All the really important mistakes are made the first day.

– Eberhardt Rechtin,
System Architecting
Anti-Patterns:
- Skipping from requirements to code
- No picture that shows how all the components fit together
- “Wedding cake” layer diagram that omits interface information

Elements of High Level Design
- Architecture: boxes, arrows, interfaces
 - Arrows/interfaces show communication paths between components
 - Recursive: one designer’s system is another designer’s component
- High Level Design (HLD) = architecture (nouns) + requirements (verbs)
 - Sequence Diagrams (SDs) show interactions
Software architecture shows the big picture
- Boxes: software modules/objects
- Arrows: interfaces
- Box and arrow semantics well-defined
 - Meaning of box.arrow depends on goal
- Components all on a single page
 - Nesting of diagrams is OK

Many different architecture diagrams are possible, such as:
- Software architecture (components and data flow types)
- Hardware architecture with software allocation
- Controls architecture showing hierarchical control
- Call graph showing run-time hierarchy
Sequence Diagram as HLD Notation

- SD construction:
 - Each object has a time column extending downward
 - Arcs are interactions between objects

- Each SD shows a scenario
 - Top ovals are preconditions
 - Middle ovals are side effects
 - Bottom ovals are postconditions

- SD is a partial behavioral description for objects
 - Generally, each object participates in multiple SDs; each SD only has some objects
 - The set of all SDs forms the HLD for all objects in the system
Example Sequence Diagram

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Sequence Diagram 3A:

Customer CoinReturn CoinOut CoinControl VendControl

1a. Press Coin Return

1b. mCoinReturn(true)
1c. mCoinReturn(false)

2a. CoinOut(true)
2b. CoinOut(false)

2d. CoinOut(true)
2e. CoinOut(false)

PRE: CoinCount==2

2c. mCoinCount(1)

2f. mCoinCount(0)

POST: CoinCount==0

18649 Spring 2010
Group 7
Justin Ray/justinr2
Use Cases to Sequence Diagrams

- Use Case diagram – types of interactions
 - System has multiple use cases
 - Example: Use Case #1: Insert a coin

- Scenario – a specific variant of a use case
 - Each use case has one or more scenarios
 - Scenario 1.1: insert coin to add money
 - Scenario 1.2: insert excess coin (too many inserted)
 - Scenario 1.3: ... some other situation...
 - Interactions between objects are different for each scenario

- Sequence Diagram – a specific scenario design
 - For our purposes each scenario has one sequence diagram
 - Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

- Statechart – design that incorporates all scenarios
 - One StateChart per object, addressing all scenarios
Combining SDs To Make Statecharts

For each object in each SD: identify input & output arcs

- Detailed Design: design statechart that accounts for all SD behaviors

SD set specifies behaviors

Statechart Must Exhibit All Those Behaviors
High Level Design Best Practices

HLD should include:
- One or more architecture diagrams
 - Defines all components & interfaces
 - HW arch., SW arch., Network arch., ...
- Sequence Diagrams
 - Both nominal and off-nominal interactions
 - See 18-649 soda machine for a fully worked example
- HLD must co-evolve with requirements
 - Need both nouns + verbs to define a system!

High Level Design pitfalls:
- Diagrams that leave out interactions
- Boxes and arrows don’t have well defined meanings
- HLD that bleeds into detailed design information
 - Should have separate Detailed Design per component

[Diagram of Vending Machine Architecture](https://users.ece.cmu.edu/~koopman/ece649/project/sodamachine/index.html)
CAN YOU PASS THE SALT?

I SAID—
I KNOW! I’M DEVELOPING A SYSTEM TO PASS YOU ARBITRARY CONDIMENTS.
IT’S BEEN 20 MINUTES!
IT’LL SAVE TIME IN THE LONG RUN!

https://xkcd.com/974/