
Lecture 19:
“Virtual Machine Design & Implementation”

John P. Shen
November 6, 2017
(Based on an 18-640 guest lecture given by Antero Taivalsaari, Nokia Fellow)

18-600 Foundations of Computer Systems

➢Recommended References:
• Jim Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems

and Processes, Morgan Kaufmann, June 2005.
• Matthew Portnoy, Virtualization Essentials, Sybex Press, May 2012

12017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Java Programming & Java Virtual Machine

2017/11/06 18-600 Lecture #19 2

Application programs

Processor Memory I/O devices

Operating system

Application programs

Processor Memory I/O devices

Virtual machine

Operating system
Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

From Lec #7 …

Goals of this Lecture

 Introduce you to the world of virtual machine (VM) design.

 Provide an overview of key technologies that are needed for
constructing virtual machines, such as automatic memory
management, interpretation techniques, multithreading,
and instruction set.

 Caveat: This is a very broad area – we will only scratch the
surface in this lecture.

32017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Introduction

42017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

What is a Virtual Machine?

• A virtual machine (VM) is an “abstract” computing architecture or
computational engine that is independent of any particular hardware
or operating system.

• Software machine that runs on top of a physical hardware platform
and operating system.

• Allows the same applications to run “virtually” on any hardware
for which a VM is available.

52017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Two Broad Classes of Virtual Machines

There are two broad classes of virtual machines:

1) System virtual machines – typically aimed at virtualizing the execution
of an entire operating system.
o Examples: VMware Workstation, VirtualBox, Virtual PC

2) Language virtual machines (process virtual machines) – typically aimed
at providing a portable runtime environment for specific programming
languages.
o Examples: Java VM, Dalvik, Microsoft CLR, V8, LLVM, Squeak

Focus in this lecture is on Language VMs

62017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Why are Virtual Machines Interesting?

• Provide platform independence

• Isolate programs from hardware details

• Simplify application code migration across physical platforms

• Can support dynamic downloading of software

• Can provide additional security or scalability that hardware-specific
implementations cannot provide

• Can hide the complexity of legacy systems

• Many interesting programming languages and systems are built
around a virtual machine

72017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Language VMs – Typical High-Level Architecture

Hardware

Operating System

Virtual Machine

Application(s)

82017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Example: Components of a Java Virtual Machine (JVM)

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter & Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

92017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

VM vs. OS Design

• There is a lot of similarity between VM and operating system design.
 The key component areas are pretty much the same (memory management,

threading system, I/O, ...)

• A few key differences:
 Operating systems are language-independent extensions of the underlying

hardware. They are built to facilitate access to the underlying computing
architecture and maximize the utilization of the hardware resources.

 In contrast, language VMs implement a machine-independent instruction
set and abstract away the details of the underlying hardware and the host
operating system pretty much completely.

102017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Languages that Use Virtual Machines

• Well-known languages using a virtual machine:
 Lisp systems, 1958/1960-1980s

 Basic, 1964-1980s

 Forth, early 1970s

 Pascal (P-Code versions), late 1970s/early 1980s

 Smalltalk, 1970s-1980s

 Self, late 1980/early 1990s

 Java, late 1990s (2000’s for Android)

• Numerous other languages:
 ... PostScript, TCL/TK, Perl, Python, C#, ...

112017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Designing and Implementing
Virtual Machines

122017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

How are Virtual Machines Implemented?

• Virtual machines are typically written in “portable” and “efficient”
programming languages such as C or C++.

• For performance-critical components, assembly language is used.
 The more machine code is used, the less portability

• Some virtual machines (Lisp, Forth, Smalltalk) are largely written
in the language itself.
 These systems have only a minimal core implemented in C or assembly

language.

• Most Java VM implementations consist of a mixture of C/C++
and assembly code.

132017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

The Common Tradeoffs

• Unfortunately, for nearly all aspects of the VM:
• Simple implies slow

• Fast implies more complicated

• Fast implies less portable

• Fast implies larger memory consumption

Examples of areas with significant tradeoffs:

• Interpretation

• Memory management

• Locking/Synchronization, exception handling

• Dynamic compilation, debugging

There are two “camps” of language VM designers:
(1) speed enthusiasts and (2) portability enthusiasts

142017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Walkthrough of Essential Component Areas

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

152017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Memory Management

162017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Basic Memory Management Strategies

1) Static memory management
 Everything allocated statically.

2) Linear memory management
 Memory is allocated and freed in Last-In-First-Out (LIFO) order.

3) Dynamic memory management
 Memory is allocated dynamically from a large pre-allocated “heap” of memory.

• Dynamic memory management is a prerequisite for most modern
programming languages

172017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Dynamic Memory Management

• In dynamic memory management, objects can be allocated and deallocated
freely.
 Allows the creation and deletion of objects in an arbitrary order.

 Objects can be resized on the fly.

• Most modern virtual machines use some form of dynamic memory
management.

• Depending on the implementation, dynamic memory management can be:

 Manual: the programmer is responsible for freeing the unused areas explicitly
(e.g., malloc/free/realloc in C)

 Automatic: the virtual machine frees the unused areas implicitly without any
programmer intervention.

182017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Automatic Memory Management:
Garbage Collection

• Most modern virtual machines support automatic dynamic memory
management.

• Automatic dynamic memory management frees the programmer from
the responsibility of explicitly managing memory.

• The programmer can allocate memory without having to worry about
deallocation.

• The memory system will automatically:
 Reclaim unused memory using a Garbage Collector (GC),

 Expand and shrink data in the heap as necessary,

 Service weak pointers and perform finalization of objects (if necessary).

192017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Benefits of Automatic Memory Management

• Makes the programmer’s life much easier
 Removes the problems of explicit deallocation

 Decreases the risk of memory leaks

 Simplifies the use of abstract data types

 Facilitates proper encapsulation

• Generally: ensures that programs are pointer-safe
 No more dangling pointers

• Automatic memory management improves program reliability and safety
significantly!!

202017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Basic Challenges in Automatic
Dynamic Memory Management

• How does the memory system know where all the pointers are?

• How does the memory system know when it is safe to delete an object?

• How does the memory system avoid memory fragmentation problems?

• If the memory system needs to move an object, how does the system
update all the pointers to that object?

• When implementing a virtual machine, your VM must be able to handle
all of this.

212017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

How to Keep Track of Pointers?

• The memory system must be able to know which memory locations
contain pointers and which don't.

• Three basic approaches:
• In some systems, all memory words are tagged with pointer/type

information.

• In some systems, objects have headers
that contain pointer information.

• In some systems, pointer
information is kept in
separate data structures.

1

1

1
1

1

1
0
0

0
0

0

0

GC header

GC header

Object heap
pointer
bitmap

222017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Example: Object Layout in the K Virtual
Machine (with explicit GC headers)

GC header

Class pointer

MonitorOrHashCode

Instance variable #1

Instance variable #2

...

Instance variable #n

Object
reference

Mark bitStatic bit

GC type
(6 bits)

Object size
(24 bits)

GC header word (32 bits):

00

Note: Class pointer utilized for
obtaining information about the
type of each instance variable
(whether they contain pointers or not)

232017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

When Is It Safe to Delete An Object?

• Generally, an object can be deleted when there are
no more pointers to it.

• All the dependent objects can be deleted as well,
if there are no references to them either.

1

1 1

1

1

1

0

0 0

ROOT

Dead objects

242017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

To Compact Memory or Not?

• When objects are deleted, the object heap will contain
holes unless the heap is compacted.

• If a compaction algorithm is used, objects in the heap may move.
 All pointers to the moved objects must be updated!

• If no compaction is used, the system must be able to manage free
memory areas.
 Often, a free list is used to chain together the free areas.

 Memory allocation will become slower.

 Fragmentation problems are possible!

Free memory

252017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Basic Heap Compaction Techniques

1) Two-finger algorithms
 Two pointers are used, one to point to the next free location, the other to the next object to be moved. As objects are

moved, a forwarding address is left in their old location.

 Generally applicable only to systems that use fixed-size objects (e.g., Lisp).

2) Forwarding address algorithms
 Forwarding addresses are written into an additional field within each object before the object is moved.

 These methods are suitable for collecting objects of different sizes.

3) Table-based methods
 A relocation map, usually called a breaktable, is constructed in the heap either before or during object relocation.

This table is consulted later to calculate new values for pointers.

 Best-known algorithm: Haddon-Waite breaktable algorithm; used in Sun's KVM.

4) Threaded methods
 Each object is chained to a list of those objects that originally pointed to it. When the object is moved, the list is traversed

to readjust pointer values.

5) Semi-space (copying) compaction
 In copying collectors, compaction occurs as a side-effect to copying.

262017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Further Reading on Memory Management and GC

• There are hundreds of garbage collection algorithms.

• For a great overview, read the “bible” of garbage collection
(the original 1996 version & the 2012 update).

• http://www.gchandbook.org/

272017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

http://www.gchandbook.org/

Walkthrough of Essential Component Areas

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

282017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Interpretation and Execution

292017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Background

• Executing source code directly can be very expensive and difficult.
 Parsing of source code takes a lot of time and space.

 In general, source code is intended to be human-readable; it is not intended
for direct execution.

• Most virtual machines use some kind of an intermediate representation to
store programs.

• Most virtual machines use an interpreter to execute code that is stored in
the intermediate representation.

302017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Two Kinds of Interpreters

Virtual machines commonly use two types of interpreters:

 Command-line interpreter (“outer” interpreter / parser)
 Reads and parses instructions in source code form (textual representation).

 Only needed in those systems that can read in source code at runtime.

 Instruction interpreter (“inner” interpreter)
 Reads and executes instructions using an intermediate execution format such

as bytecodes.

Parsers are covered well in traditional compiler classes;
in this lecture we will focus on instruction interpretation

312017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Basics of Inner Interpretation

• The heart of the virtual machine is the inner interpreter.

• The behavior of the inner interpreter:

1) Read the current instruction,
2) Increment the instruction pointer,
3) Parse and execute the instruction,
4) Go back to (1) to read the next instruction

322017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

A Minimal Inner Interpreter Written in C

int* ip; /* instruction pointer */

while (true) {
((void (*)())*ip++)();

}

332017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Components of an Interpreter

• Interpreters usually have the following components:

Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...

342017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Virtual Registers

• Virtual registers hold the state of the interpreter during execution.
Typical virtual registers:

 ip: instruction pointer
• Points to the current (or next) instruction to be executed.

 sp: stack pointer
• Points to the topmost item in the operand stack.

 fp: frame pointer
• Points to the topmost frame (activation record) in the execution stack (call stack).

 lp: local variable pointer
• Points to the beginning of the local variables in the execution stack.

 up: current thread pointer (if multithreading is required)

352017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Execution Stacks

• In order to support method (subroutine)
calls and proper control flow, an
execution stack is typically needed.
 Also known as the call stack.

• Execution stack holds the stack frames
(activation records) at runtime.
 Allows the interpreter to invoke methods/subroutines

and to return to correct locations once a method
call ends.

 Each thread in the VM needs its own execution stack.

• Some VMs use a separate operand
stack to store parameters and operands.

f() {
g();

}

g() {
h();

}

f

g

h

stack

bottom

stack

top

362017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Concrete Example: Stack Frames in the KVM

372017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Fundamental
Interpretation Techniques

382017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Taxonomy of Interpreters

Interpreters

Token-based
interpreters

Address-based
interpreters

Pattern-based
interpreters

Bytecode
interpreters

Direct threaded
code interpreters

Indirect threaded
code interpreters

Subroutine threaded
code interpreters

392017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Token-Based Interpretation

• In token-based interpreters, the fundamental instruction unit is a token.
 Token is a predefined numeric value that represents a certain instruction.

• E.g., 1 = LOAD LITERAL, 2 = ADD, 3 = MULTIPLY, ...

 Token values are independent of the underlying hardware or operating system.

• The most common subcase:
 In a bytecode interpreter, instruction (token) width is limited to 8 bits.

 Total instruction set limited to 256 instructions.

 Bytecode interpreters are very commonly used, e.g.,
for Smalltalk, Java, and many other interpreted programming languages.

402017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Token-Based Code: Examples

Control
flow

Token 2

Token 1

Token n

Token 3

...

...

iconst_1

iload_1

return

iadd

ishl

istore_1

Some Java bytecodes:

Code is represented as linear lists that contain fixed-size tokens. In bytecode, token width is 8 bits.

8 bits

412017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

A Simple Bytecode Interpreter Written in C

void Interpreter() {

while (true) {

byte token = (byte)*ip++;

switch (token) {

case INSTRUCTION_1:

break;

case INSTRUCTION_2:

break;

case INSTRUCTION_3:

break;

}

}

}

422017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Instruction Sets

432017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Instruction Sets

• Each virtual machine typically has its own instruction set based on the
requirements of the language(s) the VM must support.

• These instruction sets are similar to instruction sets of hardware CPUs.

• Common types of instructions:
• Local variable load and store operations

• Constant value load operations

• Array load and store operations

• Arithmetic operations (add, sub, mul, div, ...)

• Logical operations (and, or, xor, ...)

• Type conversions

• Conditional and unconditional branches

• Method invocations and returns

• ...

442017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Stack-Oriented vs. Register-Oriented Instruction Sets

• Two types of instruction sets:
 In stack-oriented instruction sets, operands to most instructions are passed in

an operand stack; this stack can grow and shrink dynamically as needed.

 In register-oriented instruction sets, operands are accessed via “register
windows”: fixed-size areas that are allocated automatically upon method calls.

• Historically, most virtual machines used a stack-oriented instruction set.
 Stack machines are generally simpler to implement.

 No problems with “running out of registers”; the instruction set can be smaller.

 Less encoding/decoding needed to parse register numbers.

• Unlike JVM, Dalvik uses a register-based instruction set.

452017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Example: The Java Bytecode Interpreter

• The JVM uses a straightforward stack-oriented bytecode instruction set with
approximately 200 instructions.
 Fairly similar to the Smalltalk bytecode set, except that in Java primitive data

types are not objects.

• One execution stack is required per each Java thread.
 No separate operand stack; operands are kept on top of the current stack frame.

• Four virtual registers are commonly assumed:
 ip (instruction pointer): points to current instruction

 sp (stack pointer): points to the top of the stack

 fp (frame pointer): provides fast access to stack frame

 lp (locals pointer): provides fast access to local variables

462017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Example: The Java Virtual Machine Instruction Set

(Note: “_quick” bytecodes are non-standard and implementation-dependent)

472017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

JVM Instruction Formats

 Most Java bytecodes do not require any parameters from
the instruction stream.
 They operate on the values provided on the execution

stack (e.g., IADD, IMUL, ...)

 Some bytecodes read an additional 8-bit parameter from
the instruction stream.
 For instance, NEWARRAY, LDC, *LOAD, *STORE

 Many bytecodes read additional 16 bits from the
instruction stream.
 INVOKE* instructions, GET/PUTFIELD, GET/PUTSTATIC,

branch instructions, ...

 Three instructions are varying-length.
 LOOKUPSWITCH, TABLESWITCH, WIDE

BC

BC

BC

8 bits

16 bits

BC

482017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Example: IFNULL

• IFNULL: Branch if reference is null.

• The instruction pops value off the operand stack, and checks if the value
is NULL.

• The 16-bit parameter contains a branch offset that is added to the
instruction pointer if value is NULL.

• Otherwise, execution continues normally from the next instruction.

IFNULL 16-bit parameter

Operand stack: ..., value => ...

492017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Accessing Inline Parameters

• Inline parameters are generally very easy to access.

• Use the instruction pointer to determine the location.

• For instance, a bytecode for performing an unconditional jump could be
written as follows:

• Important: Keep in mind the endianness issues!
 In Java, all numbers in classfiles are big-endian; if a machine-specific endianness was used,

Java class files wouldn't be portable across different machines.

void UnconditionalBranch() {
int branchOffset = *ip;
ip += branchOffset;

}
ip

(instruction pointer has
been pre-incremented
to point here.)

branch
offset

502017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Remarks on
Interpreter Performance

512017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Interpretation Overhead

• Interpreted code is generally a lot slower than compiled code/machine code.
 Studies indicate an order of magnitude difference.

 Actual range is something like 2.5x to 50x.

• Why? Because there are extra costs associated with interpretation:
• Dispatch (fetch, decode and invoke) next instruction

• Access virtual registers and arguments

• Perform primitive functions outside the interpreter loop

• “Interpreter performance is primarily a function of the interpreter itself
and is relatively independent of the application being interpreted.”

522017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Interpreter Tuning

• Common interpreter optimizations techniques:

 Writing the interpreter loop and key instructions in assembly code.

 Keeping the virtual registers (ip, sp, ...) in physical hardware registers – this can
improve performance dramatically.

 Splitting commonly used instructions into a separate interpreter loop & making
the core interpreter so small that it fits in HW cache.

 Top of stack caching (keeping topmost operand in a register).

 Padding the instruction lookup table so that it has exactly 16/32/64/128/256
entries.

• Actual impact of such optimizations will vary considerably based on
underlying hardware.

532017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

High-Performance VMs

• Small, simple & portable VM == slow VM

• Interpreted code has a big performance overhead compared to native code:

• If you need speed, you need a compiler!
 Unfortunately, compilers are always rather machine/CPU-specific.

 This introduces a lot of additional complexity & requires a lot more manpower
to implement.

• Almost always: Fast == more complex

KVM
(pure ANSI C) HotSpot (interpreted)

KVM or HotSpot
(with ASM loop)

HotSpot (compiler enabled)
HotSpot

(compiler enabled)

1x 2-4x 10-20x

542017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Compilation: Basic Strategies

 Static / Ahead-Of-Time (AOT) Compilation
 Compile code before the execution begins.

❖ Dynamic (Just-In-Time, JIT) Compilation
 Compile code on the fly when the VM is running.

• Different flavors of dynamic compilation:

• Compile everything upon startup (impractical)

• Compile each method when executed first time

• Adaptive compilation based on “hotspots” (frequently executed code)

552017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Dynamic Compilation/Translation Loop in VM

Dispatch
Loop

Execute
Block

Translate
with
JIT

Instruction
translated ?

End of block?
No

No

Yes
Yes

Interpret
Instruction

Hot
Path?

No

Yes

2017/11/06 18-600 Lecture #19 56

Sun Hotspot JVM

• Derived from Self VM

• Applies basic lazy compilation model
• Code is initially run interpreted

• Compile after certain number of invocations of a method

• Client compiler
• Fast compiler performing minimal optimizations

• Server compiler
• Aggressive SSA dataflow compiler

• ~10x slower code generation, but 20%-50% faster code

2017/11/06 18-600 Lecture #19 57

IBM Jalapeno VM (aka Jikes VM)

• Entire JVM written in Java
• Allows VM code to be inlined into

programmer code

• Basic lazy compilation
• Uses three dynamic compilers
• No interpreter engine

• Full support for adaptive optimization
• Compiler directed edge sampling &

instrumented profiling
• Profiling directed by compiler

optimization passes

• Successfully implemented many
profile directed optimizations

Controller

Online

measurements
Optimizing/qui

ck compiler

Baseline

compiler

Profile

information

Instrumented

code Opt. code

Opt. plan

Unopt. code

Executable

code

Bytecode

2017/11/06 18-600 Lecture #19 58

Java Dynamic Optimization

• Inlining [Jalapeno]
• Use profiling to identify hot paths for inlining
• Reduce code size and compilation time
• Provides slight performance addition to static inlining

• Speculative specialization [Hotspot]
• Method target specialization

• Inline most common target method with a check for expected target

• Eliminate class check if virtual / interface method targets known given
current class hierarchy

• Decompile inlining if loaded class breaks assumption
• Works very well for many programs since many methods declared virtual

even if they are not subclassed

2017/11/06 18-600 Lecture #19 59

Walkthrough of Essential Component Areas

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

602017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Adding
Multithreading

Support

612017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Multithreading and Synchronization

• A key feature of many programming languages is multithreading.
 Multithreading: the ability to create multiple concurrently running

threads/programs.

 Smalltalk, Forth, Ada, Self, Java, ...

• Each thread behaves as if it owns the entire virtual machine
 ... except when the thread needs to access external resources such as storage,

network, display, or perform I/O operations in general.

 ...or when the thread needs to communicate with the other threads.

• Synchronization/locking mechanisms are needed to ensure controlled
communication and controlled access to external resources.

622017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Implementing Multithreading: Technical Challenges

• Each thread must have its own virtual registers and execution stacks.

• Critical places of the VM (and libraries) must use mutual exclusion to avoid
deadlocks and resource conflicts.

• Access to external resources (e.g., storage, network) must be controlled
so that two threads do not interfere with each other.

• I/O operations must be designed so that one thread's
I/O operations do not block the I/O of other threads.

• Generally: All native function calls must be non-blocking.

• Locking / synchronization operations must be provided also at the application
level.

632017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Recap: Components of an Interpreter

• Interpreters usually have the following components:

Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...

642017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Building a Multithreading VM
Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...

In principle, building a multithreading interpreter is easy: we must
simply replicate the virtual registers and stacks for each thread!

... ...

652017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Building a Multithreading VM: Supporting Interrupts

• In addition, we must modify the system so that it allows the current thread
to be interrupted.

• When a thread is interrupted, a context switch is performed.

Example:

int* ip; /* instruction pointer */

while (true) {
if (isInterrupted()) ContextSwitch();
((void (*)())*ip++)();

}

662017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Building a Multithreading VM: Context Switching

• What happens during a context switch?
 The virtual registers of the current thread are stored (context save).

 Current thread pointer is changed to point to the new current thread.

 Virtual registers are replaced with the saved virtual registers of the new current
thread (context load).

• Context switching must be performed as an uninterrupted operation!
 No further interrupts may be processed until the context switch operation has

been performed to completion.

 Operating systems commonly have a “supervisor mode” for running system-
critical code.

672017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Avoiding Atomicity Problems Using Safepoints

• In operating systems, threads can usually be interrupted at arbitrary locations.
 Interrupts may be generated by hardware at any time.

 The entire operating system must be designed to take into account mutual
exclusion problems!

 Must use monitors or semaphores to protect code that can be executed only by
one thread at the time.

• In VMs, simpler solutions are often used.
 Threads can only be interrupted in certain locations inside the VM source code.

 These locations are known as “safepoints”.

 In the simplest case, thread switching is only allowed in one place inside the VM.

 Makes VM design a lot simpler and more portable!

682017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Using the “One Safepoint” Solution

• No separate interrupt handler routine.

• All the checking for interrupts happens inside the interpreter loop.

• Even if the actual interrupts are generated asynchronously, the actual
context switching is not performed until the interpreter loop gets a chance
to detect and process the interrupt:

int* ip; /* instruction pointer */

while (true) {
if (isInterrupted()) ContextSwitch();
((void (*)())*ip++)();

}

692017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Making Thread Switching 100% Portable

• In a virtual machine, you don't necessarily need an external clock to drive the
interrupts!

• In the simplest case, you can count the number of executed instructions using
a “timeslice”:

int* ip; /* instruction pointer */

while (true) {
if (--TimeSlice <= 0) ContextSwitch();
((void (*)())*ip++)();

}

 Force a context switch every 1000 bytecodes or so.

 You can also enforce a thread switch at each I/O request
(used in many Forth systems).

702017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Thread Scheduling

• When you perform a context switch, which thread should run next?

• Various choices:
 FCFS (First-Come-First-Serve)

 Round robin approach

 Priority-based scheduling
• ... with fixed priorities or varying priorities

• In operating systems, thread scheduling algorithms can be rather
complicated.

• There is no “ideal” scheduling algorithm.

• The needs of interactive and non-interactive programs (and client vs. server
software) can be fundamentally different in this area.

712017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Case Study: KVM

• The original KVM implementation used a simple, portable round robin
scheduler.
 Threads stored in a circular list; each thread got to execute a fixed number of bytecodes

until interrupt was forced.

 Thread priority only affected the number of bytecodes a thread may run before it gets
interrupted.

• In the actual product version, thread scheduling based on Java thread priority.
 Higher-priority threads always run first.

• Fully portable thread implementation; interrupts driven by bytecode counting;
thread switching handled inside the interpreter loop.

722017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Actual Code: Thread Switching in KVM

Code inside the interpreter loop:

if (--Timeslice <= 0) {

do {

ulong64 wakeupTime;

/* Check if it is time to exit the VM */

if (AliveThreadCount == 0) return;

/* Check if it is time to wake up */

/* threads waiting in the timer queue */

checkTimerQueue(&wakeupTime);

/* Handle external events */

InterpreterHandleEvent(wakeupTime);

} while (!SwitchThread());

}

Thread switching code (simplified):

bool_t SwitchThread() {

/* Store current context */

StoreVirtualRegisters();

/* Obtain next thread to run */

CurrentThread =

removeQueueStart(&RunnableThreads);

if (CurrentThread == NULL) return FALSE;

/* Set new context and timeslice */

LoadVirtualRegisters(CurrentThread);

Timeslice = CurrentThread->timeslice;

return TRUE;

}

732017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Java

• Developed by James Gosling's team at Sun Microsystems in the
early 1990s.

• Originally designed for programming consumer devices (as a
replacement for C++).
 Uses a syntax that is familiar to C/C++ programmers.

 Uses a portable virtual machine that provides automatic memory
management and a simple stack-oriented instruction set.

 Class file verification was added to enable downloading and execution
of remote code securely.

• Again, great timing: the development of the Java technology
coincided with the widespread adoption of web browsers in the
mid-1990s.

742017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Why is Java Interesting from VM Designer's Viewpoint?

• Most people had never heard of virtual machines until Java came along!

• Java brought virtual machines to the realm of mobile computing.

• Java combines a statically compiled programming language with a dynamic
virtual machine.

• The Java virtual machine (JVM) is very well documented.
 Tim Lindholm, Frank Yellin, The Java Virtual Machine Specification, Second

Edition, Addison Wesley, Java Series, April 1999.

• A JVM is seemingly very easy to build.

• However, tight compatibility requirements make the actual implementation
very challenging.
 Must pass tens of thousands of test cases to prove compatibility.

752017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Java for Android / Dalvik VM

• Android resurrected interest in Java in the mobile space.

• Dalvik is an alternative runtime environment for executing Java programs,
using an Android-specific application format (.dex files).

• Unlike JVM, which uses a stack-based architecture, Dalvik uses a register-
based architecture and bytecode set.

• As of Android 5.0 (Lollipop), the Dalvik VM will be replaced by Android
Runtime (ART) – an architecture based on ahead-of-time compilation.

762017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

More Information on Virtual Machine Design

• Bill Blunden, Virtual Machine Design and
Implementation in C/C++, Wordware Publishing,
March 2002

• Iain D. Craig, Virtual Machines, Springer Verlag,
September 2005

• Jim Smith, Ravi Nair, Virtual Machines: Versatile
Platforms for Systems and Processes, Morgan
Kaufmann, June 2005

• Xiao-Feng Li, Jiu-Tao Nie, Ligang Wang, Advanced
Virtual Machine Design and Implementation, CRC
Press, October 2014

• Matthew Portnoy, Virtualization
Essentials, Sybex Press, May 2012

772017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19

Lecture 20:
“Parallel Systems & Programming”

John Paul Shen
November 8, 2017

18-600 Foundations of Computer Systems

➢ Recommended Reference:
• “Parallel Computer Organization and Design,” by Michel Dubois,

Murali Annavaram, Per Stenstrom, Chapters 5 and 7, 2012.

2017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19 78

