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Lecture 25:
“Performance, Power, & Energy of Computers”

A. Latency (Single-Thread) Performance (Law #1)

. Throughput (Multi-Thread) Performance (Law #2)
Throughput Performance Scalability (Law #3)

. Performance Scalability Impediments (Law #4)
Performance and Power Scaling (Law #5)
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Flynn's Taxo

nomy of Computer Systems ke Fiynn, 1966

SISD Instruction Pool SIMD Instruction Pool SISD _ Slngle |nStI‘UCti0n Stream & S|ng|e
o0l Data Stream. (Sequential uni-processor.)
- - SIMD - Single Instruction Stream & Multiple
: — | : (i Data Streams. (Vector processing, lockstep.)
S A "[PYI MISD — Multiple Instruction Streams &
[pul- Single Data Stream. (Stream data through
multiple processing stages.)
MISD Instruction Pool MIMD Instruction Pool MIMD — Multiple Instruction Streams &
Multiple Data Streams. (Multi-threads &
—PYI —PY- multi-processors, most general parallelism.)
% eod Lol % —|pul Ls|pul-— = SPMD - Single Program, Multiple
5 = .ol Lol Data Streams. (GPUs, not lockstep.)
= MPMD — Multiple Programs, Multiple
—E e Data Streams.
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Classification of Parallelism

* SISD — Traditional sequential program on single-core processor
» Sequential code with sequential execution semantics (single PC)
» Can support concurrent “multi-processing” through time sharing
» Control-flow graph & data-flow graph embedded in sequential code

» Achieve Instruction Level Parallelism (ILP) via aggressive control flow
speculation and dataflow limit processing

* MIMD — Multi-threads & multi-cores, most general type of parallelism
» Can support simultaneous parallel “multi-processing” (multiple PCs)
» Simultaneous traversing of multiple control-flow graphs
» Can support both “multi-processing” and “multi-threading”
» Achieve Thread Level Parallelism (TLP) via program & machine parallelisms
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A. Latency (Single-Thread) Performance (Law #1)

+ Time to execute a program: T (latency)

_instructionsx cycles ><time

program instruction cycle

T = PathLengthx CPI xCycleTime

T

+ Processor performance: Perf =1/T

1 Frequency

Perf.,, =—— — =
“"Y " PathLengthx CPI xCycleTime | PathLengthx CPI
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[John DeVale & Bryan Black, 2005]

nt Latency Performance of Processors

SPEC]

SPECint2000/MHz
(@)
(62}

100

Power 3

\

\

[\

\ N\
1300
1100
900
700
500 \\\\\
300

W Performance.,, =

NN

1500

Powerb5

NWD

1700 1900 SpecINT 2000

oS
__Frequency
PathLength= CP| =

—\——wv**

== |ntel-x86
== AMD-x86

== Power

== [tanium

500 1000 15

Source: www.SPEC.org

00 2000

Frequency (MH2z)

2500

3000 3500

** Data source www.spec.org

11/29/2017 (© J.P. Shen)

18-600 Lecture #25

Carnegie Mellon University ¢




Latency vs. Throughput Performance

+ Reduce Latency of Application
= Uni-processor, Single Program
= Target Single-Thread (ST) Performance
= Examples: SPEC, PC and Workstations

+ Increase Throughput of System
= Multi-cores/Multi-processors, Many Threads
= Target Multi-threaded/Multi-tasking Throughput
» Example: Database Transaction Processing
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[deal Throughput (Multi-Thread) Performance

+ Time to process a thread: T (latency)
Instructions cycles time

T — X - - X
thread Instruction cycle

T = PathLengthx CPI x CycleTime

+ Multi-thread performance: Perf = 1/T

nx1 nx Frequency

Perf,,, = =
" PathLengthx CPI x CycleTime |PathLengthx CPI
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B. Throughput (Multi-Thread) Pertormance (Law #2)

«» Multi-Core/Multi-Thread Performance:

nx Frequency
PL(n)xCPI (n)

Perf,,. =

% Can Improve Perf by:
* |ncreasing: n (no. of CPUs or cores)
* I[ncreasing. Frequency (CPU clock frequency)
= Decreasing: PL (dynamic instruction count)
= Decreasing: CPIl (cycles/instruction)
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A Throughput Performance Scalability Model

% Multi-Core/Multi-Thread Speedup:

nx Frequency

PL(n)xCPI (n) _ nx( PL, xCPI, j
Frequency PL(n)xCPI (n)

PL(1)xCPI (1)

Speedup(n) yc =

+ A Rigorous Scalability Model (my proposal):

PL(n)xCPI (n) 2n"PL, xn*CPI,

11/29/2017 (© J.P. Shen) 18-600 Lecture #25



C. Throu

hput Performance Scalabilit

% Multi-Core/Multi-Thread Speedup:

Speedup(n)MC:nx( PL, < CPl, jz( A j

n*PL, xn’CPI, n*xn’

+ Scalability Impedance Functions:

9

'n* = PL(n) Impedance Function

(nX % ny): N |
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n” =CPI (n) Impedance Function

((x+y)=1.0= No Speedup
(x+y)=0.0= No Impedance
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[Rich Hankins & Murali Annavaram, 2004]

Real World Example: Database Performance (OLTP)

» MIMD Database Performance: TPS

Transactions | nx Frequency
Second IPX (n) xCPI (n)

TPS = [Law #2]

% Can Improve TPS by:
* |ncreasing: n (no. of CPUSs)
* I[ncreasing. Frequency (CPU clock frequency)
= Decreasing: IPX (instructions/transaction) == PL
= Decreasing: CPIl (cycles/instruction)
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[Rich Hankins & Murali Annavaram, 2004]

4-way Multiprocessor Experimental Setup
Component Intel® Xeon™ System Intel® Itanium® 2 System

Processors 4-way SMP, 1.6GHz 4-way SMP, 900MHz
Caches 256KB L2, 1IMB L3 256KB L2, 3MB L3
Operating System Red Hat® AS 2.1 Red Hat® AS 2.1
Disks 24 data + 2 log 32 data + 1 log
Main Memory 4GB 16GB
Database Oracle® 9ir2 Oracle® 10g
OS Large Page Size 4MB 256MB
SGA 3GB 14GB

+» Based on EMON Events

= Separate User and OS components for each

event

= Use multiple long runs (20-min warm up, 10-min measurement)

= Strive for standard deviation <5% for TPS & CPU utilization > 90%

= Qverall user execution time ~70-90%

TPS

_ nxFrequency
IPX (n)xCPI (n)
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[Rich Hankins & Murali Annavaram, 2004]

nx Frequency

TPS: Throughput Scaling TPS =

IPX (n) x CPI (n)
Xeon ——1P —5—2P —& 4P Itantum 2 |—-—1p —=—2p —»4p
1000 7= CPU Bound 1000
800 - 800 -
600 - Balanced /O Bound

600 -

TPS
TPS

400 7

D
D
=

%B\g\g\n 400 g =

200 A . = 200 9%0—o—0——— o >
Mc & o & P
O 1 1 1 1 1 O 1 1 1 1 1
0 200 400 600 800 1000 1200 0 250 500 750 1000 1250 1500
Warehouses Warehouses

+ TPS scales more linearly on Itanium2 . \
= Larger SGA implies slower /O rate increase PEIIGTTIENEE CRFRREE

(Xeon I/O rate increases at 7TKB/WH, & Itanium 2 at: 6KB/WH) Wlth.lncreased data
set size (due to I/O rate)

= Performance improves
with increased n (on IPF
almost linear increase)

= Bus utilization on Xeon higher than Itanium 2 (45% vs. 39%)

+ Increasing I/0 rate = more processes & context switches
= Clients increase from 8 to 56 on Xeon & 4 to 64 on Itanium 2
= OS time up to 20% on Xeon & only 10% on Itanium 2
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[Rich Hankins & Murali Annavaram, 2004]

nx Frequency

IPX: Path-Length Scaling S = P (=< CPI ()

e Xeon |—e-1P -2+ 4P . [tanium 2 | <1 =—2pP —»4p

2.0 A Pane-=— < R 2.0 -
N i % - ) ; N RR— 13 Ly ) - —d
S 15 et [RR-P
X X
51,0- IPX(n):nXXIle él.o IPX(n):nXXIle
05 -0 051 -0

n~n°=1 05
0.0 1 1 1 1 1 1 1 0.0 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 200 400 600 800 1000 1200
Warehouses Warehouses

N

» Growth in IPX (quite linear) attributed to OS IPX increase = [PX increases with
= More I/O, more context switching increased data set size

User level IPX remains relatively constant in both systems (Xeon)
= Code path through Oracle relatively constant = But IPX(n) doesn’t

Excluding NOPS, IPX at 25 WH similar for both systems! increase much with
» IPX growth less pronounced on Itanium 2 increased n Y.
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| . _ nxFrequency
Path-Length Contributions T = X ()< CPI ()

| /O
OS 1 Page Fault
Context Switch

11.0>x>0.0

Original Code
Speculation
Replay
Synchronization

APP

PL(n) = (n*x PL,
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[Rich Hankins & Murali Annavaram, 2004]

nx Frequency

. - TPS=————— 7
CPI: Overheac Scalmg IPX (n) x CPI (n)
100 Xeon |——1P-—-=-2P 4P ‘o Itanium 2 |——1p —=—2p —»—4p
i 35 -
8.0 - Jl .
= 3.0 1 P 0 —— —
_ 6.0 - r— o 4 25 —
o O 20 A
° 401 © 15 y
CPI(n) =n’ xCPI, e CPI(n) =n’ xCPlI,
2.0 A oc |
00 1 1 1 1 1 1 1 OO 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 2000 400 600 800 1000 1200
Warehouses Warehouses

N

CPTI increases with a "knee" but less sharp on Itanium 2 | = CP| does increase with
Overall CPI trend strongly determined by user CPI increased data set size
= User mode execution time more than 90% on IPF, 80% on Xeon = CPI(n) also increases
Xeon CPI grows with P, Itanium 2 CPI does not }’V't;'”cr)ease‘j n (esp.

or Xeon

= Growth attributed to higher bus utilization on Xeon

4
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[Rich Hankins & Murali Annavaram, 2004]

nx Frequency
IPX (n)xCPI (n)

TPS =

CPI Breakdown: Xeon

10 +

: CPI(n)=n’ xCPI, 7 Xeon

8 - O Other

7 - gus® -

6 W L3 Miss
= O L2 Miss
G °°

4 - OTC

3 - O TLB

2 B Branch

1 - O Inst

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P
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Warehouses

Speedup(n) e =( i jz n?%-833 [Law #3]

n*xn’
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[Rich Hankins & Murali Annavaram, 2004]

TPS — nx Frequency
IPX (n)xCPI (n)

CPI Breakdown: Itanium 2

CPI

H 8 Work

05 4@ H = ==
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25W
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n
Speedup(n),,. = (nx 5 [Law #3]
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| . _ nxFrequency
CPI Contributions 1hs= IPX (n)x CPI(n)
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nx Frequency

Scalability Impediments Perf,,. = — :
Speedup Scalability N XPLl x\n XCP|1

35

30 ——n"1.00 [Carole Dulong et al., 2005]
. e (x+y)=0.20 p-16p | 1-(xwy) |R72

n"0.80 scaling

20 o7 (x+y)=0.30 //)I// SEMPHY  [0.993 |0.999

o
% / o PLSA 0963 | 0999
o 15 /é// Y Rsearch  |0.931 | 0997
10 d . SYM-RFE | 0.786 |0.970
SNPs 0.685 | 0967
GeneNet 0.642 0.983

O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Cores (n)

n* xn’

Speedup(n),,c = (Lj _ nL(x+y)
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N x Frequency

[ability Headroom Perf,,. =
Scalability Headroo e = (07 PL, ) (n” < CPL.

Speedup Scalability Extrapolation
35
30 || ——M1.00 e
— — m0.92
25
M0.65 -

Reduce PL(n)
Reduce CPI(n)

O I\ e rrrrrrrrrrrrrrrrrrr-t T °rr -t T T T T T T T T
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31
Number of Cores (n)
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Conspiring Forces Against Performance Scaling:
Three Forms of Scalability Impediments

Limitation of Language and Algorithm
Tyranny of Amdahl’s Law (sequential bottleneck)

Increase of Path-Length Undermines Scalability
Increase of CPI also Undermines Scalability

* |Increased Complexity and Inefficiency of Design
= Super-linear Power Scaling Relative to Performance

11/29/2017 (© J.P. Shen)
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D._Performance Scalability Impediments (Law #4)

Scalability: (Amdahl’s Law)

1 n

Speedup(n) ¢ = ((]__f)j m

n

Scalability:

n
Speedup(n) prey = ( j _

n* xn’
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Relative (Additive) Degrees of Tyranny

Speedup for z and f == (0.10)

35

n”xn’
o5 L Perfect Speedup Algorithm
_ tyranny

—— JPS (architecture) < .
2 20 +{ —— Amdahl (algorithm) Architecture
S tyranny
2
2 ;

Speedup(n),,c :(

10
3) 1 n
P Speedup(n) e = W = D= f+1
0 T T T T T T T T T T T T 11 1 n

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of cores (n)
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Combined Effect on Actual Speedup (f=0.01, x+y=0.08)

70

60 +

50

10

Speedup for f=0.01 and (x+y)=0.08

—— Perfect (Linear) Speedup
—— Architecture Scaling (w/ x+y=0.08)

Speedup(n) pgey =N

1-0.08 _ 1092

Algorithm Scaling (w/ =0.01)
Actual Speedup (w/ f=0.01 & x+y=0.08)

N
Speedup(n) , ¢ = (—1)x001+1

20X SU =
n > 35

10X SU > /"*

»

a
<

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Number of Cores (n)
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Combined Effect on Actual Speedup (f=0.02, x+y=0.08)

Speedup for f=0.02 and (x+y)=0.08

70
Perfect Speedup
60 + —— Architecture Scaling (w/ x+y=0.08)
—— Algorithm Scaling (w/ f=0.02)

50 + Actual Speedup (w/ f=0.02 & x+y=0.08)
e SU(M) e = o
2 (n—1)x0.02+1
)
& 30

20— e

20X SU >
n>52
10 < .
_ ( ) 0.92
O&T?;A T 1T T T T T T T T T T I T T T T I

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Number of Cores (n)
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Combined Effect on Actual Speedup (f=0.02, x+y=0.10)

70

60

10

Speedup for f=0.02 and (x+y)=0.10
(with scalar execution of sequential %)

—— Perfect (Linear) Speedup
—=— Architecture Scaling (W/ x+y=0.10) Speedup(n) ARCH — N
Algorithm Scaling (w/ f=0.02)

Actual Speedup (w/ f=0.02 & x+y=0.10)

1-010 _ 0.90

1
SPeedupMue =75 02\ (0.98)
N

10X SU » 20X SU -
n>18 n>62

g
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Number of Cores (n)
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Impact of Latency Performance on MP Performance

70

60

10

Speedup for f=0.02 and (x+y)=0.10
(with superscalar execution of sequential %)

—— Perfect (Linear) Speedup
—=— Architecture Scaling (W/ x+y=0.10) Speedup(n) ARCH — N
Algorithm Scaling (w/ f=0.02)

Actual Speedup (w/ f=0.02 & x+y=0.10)

1-010 _ 0.90

1
Speedup(n) ALG — (

0.0Z) (0.98
- _I_ -
2 n ",/f/f

10X SU »> 20X SU »>
n>15 n > 38

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Number of Cores (n)
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E. Performance and Power Scalin

I I Instruction  cycle
Watt — Joule  Joule Instruction ¢y

second Instruction cycle second

Power = EPI x IPC x Frequency

berformance — Frequency - IPC x Frequency

PathLengthx CPI ~ Path Length

Power = EPI x Performance x PathLength
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Power Scaling Relative to Performance Scaling

Pentium —<—

Power = EPI x IPC x Frequency K

PentumM < —

1

+ o
120 r ‘ ‘
100 - %
80 - %g R /

\ © O o B - : o S /O
N ORI .
. 0.6

0.4 Spec2K/MHz

O 0.2

0 500
1000 1500 2000 2500 3000 3500 4000 0

[John DeVale & Bryan Black, 2005]

Frequency (Hz)
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[Ed Grochowski, 2004]

Power vs. Latency Performance

+ For comparison 30 | /
Factor out contributions due to o5 Pentium 4 (Psc)
process technology _ Pentium 4 (me/
Keep contributions due to s 20 174)
microarchitecture design % . power = perf - /
Normalize to i486™ processor 2 /

+ Relative to i486™ Pentium® 4 R Pentium Prg

(Wmt) processor is . /
= ©6x faster (2X IPC at 3X frequency) 1486 Pentium
= 23X higher power 0 '
= Spending 4 units of power for 0 2 4 6 8
every 1 unit of scalar performance Relative Performance
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Power vs. Latency & Throughput Performances

[Ed Grochowski, 2005]

30
o5 Pentium 4 (Psc)/ CPU EPI
Pentium 4 (me I486 7 nj
O
= 20 P5 10 nj
g power = perf (- 7‘// ” T
v 15 J
2 Scalar/Latency ouahpbu ,
5 0 Performance / Aorr%ﬁgrcé P4P-wmt 27 nj
14 PentlumP}{ Pentiim M~ P4P-psc 29 nj
5 _ == Pentium M 9 nj
Pentium = ‘ _ (1.0) »
186 = power = perf :
O‘ T T
0 2 4 6 8
Relative Performance

Assume a large-scale CMP with potentially many cores

Replication of cores results in (nearly) proportional increases to
both throughput performance and power (hopefully).
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Power/Performance (EPI) Evolution

50

45

40

35

30

25

Power

20

15

10

Power = EPI x IPC x Frequency

/

Pentium 4 Q
(Cedarm|II)

Power = Performancel'75

a—

Pentium’lf
(Willarmette)

Pentium M  Core Duo

- '\
-

- Dothan

Pgnﬁam V I Bania.s * —__,—__—'____’__ \)
- AR = Pl = 10N}  Merony

0

486 € oo ~ S d
————— ~

e -

- == [ [ [ [

2 4 6 8
Scalar Performance

10

[Ed Grochowski, 2004]

Intel EPI (nj)
Microprocessors 65nm at
1.33v
1486 10
Pentium 14
Pentium Pro 24
Pentium 4 (WMT) 38
Pentium 4 (CDM) 48
Pentium M (Banias) 13
Pentium M (Dothan) 15
Core Duo (Yonah) 11
Core Duo (Merom) 10

*» Power: single core power (relative to i486 baseline)

< Performance: SPECint performance (relative to i486 baseline)
*» EPI: average energy spent per instruction (in nano-joules)
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100

80

60

Relative Power

40

20

140 -

120 -

Pow er/Performance Scaling

» The issue is not small vs. big cores, nor in-order
vs. out-of-order cores. The key metric is EPT.

+ The ideal core: ultra-low EPT with best possible

single-thread or single-core performance.

— Perfr1.74 /

— Perf?1.5
Perfr1.25

Perfr1.0

Pentium 4 (Psc) ¢~
Pentium 4 (Wmt)#”~

__________

'\’b’bb%b’\%@@@r,{},{p,\?‘@,@

Relative Performance

[ A
Fapm | 2| 6

Neo-core | 5ni] 65

11/29/2017 (© J.P. Shen)

18-600 Lecture #25

Carnegie Mellon University 3s




Power and Speedup Scaling
70

—— Power at n"1.2 /

—— Power at 1.1

a1 (o)}
o o

Perfect Scaling Power scaling

—— Speedup at 0.9 / \.‘.‘ challenges:
% - Low EPI cores

—— Speedup at 0.8 » Un-core scaling

/ > Speedup scaling
%> | | challenges:

» Algorithm
» Sequential %
* Architecture
» PL scaling
» CPI scaling

Power/Speedup Scaling
N w IN
o o o

ﬁ N

10

O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Machine Scaling (n)
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Power

Power vs. MC Speedup Scaling
200

180 Speedup”l.74
—— Speedup”1.50 /

160
Speedup”1.25 /
140

Speedup”1.00 /
120

100 /
80

60 /

-
-
-
_-
-~
-
-
-
-
-

Pentium 4 (Der\\ ./

20 Pentium A:’(\’Nmt)’:‘/

-

-

Pentium-Prt

O “-:&ﬂ( \——\— \——\ \ -\Ne—\o—\c—o\re\?\ I I I I I I I I I I I I I I I I l l l l I
\2)
MC Speedup

CPU EPT SU
1486 7 nj 1
P5 10 nj 2
P6 17nj 3.5
P4P-wmt 27 nj 6
P4P-psc 29n) 6.5

Pentium M 9nj 5.5
Neo core? <5nj 6.5

- The scaling goal is not just the

humber of cores but maximum
throughput within fixed power
envelope.

* The key issue is not the power

scaling of replicated cores, but the
un-core power scaling that may
push total power scaling fowards
the square law again.
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Future Directions
+ Scalability Strategies:

= Algorithm — Languages & Specialized Parallelism
= Architecture — CPIl and Path Length Reduction
= Power/Thermal — EPI Reduction & Scalable Un-core

+ Power/Energy is the new scalability wall

+» Research Challenges:

= Sequential % mitigation for compelling workloads
= Ultra-low EPI core with great latency performance
= Un-core fabric with near-linear power scaling

+ Un-core scaling is the new power goblin
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Useful Chart on Power, Voltage, Resistance, Current

Formula 1 - Electrical power equation:
Power P=IxV=RxI?=V?/R P=power — [ . V=voltage
where power P is in watts, voltage Vis in volts and current
I is in amperes (DC).
If there is AC, look also at the power factor PF = cos ¢ and
¢ = power factor angle /
(phase angle) between voltage and amperage.

Formula 2 - Mechanical power equation: \

PowerP=E/t=W/t
where power P is in watts, Energy E is in joules, and time t 1 4
isin seconds. 1 W =11J/s. - R P -

_p"'-ﬂ-. -
—— R =resistance

Electric Energy is E = P x t - measured in watt-hours,
or also in kWh. 1) = INxm = 1Wxs http:/Aww.sengpielaudio.com/calculator-ohm.htm
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http://www.sengpielaudio.com/calculator-powerunits.htm
http://www.sengpielaudio.com/calculator-energyunits.htm

Power vs. Energy

= Energy: integral of power (area under the curve)
- Energy and power driven by different design constraints
= Power issues:

- Power delivery (supply current @ right voltage)
- Thermal (don’t fry the chip)
- Reliability effects (chip lifetime)

Power

Time
= Energy issues:

- Limited energy capacity (battery)
- Efficiency (work per unit energy)

= Different usage models drive tradeoffs
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F. Power and Energy Optimizations

=  With constant time base, two are “equivalent”
- 10% reduction in power => 10% reduction in energy

=  Once time changes, must treat as separate metrics

- E.g. reduce frequency to save power => reduce performance => increase
time to completion => consume more energy (perhaps)

= Metric: energy-delay product per unit of work

- Tries to capture both effects

- Others advocate energy-delay?
- Best to consider all

- Plot performance (time), energy, ed, ed?
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Performnance/Power Efficiency Metrics

= Power is good metric for deciding on the thermal envelope of the
processor

= Energy is good metric in battery constrained environments
- Task executed at %2 speed but %4 power means % the energy (2T * % P = %5 E)
- 2X battery life!

= Energy*Delay metric gives higher weight to performance
- Same example above, ED ((2T)? * % P) stays same

« Energy*Delay? gives even more weight to performance
- Same example above shows that % speed is 2X worse on ED? metric
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[Ed Grochowski, Intel, 2005]

MIPS/watt Common measure of power efficiency 1.2 mips/watt
Equivalent to energy per instruction Lo \
Independent of time g o8 \
Ideal metric for throughput performance % 06 \
5 04
Instructions < \
Mips ~_ Second Instructions 0.2
Watt —  Joules = Joule 0 , ,
Second 486 p5 p6  pentium 4
MIPS~A2/watt |Equivalent to energy e delay o mips'2/watt R
_ P—
. . . - o L4
Common metric for comparing logic families £,
% 1 /
= 0.8
% 0.6
= 0.4
0.2
0]
486 p5 pP6 pentium 4
MIPS~A3/watt |Equivalent to energy e delay”2 " mips-aiwat
10
Assign increasing weight to time £ 5 /
=
Appropriate metric for latency performance g ° /
o 4
2 /
-«
0]
486 pP5 pP6 pentium 4
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Energy Storage Challenge for Mobile Devices

How long between recharges?

iPad2
® 25Wh =90kJ
® 10h use = avg 2.5W

Kindle3

®6.5Wh =23kJ

® “30 day use” = 30h
avg 220mW

Typical smartphone
®32g, 13cc, 5.5Wh = 18kJ

® +5h charging @ max 1W

® 20mW static power = 10 days standby
® 150mW notifications = 1.3 day standby

® “typical usage” 5kJ active + 13kJ standby =
1 battery charge
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Key Challenges...how far can we go? [Per Ljung, 2012]

Key Areas Description
. » Context Based Power Management: Offloading of communication to available
Active connectivity, and computation to companion devices or the cloud.
POVYGF » Workload Based Power Management: Manage power consumption based on
Saving actual usage and workload scenarios by leveraging heterogeneous cores and smart
parallelism to reduce overall power.
Standby » Near-Zero-Power Standby Mode: Low-power always-on transflective bistable
(TF/BS) displays; eager hibernation with instant resume.
Power
Saving » Ultra-Low-Power Always-On Device: Device with minimal standby
functionality and seamless quick switch over to companion devices.
» Casual Charging: Wireless inductive charging; solar charging for large surface
Energy devices.
Harvesting » Anticipatory Preexecution: Speculative cross-device or cloud-based
preprocessing and content prefetching.
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Active Power Saving ideal 100%
1.5h @ 900mW = 1.35Wh 5Wh battery: 30%

80% A=)

> Context-Based Power Management 20% 1Y = =
® Offload Communication (Local ULP radio) 80% time in home/office
® 1m radio instead of 1000m cellular 20mW vs 1W 25x

® Dongle, access point, femtocell box
® Offload Computation (Cross device)
® Cloud/companion pre-compute/pre-render

> Workload-Based Power Management

® Power consumption based on usage scenario
® Activity, location, history
® Approach zero energy waste
® De-powering unused peripherals & power islands
® Heterogeneous cores & SP processor arrays (ULP)

trade cheap communication
for expensive computation 25X
40mW vs 1W

OW vs 160mW (email, notifications)

10’s mW vs 100’s mW cores
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Standby Power Saving

22.5h @ 160mW = 3.6Wh  5Wh battery: 70%

default: email, skype goal <10mW, 1kJ

> Near-Zero-Power Standby Mode

® Zero-power always-on displays TF/BS, TF/LCD, TF/OLED
® Transflective, bistable S5mW vs OLED 500mW 100x
® Zero-power OS idling
® Android, Meego, WP7 use 15mW better firmware 2mW vs 15mW 155
® iPhone uses 5mW with hibernation ImW vs 15mW

> Ultra-Low-Power Always-On Device

® \Wearable accessory for notifications & voice
® Seamless quick switch over to companion AmW vs 200mW handset 50x
® Week-long battery life on small battery
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Energy Harvesting

Effectively Approach Unlimited Standby

> Casual Charging

® Wireless inductive chargers

® Instant charging for quick fix
® Solar for large surface areas

1W desk, nightstand, car ~ 5h full charge

® Cross-device energy sharing

> Anticipatory Preexecution

® Speculative pre-processing and pre-fetching

® Cloud based or cross-device based
® Context and user behavior model driven

best case charge 3W
for 1W tablet

1h charge =2 3h use

40mW vs 1W 25x
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Refactoring the Mobile Form Factors?
®| aptop (avg 10W = avg 2W) Multiple Devices, One Seamless Experience

® Exploit large battery & connectivity
- Runs offloaded apps from Phone

- Gathers data for Wearable : Sl
+ Display normally off :
+ 50 WH battery = 25 hours nonstop use | AT @ "?y
o o 5 vy L
®Smartphone (avg 200mW = avg 40mW) -l ’ = A
+ Normally hibernating in standby Morslododo | R towly

PR | F Voncmion

o N
+ Offload apps to Laptop = Ho !ZI &

+ Longer battery life: 5x battery life
+ 5 WH battery = 125 hours nonstop use

®\\Nearable (avg 3mW)

+ Always-on display

+ Always fresh data feeds

- Respond using Laptop or Smartphone

+ Reduces avg power of Laptop & Smartphone
+ 1.2 WH battery = 400 hours nonstop use
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