, CSL, SRI International (1980) 12
19. Focardi, R. and Gorrieri, R.: A Classification of Security Properties, JCS, 3(1):

(1995) 5-33 34, 46
20. Focardi, R, Ghelli, A. and Gorrieri, R.: Using noninterference for the analysis

of security protocols, DIMACS workshop on Design and Formal Verification of
Security protocols (1997)

21. Focardi, R., Gorrieri, R.: The Compositional Security Checker: A Tool for the
Verification of Information Flow Security Properties. IEEE Trans. on Soft. Eng.,
23(9): (1997) 550-571 16

22. Foley, S. N.: A Taxonomy for Information Flow Policies and Models, in Proceedings
of IEEE Symposium on Security and Privacy, IEEE Press (1991) 9

23. Foley, S. N.: The Specification and Implementation of Commercial Security Re-
quirements including Dynamic Segregation of Duties, 4th ACM Conference on
Computer and Communications Security, ACM Press, (1997) 10

24. Gardiner, P.: Algebraic Proofs of Consistency and Completeness. Theoretic Com-
puter Science, (1995) 150-161 34

25. Gardiner, P.: Power simulation and its relation to traces and failures refinement,
ENTCS, vol 32, URL: http://www.elsevier.nl/locate/entcs/volume32.html

35
26. Goguen, J. A. and Meseguer, J.: Security policies and security models, IEEE Sym-

posium on Security and Privacy, (1982) 12
27. Goguen, J. and Meseguer, J: Inference Control and Unwinding, Proceedings of the

IEEE Symposium on Research in Security and Privacy (1984) 12, 30
28. Goldsmith, M. H. and Roscoe, A. W.: What Is Intransitive Noninterference? Pro-

ceedings of the Computer Security Foundations Workshop, IEEE Press(1999) 50
29. Gollmann, D.: Computer Security, Wiley (2000) 7
30. Guttman, J. et al: The Faithfulness of Abstract Encryption, to appear 55
31. Haigh, J. T.: A Comparison of Formal Security Models, Proc 7th National Com-

puter Security Conference, Gaithersburg, September (1984) 88-119 16

60 Peter Y. A. Ryan

32. Harrison, M. A. et al: Protection in operating systems. Communications of the
ACM, 19(8) , August (1976) 461-471 9

33. He, J. and Hoare, C. A. R.: Unified Theories of programming. Prentice Hall Inter-
national, (1998) 38

34. Hennessy, M.: Algebraic Theory of Processes, MIT Press (1989)
35. Hennessy, M.: The security pi-calculus and non-interference, Computer Science

Technical Report 2000:05, School of Cognitive and Computing Sciences, University
of Sussex. 56

36. Hoare, C. A. R.: Communicating Sequential Processes, Prentice Hall (1985) 17
37. Jacob, J. L.: Security Specifications, Proceedings of the IEEE Symposium on Re-

search in Security and Privacy (1988) 29, 42
38. Jacob, J. L.: Basic Theorems about Security Journal of Computer Security, Vol 1

Number 4, (1992) 385-411 42
39. Johnson, D. and Thayer, F.: Security and the Composition of Machines, In Pro-

ceedings of the Computer Security Foundations Workshop, IEEE Press, (1988)
16

40. Kang, M. H. et al: Design and Assurance Strategy for the NRL Pump, Computer,
Vol. 31, No. 4, April (1998) 56-64 10

41. Kemmerer, D.: Verification Assessment Study Final Report NCSC report (1986)
11

42. Lakatos, I.: Proof and Refutations: The logic of mathematical discovery. Cambridge
University Press, (1977) 5

43. Lampson B.: Protection, ACM Operating Systems Reviews, 8, (1974) 6
44. Lazic, R. and Nowak, D.: A Unifying Approach to Data-independence, In Pro-

ceedings of the 11th International Conference on Concurrency Theory (CONCUR
2000), Lecture Notes in Computer Science. Springer-Verlag, August (2000) 55

45. Lee, S. and Zakinthinos, A.: A General Theory of Security Properties, Proceedings
of the IEEE Symposium on Research in Security and Privacy (1997) 16

46. Lee, T. M. P.: Using Mandatory Integrity to Enforce ‘Commerical’ Security, Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy, (1988)
140-144 10

47. Lincoln, P. et al: Probabilistic polynomial-time equivalence and security analysis,
Proceedings of FM’99 (1999) 54

48. Lowe, G.: Probabilities and Priorities in Timed CSP, D.Phil. thesis Oxford Uni-
versity (1993) 46

49. Lowe, G.: Defining Information Flow University of Leicester tech report (1999)
50. MacKenzie, D.: Computers and the Sociology of Mathematical Proof. Prepared for

Northern Formal Methods Workshop, Ilkley, September (1998) 5
51. Mantel, H.: Unwinding Possibilistic Security Properties. In Proceedings of ES-

ORICS (2000) 53
52. McCullough, D.: Specifications for Multi-level Security and a Hook-up Property,

Proceedings of the IEEE Symposium on Research in Security and Privacy (1987)
16

53. McCullough, D.: Noninterference and the Composition of Security Properties Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy (1988) 16

54. McHugh, J.: Covert Channel Analysis. A chapter in the Handbook for the Computer
Security Certification of Trusted Systems, (An ongoing series published by the Cen-
ter for High Assurance Computing Systems, Naval research Laboratory, 4555 Over-
look Ave, SW, Washington, DC 20375,) November 1994 – Revised December 1995.
Available at http://chacs.nrl.navy.mil/publications/handbook/index.html

11

Mathematical Models of Computer Security 61

55. McHugh, J.: A Formal Definition for Information Flow in the Gypsy Expression
Language. In Proceedings of The Computer Security Foundations Workshop, Mitre
Corporation, Bedford, MA (1988) 147-165 11

56. McIver, A. et al: Refinement-oriented probability for CSP, Formal Aspects of Com-
puting 8(9) (1996)

57. McLean, J.: Security Models Encyclopedia of Software Engineering (ed. John
Marciniak) Wiley & Sons, Inc., (1994) 2

58. McLean, J.: A Comment on the ’Basic Security Theorem’ of Bell and LaPadula,
Information Processing Letters, vol. 20, no. 2, Feb. (1985) 11

59. McLean, J.: A General Theory of Composition for Trace Sets Closed Under Selec-
tive Interleaving Functions, Proceedings of 1994 IEEE Symposium on Research in
Security and Privacy, IEEE Press, (1994) 16, 29

60. Menezes, A. J. et al: Handbook of Applied Cryptography. CRC Press (1996)
61. Milner, R.: A Calculus of Communicating Systems. Springer, LNCS 92, (1980) 17
62. Milner, R.: Communication and Concurrency, Prentice-Hall (1989)
63. Milner, R. et al: A calculus of Mobile Processes, I and II. Information and Com-

pution, 100: (1992) 1-77 17
64. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus, CUP (1999) 56
65. Moskowitz, I. and Costich, O.: A classical automata approach to noninterference

type problems Proceedings of the Computer Security Foundations Workshop V,
(1992) 11

66. O’Halloran, C.: A Calculus of Information Flow, Proceedings of ESORICS (1990)
16

67. Pfitzmann, B. et al: Crptographic security of reactive systems, ENTCS, 32 (2000)
68. Pinsky, S.: Absorbing covers and intransitive non-interference, IEEE Symposium

on Research in Security and Privacy (1995) 39
69. Pinsky, S. and Ziegler, E.: Noninterference Equations for Nondeterministic Sys-

tems, Proceedings of the Computer Security Foundations Workshop, (2001) 53
70. Reed, M. and Roscoe, A. W.: A Timed Model for Communicating Sequential Pro-

cesses. In proceedings of the 13th ICALP, LNCS 226, (1986) 17
71. Roscoe, A. W. et al: Non-interference through determinism, Proceedings of ES-

ORICS (1994) 40
72. Roscoe, A. W.: CSP and determinism in security modelling, in proceedings of the

IEEE Symposium on Security and Privacy, IEEE Computer Society Press, (1995)
27

73. Roscoe, A. W.: The theory and practice of concurrency, Prentice-Hall (1997) 17,
21, 25, 30, 50

74. Rushby, J.: Noninterference, Transitiivity and Channel-Control Security Policies,
SRI Tech Report (1992) 16, 50

75. Ryan, P. Y. A.: A CSP formulation of non-interference and unwinding, Presented
at CSFW 1990 and published in Cipher, Winter 1990/1991 26, 30, 31

76. Ryan, P. Y. A. and Sennett C. T. eds: Formal Methods in Systems Engineering
Springer Verlag (1993) 4

77. Ryan, P. Y. A. and Schneider, S. A.: Process Algebra and Non-interference, JCS
Vol 9, nos 1,2, (2001) 75-103 45

78. P. Y. A. Ryan et al: Modelling and Analysis of Security Protocols, Pearson (2001)
51, 55, 57

79. Sabelfeld, A. and Sands, D.: Probabilistic Non-interference for Multi-threaded Pro-
grams. In Proceedings of the IEEE Computer Security Foundations Workshop,
Cambridge, July 3-5 2000, IEEE Computer Society, (2000) 200-215 53

62 Peter Y. A. Ryan

80. Saidi, H.: Model Checking Guided Abstraction and Analysis, Proc of the 7th In-
ternational Static Analysis Symposium (2000) 55

81. Sandhu, R. S.: Lattice Based Access control Models, IEEE Computer, volume 26,
number 11, November (1993) 9-19 9

82. Schneider, S. A.: Concurrent and Real time systems: the CSP approach, Wiley
(1999) 17, 21

83. Schneider, S. A.: Testing and abstraction, Royal Holloway, University of London
Tech Report tr-99-02 (1999) 46

84. Schneider, S. A.: May Testing, Non-interference and Compositionality, Royal Hol-
loway Tech report CSD-TR-00-02, January 2001. 40, 43, 44

85. Schneider, S. A. and Sidiropoulos, A.: CSP and anonymity, Proceedings of ES-
ORICS (2000) 52

86. Shockley, W. R.: Implementing the Clark Wilson Integrity Policy Using Current
Technology, in Proceedings of the National Security Conference, (1988) 29-36 10

87. Simpson, A. C.: Safety Through Security, DPhil thesis, Oxford University (1996)
50

88. Sutherland, D.: A model of information, 9th National Computer Security Confer-
ence (1986) 16, 44

89. Weber, D.: Specifications for Fault Tolerance. ORA report (1988) 19-3 50
90. Wittbold, J. T. and Johnson, D. M.: Information flow in nondeterministic systems,

Proceedings of the Symposium on Research on Security and Privacy (1990) 16,
45

91. Volpano, D and Smith G.: Probablilistic non-interference in a concurrent language.
Journal of Computer Security, 7(2, 3): November (1999) 231-253 56

	Mathematical Models of Computer Security
	Background
	Mathematical Models
	Formal Models and Methods
	A Brief History of Security Models
	The Bell and LaPadula Model
	The Simple Security Property
	The * Property

	The Harrison-Ruzzo-Ullman Model
	Chinese Walls
	The Clark Wilson Model
	The Biba Model
	Drawbacks of BLP

	Non-interference
	Goguen Meseguer
	Unwinding
	Non-interference Is Not a Trace Property
	Relationship to Bell LaPadula
	Generalisations to Non-deterministic Systems

	The Process Algebraic Approach
	Introduction to CSP and Process Algebra
	CSP Syntax
	Prefix
	Prefix Choice
	Communication
	External Choice
	Internal Choice
	Parallel Composition
	Interleave
	Hiding
	Renaming
	After

	Semantics
	Definition
	Refinement
	Some Useful Processes

	Labelled Transition Systems
	Acceptances and Ready Sets
	CSP Formulations of Non-interference

	Abstraction
	Unwinding the CSP Formulation
	Unwinding (Symmetric Version)
	Operational Semantics
	Strong Bi-simulation
	Weak Bi-simulation
	Unwinding and Bi-simulation
	Power Bi-simulation
	Loose Bi-simulation
	Power Bi-simulation for Non-interference
	Composability
	The Roscoe-Woodcock-Wulf Approach
	Definition.

	The Jacob Security Ordering
	Testing Equivalence
	May Testing Equivalence
	May Testing Non-interference
	Non-deducibility
	Non-deducibility on Strategies
	The Lowe Approach to Information Flow

	Generalisations
	Limitations of Non-interference
	Encrypted Channels
	Downgrading Statistical Information from a Sensitive Database
	File Editing
	Operating Systems
	Intransitive Non-interference
	Fault-Tolerance
	Intrusion-Tolerance
	Anonymity
	Dynamic Separation of Duty
	Dealing with Probability
	Dealing with Time

	Future Directions
	Composition Results
	Links to Cryptographic Analysis Techniques
	Subliminal Channels and Information Hiding
	Automated Support
	Links to Other Process Algebras
	Static and Typing Analysis

	Conclusions
	Acknowledgements

