
Recitation #1

18-649 Distributed Embedded Systems
Friday 4-Sep-2015

Note: Course slides shamelessly stolen from lecture
All course notes © Copyright 2006-2015, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Announcements and Administrative Stuff
 Project 1 draft posted

• Individual work, with the exception of the audit
• When the web box goes from gray to white it is officially released

 Groups will be formed next week after add/drop settles

 TA office hours
• Look for posting next week (Tuesday) with office hours

 Course announcements will be made mostly via blackboard
• You are responsible for these (check it once a day or so)
• Only critical notices sent by e-mail

 Recitations every Friday
• In this classroom 1:30-2:00 PM weekly
• After this week there will be team meetings; watch blackboard for details
• Most team meetings in this classroom 12:30-2:30 PM
• One team per TA will meet outside that range at a mutually agreeable time

3

What If You See A Really Great Idea?
 Each group shall do all their own development

• Its rare that there’s only one way to implement something
• You’ll definitely see some unique implementations this semester

 Copying any portion of another group’s work is cheating
• Even if you cite where you got it
• Accidental parallel invention is fine (yes, we can tell the difference)

 If you see an idea in someone’s presentation that would make your
elevator WAY better (e.g. a better dispatcher algorithm)
• Modify your own implementation and cite where you got the idea
• That is a perfectly reasonable thing to do
• Lines of code are not an “idea” – they are an implementation
• Do not look at anyone else’s elevator/project code. Ever.

 To be safe, the only inter-group idea exchange should be presentations
• Exchanging ideas WITHIN a group is encouraged at all times!

 If you’re not sure, then ask us! Do not assume

4

Weekly Progress & Individual Contribution
 Status reports due every week with your project submission

• Starts next week
 Tell us:

• How many hours you’ve spent this week (including class time)
– Be accurate, helps us tune the project load and keep your work to ~12 hrs / week

• Breakdown of what each team member contributed this week
• Any other project issues/comments

 Your hours report does not affect your grade; be honest!

 Starting with Project 2 there are individual contribution requirements
• At least some of lab is distributed per person
• Ensures everyone touches the basics

– Do NOT cover up someone slacking – if they didn’t do the work, don’t give them
credit

5

Some Elevator Lingo
 Elevator Car is the compartment passengers ride in

 Drive is the motor that moves the car up and down in the shaft
• Drive speeds for our elevator are simply Stop, Slow, or Fast

 Hall Call buttons are the up/down buttons in the hallways at each floor

 Car Call buttons are the buttons inside the elevator

 Door Reversal sensors check if the doors are blocked by an object or
passenger
• “A door reversal occurs”

– An object or passenger was in the way when the door tried to close
– The door stops, reverses direction, and reopens

 Car is overweight if there are too many passengers in the car
• One or more passengers must get off for safe operation to continue

6

Project 1 - Part 1 - Intro to Writing Requirements
 Given a set of initial conditions, follow the process to develop a set of

requirements for the door controller

 Process:
1. Generate a scenario
2. Write requirements using precise words
3. Write requirements using consistent terms
4. Number requirements
5. Testable
6. Traceability for high level requirements
7. Process audit

 This process will give you a taste of how to generate requirements

7

Process
1. Generate a scenario for the initial conditions

• A scenario is a short story that corresponds to the initial conditions
• Pretend you’re an omniscient observer and tell us what you observe happening

– You would notice the elevator arrives with doors shut, then the doors open
– You don’t need to include events that are not observable to users

» Example: Events that don’t happen like door reversals not occurring
– Suppose the car is overweight when a passenger gets on, what would you observe?

2. Generate 2 - 5 requirements for the door controller based on the
scenario
• Use SHALL and SHOULD as per lecture

3. Revise the requirements in step 2 to use consistent terms
• Use the terms defined in the interface section with appropriate notation
• If you don’t understand the interface, come to office hours and ask
• Don’t forget to consider messages like mDriveSpeed and mAtFloor

8

Process (Cont)
 Number the requirements

• Very useful for traceability, audit, and communication about design documents

 Write a test case for each requirement
• Describe test inputs and described expected outputs that confirm the

requirement is met

 Traceability to high level requirements
• How does each of your requirements support and/or not violate the high level

requirements?
• Check ALL high level requirements for EACH of your requirements

 If you get lost:
• Look at the Pepsi Machine example on the course web site
• Come to office hours and ask
• Take your best shot; this is to get you ready for lectures with more detail

9

Audit
 Once finished steps 1-6, exchange with another classmate to audit

• You are responsible for finding another classmate (perhaps in your group)
• The other classmate must also be finished
• This is the only non-independent part
• Once you get feedback, fix your mistakes (you’ll get a better grade)

– Grade on following process, NOT on perfect pre-review work product

 Audit Questions
• Step 1: Is there a scenario?
• Step 2: Do the requirements use only shall and should, or the appropriate words

from the lecture?
• Step 3: Do the requirements use the terms given in the Interface section to

describe sensors, actuators and controllers on the elevator?
• Step 4: Are the requirements numbered?
• Step 5: Is there a test given for each of the requirements?
• Step 6: Traceability - Does *each* requirement either support or not contradict

each of the high-level requirements?

10

Project 1 - Part 2 - Play with the Simulator
 Download and exercise the elevator

• Follow the directions on the web

 Requires you to make a small correction to testlight.java
• Mostly to ensure you can figure out how to edit/compile/run

 Run an acceptance test and see the passenger is delivered

11

Staff E-Mail Usage
 E-mail only for administrative issues and bugs in infrastructure

(ece649-staff@lists.andrew.cmu.edu)
• Inform staff immediately about administrative issues via e-mail

– Example: I can’t access my AFS submission directory or We have group problems
• Send all e-mail to staff, not an individual TA

– If one of us is offline, someone else can respond more quickly

 E-mail staff about errors in assignments or the simulator
• We endeavor to provide a bug-free simulator, but there may be occasional bugs
• Read the admin.html page and find the checklist to use before reporting bugs
• Reasonable bug reports receive high priority; don’t skip the checklist
• Yes, the checklist is long. You’ll find almost all bugs are in your code.

 Don’t expect technical support over e-mail
• Includes bugs in your code, assignment clarifications, etc.
• We do not support tools. At all. Don’t ask. Pick tools you are comfortable with.

 Feel free to ask for clarifications during class, recitation, or office hours
• Ask about individual/group project guidance during office hours

12

From the Course Administrative Page
Please use this check-list before submitting an e-mail regarding the course project:

 Check blackboard to see if an answer has been posted.
 Re-read the assignment to make sure you are reading it correctly.
 Look at the grading checklist to see if it has relevant information.
 Look at the Pepsi machine example
 Find a reasonable way that doesn’t violate requirements
 If you simply don't understand, skip the e-mail and come to office hours.
 Look again at examples; OK to look at simulator code too
 Include the URL of the document and specifically tell us the defect.
 Please follow the bug report instructions in the Project FAQ. If we can’t

reproduce it, probably we can’t fix it.
 Wait 5 minutes before sending. Seriously. “Oops, found it" e-mails waste a

lot of everyone's time.
 Start your e-mail with "I've used the e-mail question checklist, and I think

the following is an issue:" or we might reply “did you use the checklist?”

13

Suggestions and Reminders
 Read the next-week project assignment before you show up for

recitation each week

 For project 1, read the interface carefully!
• This will help clarify what terms like “door reversal” or “hall call” mean
• If confused, look at the Pepsi machine and take your best guess

 Read Project FAQ directions for submissions directions!!!
• Has checklist to avoid making mistakes in hand-ins – use it!
• Before assignment is done, put a test file in the AFS submission directory
• Let us know early if you have submission issues

 Start early with assignments
 Start thinking about groups

 Dates: Team requests are due Wednesday evening by 5 PM
Lab Hand-ins are due Thursdays at 10 PM
Be ready for Friday TA meetings

14

Questions?

