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Goals of this Lecture

 Introduce you to the world of virtual machine (VM) design.

 Provide an overview of key technologies that are needed for 
constructing virtual machines, such as automatic memory 
management, interpretation techniques, multithreading, 
and instruction set.

 Caveat: This is a very broad area – we will only scratch the 
surface in this lecture.
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Introduction
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What is a Virtual Machine?

• A virtual machine (VM) is an “abstract” computing architecture or 
computational engine that is independent of any particular hardware 
or operating system.

• Software machine that runs on top of a physical hardware platform 
and operating system.

• Allows the same applications to run “virtually” on any hardware 
for which a VM is available.
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Two Broad Classes of Virtual Machines

There are two broad classes of virtual machines:

1) System virtual machines – typically aimed at virtualizing the execution 
of an entire operating system.
o Examples: VMware Workstation, VirtualBox, Virtual PC

2) Language virtual machines (process virtual machines) – typically aimed 
at providing a portable runtime environment for specific programming 
languages. 
o Examples: Java VM, Dalvik, Microsoft CLR, V8, LLVM, Squeak

Focus in this lecture is on Language VMs
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Why are Virtual Machines Interesting?

• Provide platform independence

• Isolate programs from hardware details

• Simplify application code migration across physical platforms

• Can support dynamic downloading of software

• Can provide additional security or scalability that hardware-specific 
implementations cannot provide

• Can hide the complexity of legacy systems

• Many interesting programming languages and systems are built 
around a virtual machine
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Language VMs – Typical High-Level Architecture
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Example: Components of a Java Virtual Machine (JVM)
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VM vs. OS Design

• There is a lot of similarity between VM and operating system design.
 The key component areas are pretty much the same (memory management, 

threading system, I/O, ...)

• A few key differences:
 Operating systems are language-independent extensions of the underlying 

hardware. They are built to facilitate access to the underlying computing 
architecture and maximize the utilization of the hardware resources.

 In contrast, language VMs implement a machine-independent instruction 
set and abstract away the details of the underlying hardware and the host 
operating system pretty much completely. 
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Languages that Use Virtual Machines

• Well-known languages using a virtual machine:
 Lisp systems, 1958/1960-1980s

 Basic, 1964-1980s

 Forth, early 1970s

 Pascal (P-Code versions), late 1970s/early 1980s

 Smalltalk, 1970s-1980s

 Self, late 1980/early 1990s

 Java, late 1990s (2000’s for Android)

• Numerous other languages:
 ... PostScript, TCL/TK, Perl, Python, C#, ...
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Designing and Implementing
Virtual Machines
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How are Virtual Machines Implemented?

• Virtual machines are typically written in “portable” and “efficient” 
programming languages such as C or C++.

• For performance-critical components, assembly language is used.
 The more machine code is used, the less portability 

• Some virtual machines (Lisp, Forth, Smalltalk) are largely written 
in the language itself.
 These systems have only a minimal core implemented in C or assembly 

language.

• Most Java VM implementations consist of a mixture of C/C++ 
and assembly code.
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The Common Tradeoffs

• Unfortunately, for nearly all aspects of the VM:
• Simple implies slow

• Fast implies more complicated

• Fast implies less portable

• Fast implies larger memory consumption

Examples of areas with significant tradeoffs:

• Interpretation

• Memory management

• Locking/Synchronization, exception handling

• Dynamic compilation, debugging

There are two “camps” of language VM designers: 
(1) speed enthusiasts and (2) portability enthusiasts
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Walkthrough of Essential Component Areas
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Memory Management
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Basic Memory Management Strategies

1) Static memory management
 Everything allocated statically.

2) Linear memory management
 Memory is allocated and freed in Last-In-First-Out (LIFO) order.

3) Dynamic memory management
 Memory is allocated dynamically from a large pre-allocated “heap” of memory.

• Dynamic memory management is a prerequisite for most modern 
programming languages
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Dynamic Memory Management

• In dynamic memory management, objects can be allocated and deallocated
freely.
 Allows the creation and deletion of objects in an arbitrary order.

 Objects can be resized on the fly.

• Most modern virtual machines use some form of dynamic memory 
management.

• Depending on the implementation, dynamic memory management can be:

 Manual: the programmer is responsible for freeing the unused areas explicitly 
(e.g., malloc/free/realloc in C)

 Automatic: the virtual machine frees the unused areas implicitly without any 
programmer intervention.
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Automatic Memory Management: 
Garbage Collection

• Most modern virtual machines support automatic dynamic memory 
management.

• Automatic dynamic memory management frees the programmer from 
the responsibility of explicitly managing memory.

• The programmer can allocate memory without having to worry about 
deallocation.

• The memory system will automatically:
 Reclaim unused memory using a Garbage Collector (GC),

 Expand and shrink data in the heap as necessary,

 Service weak pointers and perform finalization of objects (if necessary).
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Benefits of Automatic Memory Management

• Makes the programmer’s life much easier
 Removes the problems of explicit deallocation

 Decreases the risk of memory leaks

 Simplifies the use of abstract data types

 Facilitates proper encapsulation

• Generally: ensures that programs are pointer-safe
 No more dangling pointers

• Automatic memory management improves program reliability and safety 
significantly!!
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Basic Challenges in Automatic
Dynamic Memory Management

• How does the memory system know where all the pointers are?

• How does the memory system know when it is safe to delete an object?

• How does the memory system avoid memory fragmentation problems?

• If the memory system needs to move an object, how does the system 
update all the pointers to that object?

• When implementing a virtual machine, your VM must be able to handle 
all of this.
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How to Keep Track of Pointers?

• The memory system must be able to know which memory locations 
contain pointers and which don't.

• Three basic approaches:
• In some systems, all memory words are tagged with pointer/type 

information.

• In some systems, objects have headers
that contain pointer information.

• In some systems, pointer
information is kept in 
separate data structures.
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Example: Object Layout in the K Virtual 
Machine (with explicit GC headers)

GC header

Class pointer

MonitorOrHashCode

Instance variable #1

Instance variable #2

...

Instance variable #n

Object
reference

Mark bitStatic bit

GC type
(6 bits)

Object size
(24 bits)

GC header word (32 bits):

00

Note: Class pointer utilized for
obtaining information about the
type of each instance variable 
(whether they contain pointers or not)
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When Is It Safe to Delete An Object?

• Generally, an object can be deleted when there are 
no more pointers to it.

• All the dependent objects can be deleted as well, 
if there are no references to them either.
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To Compact Memory or Not?

• When objects are deleted, the object heap will contain           
holes unless the heap is compacted.

• If a compaction algorithm is used, objects in the heap may move.
 All pointers to the moved objects must be updated!

• If no compaction is used, the system must be able to manage free 
memory areas.
 Often, a free list is used to chain together the free areas.

 Memory allocation will become slower.

 Fragmentation problems are possible!

Free memory
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Basic Heap Compaction Techniques

1) Two-finger algorithms
 Two pointers are used, one to point to the next free location, the other to the next object to be moved. As objects are 

moved, a forwarding address is left in their old location.

 Generally applicable only to systems that use fixed-size objects (e.g., Lisp).

2) Forwarding address algorithms
 Forwarding addresses are written into an additional field within each object before the object is moved.

 These methods are suitable for collecting objects of different sizes.

3) Table-based methods
 A relocation map, usually called a breaktable, is constructed in the heap either before or during object relocation. 

This table is consulted later to calculate new values for pointers.

 Best-known algorithm: Haddon-Waite breaktable algorithm; used in Sun's KVM.

4) Threaded methods
 Each object is chained to a list of those objects that originally pointed to it. When the object is moved, the list is traversed

to readjust pointer values.

5) Semi-space (copying) compaction
 In copying collectors, compaction occurs as a side-effect to copying.
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Further Reading on Memory Management and GC

• There are hundreds of garbage collection algorithms.

• For a great overview, read the “bible” of garbage collection
(the original 1996 version & the 2012 update).

• http://www.gchandbook.org/
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Interpretation and Execution
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Background

• Executing source code directly can be very expensive and difficult.
 Parsing of source code takes a lot of time and space.

 In general, source code is intended to be human-readable; it is not intended 
for direct execution.

• Most virtual machines use some kind of an intermediate representation to 
store programs.

• Most virtual machines use an interpreter to execute code that is stored in 
the intermediate representation.
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Two Kinds of Interpreters

Virtual machines commonly use two types of interpreters:

 Command-line interpreter (“outer” interpreter / parser)
 Reads and parses instructions in source code form (textual representation).

 Only needed in those systems that can read in source code at runtime.

 Instruction interpreter (“inner” interpreter)
 Reads and executes instructions using an intermediate execution format such 

as bytecodes.

Parsers are covered well in traditional compiler classes; 
in this lecture we will focus on instruction interpretation
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Basics of Inner Interpretation

• The heart of the virtual machine is the inner interpreter.

• The behavior of the inner interpreter:

1) Read the current instruction,
2) Increment the instruction pointer,
3) Parse and execute the instruction,
4) Go back to (1) to read the next instruction
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A Minimal Inner Interpreter Written in C

int* ip; /* instruction pointer */

while (true) {
((void (*)())*ip++)();

}
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Components of an Interpreter

• Interpreters usually have the following components:

Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...
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Virtual Registers

• Virtual registers hold the state of the interpreter during execution. 
Typical virtual registers:

 ip: instruction pointer
• Points to the current (or next) instruction to be executed.

 sp: stack pointer
• Points to the topmost item in the operand stack.

 fp: frame pointer
• Points to the topmost frame (activation record) in the execution stack (call stack).

 lp: local variable pointer
• Points to the beginning of the local variables in the execution stack.

 up: current thread pointer (if multithreading is required)
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Execution Stacks

• In order to support method (subroutine)
calls and proper control flow, an
execution stack is typically needed.
 Also known as the call stack.

• Execution stack holds the stack frames
(activation records) at runtime.
 Allows the interpreter to invoke methods/subroutines 

and to return to correct locations once a method
call ends.

 Each thread in the VM needs its own execution stack.

• Some VMs use a separate operand
stack to store parameters and operands.

f() { 
g();

}

g() {
h();

}

f

g

h

stack

bottom

stack

top
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Concrete Example: Stack Frames in the KVM
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Fundamental
Interpretation Techniques
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Taxonomy of Interpreters

Interpreters

Token-based
interpreters

Address-based
interpreters

Pattern-based
interpreters

Bytecode
interpreters

Direct threaded
code interpreters

Indirect threaded
code interpreters

Subroutine threaded
code interpreters
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Token-Based Interpretation

• In token-based interpreters, the fundamental instruction unit is a token.
 Token is a predefined numeric value that represents a certain instruction.

• E.g., 1 = LOAD LITERAL, 2 = ADD, 3 = MULTIPLY, ...

 Token values are independent of the underlying hardware or operating system.

• The most common subcase:
 In a bytecode interpreter, instruction (token) width is limited to 8 bits.

 Total instruction set limited to 256 instructions.

 Bytecode interpreters are very commonly used, e.g.,
for Smalltalk, Java, and many other interpreted programming languages.

402017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19



Token-Based Code: Examples

Control
flow

Token 2

Token 1

Token n

Token 3

...

...

iconst_1

iload_1

return

iadd

ishl

istore_1

Some Java bytecodes:

Code is represented as linear lists that contain fixed-size tokens. In bytecode, token width is 8 bits.

8 bits
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A Simple Bytecode Interpreter Written in C

void Interpreter() {

while (true) {

byte token = (byte)*ip++;

switch (token) {

case INSTRUCTION_1:

break;

case INSTRUCTION_2:

break;

case INSTRUCTION_3:

break;

}

}

}
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Instruction Sets
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Instruction Sets

• Each virtual machine typically has its own instruction set based on the 
requirements of the language(s) the VM must support.

• These instruction sets are similar to instruction sets of hardware CPUs.

• Common types of instructions:
• Local variable load and store operations

• Constant value load operations

• Array load and store operations

• Arithmetic operations (add, sub, mul, div, ...)

• Logical operations (and, or, xor, ...)

• Type conversions

• Conditional and unconditional branches

• Method invocations and returns

• ...
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Stack-Oriented vs. Register-Oriented Instruction Sets

• Two types of instruction sets:
 In stack-oriented instruction sets, operands to most instructions are passed in 

an operand stack; this stack can grow and shrink dynamically as needed.

 In register-oriented instruction sets, operands are accessed via “register 
windows”: fixed-size areas that are allocated automatically upon method calls.

• Historically, most virtual machines used a stack-oriented instruction set.
 Stack machines are generally simpler to implement.

 No problems with “running out of registers”; the instruction set can be smaller.

 Less encoding/decoding needed to parse register numbers. 

• Unlike JVM, Dalvik uses a register-based instruction set.
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Example: The Java Bytecode Interpreter

• The JVM uses a straightforward stack-oriented bytecode instruction set with 
approximately 200 instructions.
 Fairly similar to the Smalltalk bytecode set, except that in Java primitive data 

types are not objects.

• One execution stack is required per each Java thread.
 No separate operand stack; operands are kept on top of the current stack frame.

• Four virtual registers are commonly assumed:
 ip (instruction pointer): points to current instruction

 sp (stack pointer): points to the top of the stack

 fp (frame pointer): provides fast access to stack frame

 lp (locals pointer): provides fast access to local variables
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Example: The Java Virtual Machine Instruction Set

(Note: “_quick” bytecodes are non-standard and implementation-dependent)
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JVM Instruction Formats

 Most Java bytecodes do not require any parameters from 
the instruction stream.
 They operate on the values provided on the execution 

stack (e.g., IADD, IMUL, ...)

 Some bytecodes read an additional 8-bit parameter from 
the instruction stream.
 For instance, NEWARRAY, LDC, *LOAD, *STORE

 Many bytecodes read additional 16 bits from the 
instruction stream.
 INVOKE* instructions, GET/PUTFIELD, GET/PUTSTATIC, 

branch instructions, ...

 Three instructions are varying-length.
 LOOKUPSWITCH, TABLESWITCH, WIDE

BC

BC

BC

8 bits

16 bits

BC
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Example: IFNULL

• IFNULL: Branch if reference is null.

• The instruction pops value off the operand stack, and checks if the value 
is NULL.

• The 16-bit parameter contains a branch offset that is added to the 
instruction pointer if value is NULL.

• Otherwise, execution continues normally from the next instruction.

IFNULL 16-bit parameter

Operand stack: ..., value => ...
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Accessing Inline Parameters

• Inline parameters are generally very easy to access.

• Use the instruction pointer to determine the location.

• For instance, a bytecode for performing an unconditional jump could be 
written as follows:

• Important: Keep in mind the endianness issues!
 In Java, all numbers in classfiles are big-endian; if a machine-specific endianness was used, 

Java class files wouldn't be portable across different machines.

void UnconditionalBranch() {
int branchOffset = *ip;
ip += branchOffset;

}
ip

(instruction pointer has 
been pre-incremented
to point here.)

branch
offset
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Remarks on
Interpreter Performance
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Interpretation Overhead

• Interpreted code is generally a lot slower than compiled code/machine code.
 Studies indicate an order of magnitude difference.

 Actual range is something like 2.5x to 50x.

• Why? Because there are extra costs associated with interpretation:
• Dispatch (fetch, decode and invoke) next instruction

• Access virtual registers and arguments

• Perform primitive functions outside the interpreter loop

• “Interpreter performance is primarily a function of the interpreter itself 
and is relatively independent of the application being interpreted.”

522017/11/06 (Antero Taivalsaari, Nokia) 18-600 Lecture #19



Interpreter Tuning

• Common interpreter optimizations techniques:

 Writing the interpreter loop and key instructions in assembly code.

 Keeping the virtual registers (ip, sp, ...) in physical hardware registers – this can 
improve performance dramatically.

 Splitting commonly used instructions into a separate interpreter loop & making 
the core interpreter so small that it fits in HW cache.

 Top of stack caching (keeping topmost operand in a register).

 Padding the instruction lookup table so that it has exactly 16/32/64/128/256 
entries.

• Actual impact of such optimizations will vary considerably based on 
underlying hardware.
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High-Performance VMs

• Small, simple & portable VM == slow VM

• Interpreted code has a big performance overhead compared to native code:

• If you need speed, you need a compiler!
 Unfortunately, compilers are always rather machine/CPU-specific.

 This introduces a lot of additional complexity & requires a lot more manpower 
to implement.

• Almost always: Fast == more complex

KVM
(pure ANSI C) HotSpot (interpreted)

KVM or HotSpot
(with ASM loop)

HotSpot (compiler enabled)
HotSpot

(compiler enabled)

1x 2-4x 10-20x
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Compilation: Basic Strategies

 Static / Ahead-Of-Time (AOT) Compilation
 Compile code before the execution begins.

❖ Dynamic (Just-In-Time, JIT) Compilation
 Compile code on the fly when the VM is running.

• Different flavors of dynamic compilation:

• Compile everything upon startup (impractical)

• Compile each method when executed first time

• Adaptive compilation based on “hotspots” (frequently executed code)
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Dynamic Compilation/Translation Loop in VM

Dispatch
Loop

Execute
Block

Translate
with
JIT

Instruction
translated ?

End of block?
No

No

Yes
Yes

Interpret
Instruction

Hot
Path?

No

Yes
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Sun Hotspot JVM

• Derived from Self VM

• Applies basic lazy compilation model 
• Code is initially run interpreted

• Compile after certain number of invocations of a method

• Client compiler
• Fast compiler performing minimal optimizations

• Server compiler
• Aggressive SSA dataflow compiler

• ~10x slower code generation, but 20%-50% faster code

2017/11/06 18-600 Lecture #19 57



IBM Jalapeno VM (aka Jikes VM)

• Entire JVM written in Java
• Allows VM code to be inlined into 

programmer code

• Basic lazy compilation 
• Uses three dynamic compilers
• No interpreter engine

• Full support for adaptive optimization
• Compiler directed edge sampling & 

instrumented profiling
• Profiling directed by compiler 

optimization passes

• Successfully implemented many 
profile directed optimizations

Controller

Online 

measurements
Optimizing/qui

ck compiler

Baseline 

compiler

Profile 

information

Instrumented 

code Opt. code

Opt. plan

Unopt. code

Executable 

code

Bytecode
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Java Dynamic Optimization

• Inlining [Jalapeno]
• Use profiling to identify hot paths for inlining
• Reduce code size and compilation time
• Provides slight performance addition to static inlining

• Speculative specialization [Hotspot]
• Method target specialization

• Inline most common target method with a check for expected target

• Eliminate class check if virtual / interface method targets known given 
current class hierarchy

• Decompile inlining if loaded class breaks assumption
• Works very well for many programs since many methods declared virtual 

even if they are not subclassed
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Walkthrough of Essential Component Areas
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Adding 
Multithreading 

Support
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Multithreading and Synchronization

• A key feature of many programming languages is multithreading.
 Multithreading: the ability to create multiple concurrently running 

threads/programs.

 Smalltalk, Forth, Ada, Self, Java, ...

• Each thread behaves as if it owns the entire virtual machine
 ... except when the thread needs to access external resources such as storage, 

network, display, or perform I/O operations in general.

 ...or when the thread needs to communicate with the other threads.

• Synchronization/locking mechanisms are needed to ensure controlled 
communication and controlled access to external resources.
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Implementing Multithreading: Technical Challenges

• Each thread must have its own virtual registers and execution stacks.

• Critical places of the VM (and libraries) must use mutual exclusion to avoid 
deadlocks and resource conflicts.

• Access to external resources (e.g., storage, network) must be controlled 
so that two threads do not interfere with each other.

• I/O operations must be designed so that one thread's
I/O operations do not block the I/O of other threads.

• Generally: All native function calls must be non-blocking.

• Locking / synchronization operations must be provided also at the application 
level.
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Recap: Components of an Interpreter

• Interpreters usually have the following components:

Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...
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Building a Multithreading VM
Interpreter loop Instruction set

Virtual registers Execution stacks

while (true) {
((void (*)())*ip++)();

}

ip

lp

fp

sp

Operand stack

Execution stack
...

...

add, mul, sub, ...
load, store, branch, ...
...

In principle, building a multithreading interpreter is easy: we must
simply replicate the virtual registers and stacks for each thread!

... ...
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Building a Multithreading VM: Supporting Interrupts

• In addition, we must modify the system so that it allows the current thread 
to be interrupted.

• When a thread is interrupted, a context switch is performed.  

Example:

int* ip; /* instruction pointer */

while (true) {
if (isInterrupted()) ContextSwitch();
((void (*)())*ip++)();

}
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Building a Multithreading VM: Context Switching

• What happens during a context switch?
 The virtual registers of the current thread are stored (context save).

 Current thread pointer is changed to point to the new current thread.

 Virtual registers are replaced with the saved virtual registers of the new current 
thread (context load).

• Context switching must be performed as an uninterrupted operation!
 No further interrupts may be processed until the context switch operation has 

been performed to completion.

 Operating systems commonly have a “supervisor mode” for running system-
critical code.
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Avoiding Atomicity Problems Using Safepoints

• In operating systems, threads can usually be interrupted at arbitrary locations.
 Interrupts may be generated by hardware at any time.

 The entire operating system must be designed to take into account mutual 
exclusion problems!

 Must use monitors or semaphores to protect code that can be executed only by 
one thread at the time.

• In VMs, simpler solutions are often used.
 Threads can only be interrupted in certain locations inside the VM source code. 

 These locations are known as “safepoints”.

 In the simplest case, thread switching is only allowed in one place inside the VM.

 Makes VM design a lot simpler and more portable!
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Using the “One Safepoint” Solution

• No separate interrupt handler routine.

• All the checking for interrupts happens inside the interpreter loop.

• Even if the actual interrupts are generated asynchronously, the actual 
context switching is not performed until the interpreter loop gets a chance 
to detect and process the interrupt:

int* ip; /* instruction pointer */

while (true) {
if (isInterrupted()) ContextSwitch();
((void (*)())*ip++)();

}
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Making Thread Switching 100% Portable

• In a virtual machine, you don't necessarily need an external clock to drive the 
interrupts!

• In the simplest case, you can count the number of executed instructions using 
a “timeslice”:

int* ip; /* instruction pointer */

while (true) {
if (--TimeSlice <= 0) ContextSwitch();
((void (*)())*ip++)();

}

 Force a context switch every 1000 bytecodes or so.

 You can also enforce a thread switch at each I/O request 
(used in many Forth systems).
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Thread Scheduling

• When you perform a context switch, which thread should run next?

• Various choices:
 FCFS (First-Come-First-Serve)

 Round robin approach

 Priority-based scheduling
• ... with fixed priorities or varying priorities

• In operating systems, thread scheduling algorithms can be rather 
complicated.

• There is no “ideal” scheduling algorithm.

• The needs of interactive and non-interactive programs (and client vs. server 
software) can be fundamentally different in this area.
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Case Study: KVM

• The original KVM implementation used a simple, portable round robin
scheduler.
 Threads stored in a circular list; each thread got to execute a fixed number of bytecodes

until interrupt was forced.

 Thread priority only affected the number of bytecodes a thread may run before it gets 
interrupted.

• In the actual product version, thread scheduling based on Java thread priority.
 Higher-priority threads always run first.

• Fully portable thread implementation; interrupts driven by bytecode counting; 
thread switching handled inside the interpreter loop.
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Actual Code: Thread Switching in KVM

Code inside the interpreter loop:

if (--Timeslice <= 0) {

do {

ulong64 wakeupTime;

/* Check if it is time to exit the VM */

if (AliveThreadCount == 0) return;

/* Check if it is time to wake up */

/* threads waiting in the timer queue */

checkTimerQueue(&wakeupTime);

/* Handle external events */

InterpreterHandleEvent(wakeupTime);

} while (!SwitchThread());

}

Thread switching code (simplified):

bool_t SwitchThread() {

/* Store current context */

StoreVirtualRegisters();

/* Obtain next thread to run */

CurrentThread = 

removeQueueStart(&RunnableThreads);

if (CurrentThread == NULL) return FALSE;

/* Set new context and timeslice */

LoadVirtualRegisters(CurrentThread);

Timeslice = CurrentThread->timeslice;

return TRUE;

}
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Java

• Developed by James Gosling's team at Sun Microsystems in the 
early 1990s.

• Originally designed for programming consumer devices (as a 
replacement for C++).
 Uses a syntax that is familiar to C/C++ programmers.

 Uses a portable virtual machine that provides automatic memory 
management and a simple stack-oriented instruction set.

 Class file verification was added to enable downloading and execution 
of remote code securely.

• Again, great timing: the development of the Java technology 
coincided with the widespread adoption of web browsers in the 
mid-1990s.
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Why is Java Interesting from VM Designer's Viewpoint?

• Most people had never heard of virtual machines until Java came along!

• Java brought virtual machines to the realm of mobile computing.

• Java combines a statically compiled programming language with a dynamic 
virtual machine.

• The Java virtual machine (JVM) is very well documented.
 Tim Lindholm, Frank Yellin, The Java Virtual Machine Specification, Second 

Edition, Addison Wesley, Java Series, April 1999.

• A JVM is seemingly very easy to build.

• However, tight compatibility requirements make the actual implementation 
very challenging.
 Must pass tens of thousands of test cases to prove compatibility.
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Java for Android / Dalvik VM

• Android resurrected interest in Java in the mobile space.

• Dalvik is an alternative runtime environment for executing Java programs, 
using an Android-specific application format (.dex files). 

• Unlike JVM, which uses a stack-based architecture, Dalvik uses a register-
based architecture and bytecode set.

• As of Android 5.0 (Lollipop), the Dalvik VM will be replaced by Android 
Runtime (ART) – an architecture based on ahead-of-time compilation.
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More Information on Virtual Machine Design 

• Bill Blunden, Virtual Machine Design and 
Implementation in C/C++, Wordware Publishing, 
March 2002

• Iain D. Craig, Virtual Machines, Springer Verlag, 
September 2005

• Jim Smith, Ravi Nair, Virtual Machines: Versatile 
Platforms for Systems and Processes, Morgan 
Kaufmann, June 2005

• Xiao-Feng Li, Jiu-Tao Nie, Ligang Wang, Advanced 
Virtual Machine Design and Implementation, CRC 
Press, October 2014

• Matthew Portnoy, Virtualization 
Essentials, Sybex Press, May 2012
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Lecture 20:
“Parallel Systems & Programming”

John Paul Shen
November 8, 2017

18-600  Foundations of Computer Systems

➢ Recommended Reference:
• “Parallel Computer Organization and Design,” by Michel Dubois, 

Murali Annavaram, Per Stenstrom, Chapters 5 and 7, 2012. 
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