13 Embedded Communication Protocols

Distributed Embedded Systems
Philip Koopman
October 12, 2015

Carnegie Mellon

© Copyright 2000-2015, Philip Koopman

Where Are We Now?

- ♦ Where we've been:
 - Design
 - · Distributed system intro
 - · Reviews & process
 - Testing
- Where we're going today:
 - Intro to embedded networking
 - If you want to be distributed, you need to have a network!
- ♦ Where we're going next:
 - CAN (a representative current network protocol)
 - · Scheduling
 - •

Preview

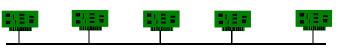
- "Serial Bus"
 - = "Embedded Network"
 - = "Multiplexed Wire" ~= "Muxing"
 - = "Bus"

♦ Getting Bits onto the wire

- · Physical interface
- Bit encoding

Classes of protocols

- General operation
- Tradeoffs (there is no one "best" protocol)
- · Wired vs. wireless



"High Speed Bus"

3

Linear Network Topology

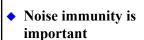
BUS

- Good fit to long skinny systems
 - elevators, assembly lines, etc...
- · Flexible many protocol options
- Break in the cable splits the bus
- May be a poor choice for fiber optics due to problems with splitting/merging
- Was prevalent for early desktop systems
- Is used for most embedded control networks

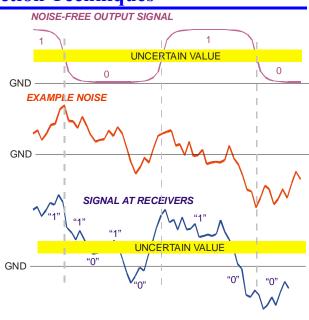
Star Network Topologies

Star

- · Can emulate bus functions
 - Easy to detect and isolate failures
 - Broken wire only affects one node
 - Good for fiber optics
 - Requires more wiring; common for current desktop systems
- Broken hub is catastrophic
- Gives a centralized location if needed
 - Can be good for isolating nodes that generate too much traffic

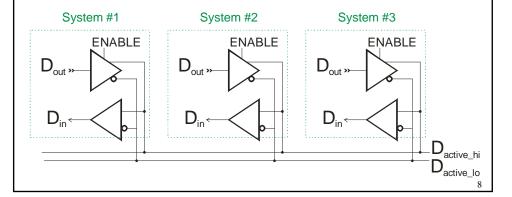

Star topologies increasing in popularity

- Bus topology has startup problems in some fault scenarios
- Safety critical control networks moving to dual redundant star (Two independent networks, each network having star topology)

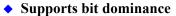

5

Hardware Connection Techniques

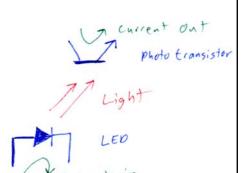
- Circuits need to assert "HI" and "LO" on a physical bus
 - Example: HI = 5 volts LO = 0 volts


- Isolate noise on any single node from carrying over to network
- Prevent noise on network from affecting nodes

Differential Drivers To Suppress Noise NOISE-FREE OUTPUT SIGNAL Send both Data and Inverse Data values on a 2-wire bus • Example: EXAMPILE NOISE **DATA** HI = 5 voltsLO = 0 volts GND Inverse DATA INVERSE BUS DATA HI = 0 volts LO = 5 volts Receiver subtracts two GND **BUS DATA** voltages - Eliminates common RECEIVED DIFFERENTIAL VALUE mode voltage bias Leaves any noise that affects lines differently GND

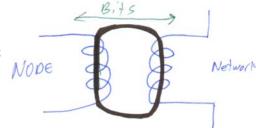

RS-485 Is A Common Multi-Master Bus

- ◆ Used in industrial control networks (e.g., Modbus; Profibus)
 - RS-422 differential drivers; high speed + good range (10 Mb/s @ 12 meters)
 - · Add terminators to reduce noise
 - Make sure that exactly one system has its output enabled at a time!
 - Often it is "master/slave" one system tells each other system when its turn comes



Optical Isolators For Voltage Spikes

- Big noise spikes can cause damage to connected nodes
 - Want isolation to help with very sharp, big spikes
- Optical isolators provide a physical "air gap"
 - LED illuminates when provided with current
 - Photo-transistor conducts when LED shines IR light on it
 - Two sets for each node one set for transmit; a second set for receive
- Provides excellent isolation
 - No physical connection just photons crossing a gap
 - LED saturates, preventing over-drive
 - Still subject to noise
 - Network must have its own power supply for receive LEDs



• If LED sticks "on" network is disrupted

What About Voltage Spikes & Stuck Nodes?

- "Stuck" nodes are a problem
 - If a node sticks at transmitting a "low" or "high", can disable entire network
- One common solution: current-mode transformer coupling
 - · AC component of bit edges crosses transformer
 - DC component of stuck nodes is ignored
 - Transformer's inductance protects against spikes
 - Current mode operation improves noise rejection
 - Commonly used in flight controls
- ♦ BUT, limitations
 - Can't do bit dominance
 - · Collision detection very difficult
 - Transformer "droop" requires frequent data edges
 - Signals must be DC balanced (equal "hi" and "lo" energy)

Encoding Styles

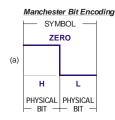
◆ RZ – Return to Zero encoding

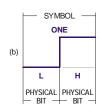
- Encoding ensures that signal returns to "zero" every so often
- · Forces edges every bit or two by simple encoding rules
 - Makes it easy to synchronize receivers to bit stream
 - Makes it easy to use transformer coupling

♦ NRZ – Non-Return to Zero encoding

- Attempts to improve efficiency by just sending bit values without guaranteed edges
- But, lack of edges makes it difficult to synchronize receivers
 - We'll discuss ways around that problem
 - And makes use with transformer coupling difficult

Notes:


- Both encodings are subject to bit flips, even with differential transmitters
- We're using "physical bits" to represent HI/LO values
 - Symbols ("data bits") might take one or more physical bits, depending on encoding

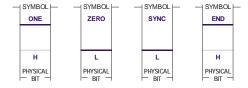

11

Basic Bit RZ Encoding - Manchester

Manchester Encoding

- Data encoded by transition from high-to-low or low-to-high
- Guaranteed transition in every bit but worst case bandwidth is 2 edges per bit
- · Errors require inverting adjacent pairs of physical bits

Manchester Encoding Example: 1101 0001



Non-Return to Zero (NRZ) Encoding (see 18-348)

Send a Zero as LO; send One as HI

- Worst case can have all zero or all one in a message no edges in data
- Simplest solution is to limit data length to perhaps 8 bits
 - SYNC and END are opposite values, guaranteeing two edges per message
 - This is the technique commonly used on computer serial ports / UARTs
- Bandwidth is one edge per bit
 - But no guarantee of frequent edges

Simple NRZ Bit Encoding

Simple NRZ Encoding Example: 1101 0001

END	SYNC	ONE	ONE	ZERO	ONE	ZERO	ZERO	ZERO	ONE	END	SYNC
PREVIOUS MESSAGE											SUBSEQUENT MESSAGE
	L	Н	Н	L	Н	L	L	L	Н	Н	

12

Generic Message

START	HEADER	PAYLOAD	ERROR DETECTION	END

Start symbol

• Designates start of a message and lets receiver sync to incoming bits

Header

- Global priority information (which message gets on bus first?)
- Routing information (source, destination)

Payload (Data)

• Application- or high-level-standard defined data fields (often only 1-8 bytes)

Error detection

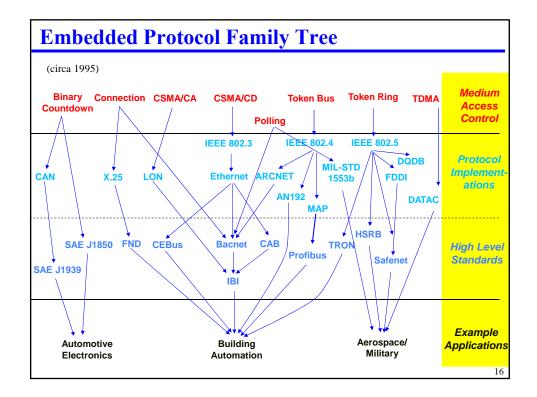
• Detects corrupted data (e.g., using a CRC)

End

· Designates end of message

Central Issue: Message Priority

Local priority


- Each node transmits its highest priority message when it gets a turn on the bus
- Or, it can implement some form of round-robin message transmission, etc.

Global priority

- Which node gets the next turn on the bus?
- Could be a function of round-robin selection of nodes
- Could be a function of the node's inherent priority
- Could be a function of the priority of the highest message on the node -- a "global message priority" scheme

Fundamental tension:

- Reducing latency for high-priority nodes/messages vs.
- Ensuring fairness/no starvation for low-priority nodes/messages

Coordination: Bus Master Approach

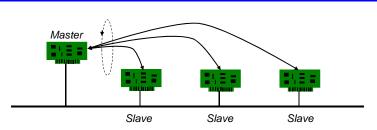
- ♦ Bus Master can <u>poll</u> for messages & wait for response
 - Problem: missing/slow slave
 - Master uses worst-case timeout waiting for response
 - If slave gets confused/is late, protocol fails
 - Problem: broken master

◆ Master can send a time tick – <u>TDMA</u>

- Other nodes select response time from that time tick
- Then becomes a form of time slice/time slot protocols (discussed later) Node #1

 Node #2

 Start Timers


 Tcycle

 Time Tir

 Message

 Message

Operation

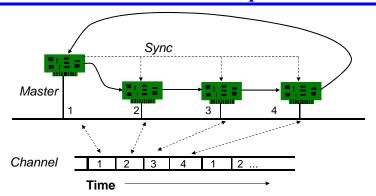
- Centrally assigned Master polls the other nodes (slaves)
- Non-master nodes transmit messages when they are polled
- Inter-slave communication through the master

Examples

• MIL-STD-1553B, 1773, Profibus, Bacnet, AN192

Polling Tradeoffs

Advantages


- Simple protocol to implement; historically very popular
- Bounded latency for real-time applications

Disadvantages

- · Single point of failure from centralized master
- · Polling consumes bandwidth
- Network size fixed during installation (not robust)
 - Or, master must discover nodes during reconfiguration
- · Prioritization is local to each node
 - But, can use centralized load balancing
 - Polling need not be in strict order; it could be, for example: 1, 2, 1, 3, 4, 1, 5, 1, 3, 1, 6, ...(repeats)

19

TDMA - Time Division Multiplexed Access

Operation

- · Master node sends out a frame sync to synchronize clocks
- Each node transmits during its unique time slot

Examples

• Satellite Networks, DATAC, TTP, static portion of FlexRay

TDMA Tradeoffs

Advantages

- Simple protocol to implement
- Deterministic response time
- No wasted time for Master polling messages

Disadvantages

- Single point of failure from the bus master
- Wasted bandwidth when some nodes are idle
- · Requires stable clocks
- Network size fixed during installation (not robust)
- Prioritization is local to each node
 - (can use centralized load balancing)

◆ Variation: Variable Length TDMA (~Implicit Token)

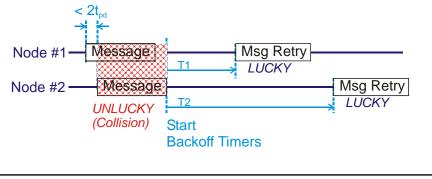
- Unused time slices are truncated to save time
- · More efficient use of bandwidth
- Used in FlexRay Dynamic Segment

2.1

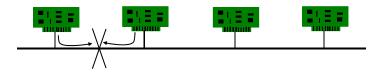
Coordination: Transmit and Hope (CSMA)

(CSMA = Carrier Sense Multiple Access)

- ♦ Send a message and hope it made it
 - Useful for satellites & systems with no collision detection
 - Vulnerable for entire time a message is transmitting
 - No direct way to know if message was delivered successfully


◆ Send a message and wait for a response saying you made it

- IMPLICIT collision detection
- · Response might not make it even if message makes it


Transmit And Collide (CSMA/CD)

- Transmit message; if you get lucky network transitions to "active"
 - If you get unlucky, you get a collision event
 - Vulnerability window is about 2 t_{nd}
 - (Two propagation delays along length of network)
- ♦ After collision, back off a certain time
 - · Amount of time to back off should vary with network load
 - · Repeated collisions result in increasing backoff times

CSMA/CD

♦ Carrier Sense Multiple Access / Collision Detection

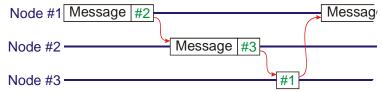
- Operation
 - A node waits for an idle channel before transmitting
 - Collisions can occur if two or more nodes transmit simultaneously
 - If a collision is detected, the nodes stop transmitting
 - Resolve contention using random backoff algorithm (2x longer interval each retry)
- Examples
 - Ethernet, IEEE 802.3, Bacnet, CAB, CEBus

CSMA/CD Tradeoffs

Advantages

- · Small latency for low traffic load
- · Network initialization/configuration is not required
- Node can enter or leave the network without any interruption
- · Supports many nodes
- Probabilistic global prioritization is possible
- · Extensive installed base and support

Disadvantages


- Designed for aperiodic traffic not ideal for synchronized control loops
- · Collision detection is an analog process which is not always practical
- · Unbounded individual message latency
- · Poor efficiency under heavy loads

• What about newer systems that promise "Real Time Ethernet"?

• Uses a deterministic point-to-point switch – no shared wire

Coordination: Explicit Tokens

- "Token" value says which node is transmitting and/or should transmit next
 - Token holder = OWNER; only the owner may transmit
 - Master/slave polling is a special form where token is passed by master and returned to master by slave
 - Problems: Lost token / Duplicated token(s) / Who starts?

Token passes to next node according to # field.

Token passed as node number or other similar value

- · May be tacked on to end of data-bearing message
- Can be either node # that has token or node # that gets token next
- Null messages with tokens must be passed to prevent network from going idle 26

Coordination: Implicit Tokens

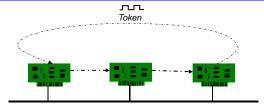
- ◆ Length of waiting period is used as a time-domain implicit "token"
 - · Owner of bus determined by what time it is instead of explicit token message
- ◆ Time slices -- waiting period is a whole message long
- ◆ Time slots -- waiting period is as short as possible ~ 2t_{nd}
 - CSMA/CA

 Node #1

 Node #2

 Node #3

 SLICE #1


 SLICE #3

 SLICE #3

 SLICE #3

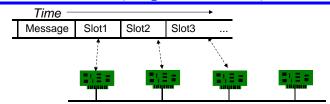
 SLICE #3

Token Bus

- Operation
 - A token signal is passed from a node to node on a bus (virtual ring)
 - Only the token holder has permission to access the media
- Examples
 - IEEE 802.4, Arcnet, AN192, MAP, Profibus

Token Bus Tradeoffs

Advantages


- · Bounded latency for real-time control applications
- High throughput during heavy traffic
- · On-the-fly reconfiguration

Disadvantages

- Token passing latencies under light traffic conditions
- · Prioritization local to each node
- · Lengthy reconfiguration process
- · Token initialization, loss, and duplication recovery overhead
- · Collisions may occur during initialization and reconfiguration
- Complex protocol (especially at MAC sublayer)
- ◆ Token bus was popular for a while, but is used less often now

29

CSMA/CA (Implicit Token)

Operation

- IDLE: Active station transmits immediately
- After each message, reserve S slots for N nodes IMPORTANT: Slots are normally idle they are time intervals, not signals!
- BUSY: Transmit during your assigned slot
 - If S=N, no collisions known as Reservation CSMA
 - If S<N, statistical collision avoidance

Example

· Echelon LONTalk

CSMA/CA Slot Strategies Time Rotating Slot Message: Tx3 PSlot Slot1 Slot1 Slot2 PSlot Slot3 Slot1 Slot2 Priority Slot Pslot Pslot

One or more Priority slots (Pslots)

- Always in the same order after the message
- Used for global prioritization high priority messages
- · Each slot belongs to exactly one transmitter with a priority message
- Could be multiple: Pslot0, Pslot1, Pslot2 assigned per message type

Multiple Rotating slots

- Rotating order based on last message sender enables fairness
- Generally one per transmitter, shared among all non-priority messages

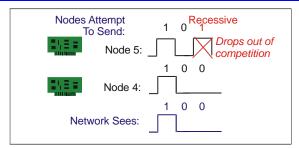
Each slot is a few bit times – long enough for signal propagation

- Slots are time intervals and NOT SIGNALS
 - Slot is "no signal" unless a message starts transmitting in it
- When transmitter has a message to send, it starts during its slot time

3

CSMA/CA Tradeoffs

Advantages


- Small latency for light traffic
- · Good throughput under heavy traffic
- Global prioritization through fixed slots prioritized implicit token passes
- Bounded latency through rotating slots non-prioritized implicit token passes

Disadvantages

- · Restarting time slots from an idle bus can be difficult
 - Send dummy messages to avoid idle state
- · Collisions can occur
- Node complexity in mapping Sth slot to Nth node

You'll see more of this in the FlexRay lecture

Binary Countdown (Bit Dominance)

Operation

- Each node is assigned a unique identification number
- All nodes wishing to transmit compete for the channel by transmitting a binary signal based on their identification value
- A node drops out the competition if it detects a dominant state while transmitting a passive state
- Thus, the node with the *LOWEST* identification value wins

Examples

CAN, SAE J1850

33

Binary Countdown Tradeoffs

Advantages

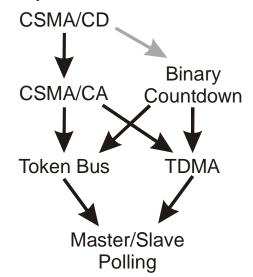
- High throughput under light loads
- · Local and global prioritization possible
- Arbitration is part of the message low overhead

Disadvantages

- Propagation delay limits bus length $(2 t_{pd} \text{ bit length})$
- Unfair access node with a high priority can "hog" the network
- Poor latency for low priority nodes

♦ You'll see more on binary countdown in the CAN lecture

· Don't worry about exactly how this works until that lecture


EMULATION

- You can use one protocol to emulate another
- **♦** Use Ethernet (CSMA/CD) to emulate:
 - Master/slave polling slaves only respond when polled
 - Token bus use explicit token messages; application only transmits when it has the token
 - TDMA slaves measure time from message from master and transmit appropriately
- But, there is no free lunch
 - "Slot" time involves round-trip through OS longer than a couple bit times
 - "Slice" time must account for CPU/OS jitter, not just HW oscillator drift

35

Emulation Capability Lattice

- Protocols higher in picture can emulate protocols lower in picture
 - Example: you can pass a token around on a CAN network in software

Wireless Networks

Strength is installation flexibility

- No wiring harnesses to install (except for power)
- Can make/break networks without physical connections
- Can have overlapping/interacting/hierarchical networks (e.g., Bluetooth)

♦ Weakness is potential unreliability for critical operations

- · Geometry may introduce standing waves/fading
- Conflicts with other wireless systems (EMC = ElectroMagnetic Compatibility)
- Interference from RF emitters (EMI = ElectroMagnetic Interference)
- · Limited spectrum space
- Where does a wireless node get its power who changes the batteries?
- In general, unsuitable for use in critical applications that aren't fail-safe!

Also, cost

- Bluetooth is getting cheap enough to be in consumer electronics
- But has to be able to beat a piece of copper and a plastic connector
- · And that cost has to include power supply strategy

37

Key Overall Tradeoff Issues

♦ Protocols are optimized for different operating scenarios

- Collision-based
 - High number of possible transmitters
 - Low number of active transmitters
 - Arbitration overhead proportional to activity
 - In worst case (every node active) network can effectively crash

• Token-based, Time-multiplexed & Polled

- Moderate number of *total* transmitters
- Handles worst case activity without a problem
- Arbitration overhead relatively constant

Binary countdown

- Moderately large number of message types
- Arbitration overhead constant
- Global prioritization (but no mechanism for fairness)

Review

General embedded network issues

· Dynamic tension among efficiency, latency, determinism

Classes of protocols

- Time-multiplexed (polled/time-triggered)
- Token (implicit/explicit)
- · Binary countdown
- You should know all protocol type names and general operating principles

General tradeoff overview

- Global vs. local priority (and, priority vs. fairness)
 - Think about it what does each protocol do about global prioritization?
- Efficiency vs. dynamic flexibility
 - Think about it what does each protocol do to minimize overhead if messages aren't uniformly distributed?
- · Wired vs. wireless

39

Supplemental Material

Protocol Tradeoffs Revisited

Bit encoding

- · Self-clocking schemes are simpler, but require more bandwidth
- Bit-stuffed schemes require extra bits for stuffing, result in nondeterministic message lengths

Collision-based protocols

- An unbounded number of collisions results in unbounded worst-case latency
 - Idea: use collision to signal start of a reservation CSMA protocol works well
- In general not constrained by bit speed/network length ratio (but IS constrained by message speed/network length ratio)

♦ Bit dominance/binary countdown protocols

- · Excellent efficiency
 - But must have compatible network medium
- · Constrained by network bit speed/network length ratio

41

Protocol Tradeoffs Revisited – 2

◆ Implicit Token / Time-based protocols

- · Longer timed intervals potentially waste bandwidth
 - Unused slices on TDMA
- Any timed interval requires an accurate oscillator at each node
 - Worst for TDMA
 - Relevant to CSMA/CA as well
- Constrained by bit speed/network length ratio

Explicit Token-based/handshake protocols

- · Consumes bandwidth for token passing
 - Master/Slave polling the worst individual polling message
 - Token bus OK under heavy load if token pass combined with transmission
 - Token ring is better, but requires special topology
- Does not require precise oscillators, especially if used with self-clocking bits
- · Not specifically constrained by bit speed/network length ratio
 - But bus topologies are inefficient if network is longer than a whole message time

Protocol Tradeoffs Revisited – 3

Local priority

· Flexible, straightforward to implement

♦ Global priority – requires consensus of nodes to determine winner

- Bit dominance does this "for free"
- Implicit tokens approximate this by very fast (implicit) token pass to all nodes
- Token ring approximates this by very fast (explicit) token pass to all nodes
- Explicit token/handshake protocols in general have a difficult time doing this

♦ Global fairness – requires ability to send non-prioritized messages

- Bit dominance must use emulation of another protocol to do this (e.g., polling)
- Implicit tokens do this by using rotating slots
- Explicit tokens do this as part of token passing no additional charge

43

Alternative Networks

Optical Fiber

- · Excellent noise immunity
- · Very high bandwidth
- Expensive to connect/splice
- Expensive emitter/receiver
- · Needs separate power wiring

◆ Free-space optical (e.g., infrared)

- · Potential alternative for small enclosed systems
- No wires (except for power)
- Good for benign confined environments (e.g., TV remotes)
- · Relatively low bandwidth
- Transceiver costs still a bit high (but being driven by palmtop PC market)
- Still need to get power to nodes