
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:
“System Level I/O”

October 16, 2017

10/16/2017 18-600   Lecture #14 1

18-600  Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 10 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

SE
18-600 

PL
OS
CA



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socrative Experiment (Continuing)

➢ Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC

➢ Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z

➢Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

➢ Socrative:
• Let’s me open floor for electronic questions, putting questions into a visual queue so I 

don’t miss any

• Let’s me do flash polls, etc. 

• Prevents cross-talk and organic discussions in more generalized forums from pulling 
coteries out of class discussion into parallel question space.
• Keeps focus and reduces distraction while adding another vehicle for classroom interactivity. 

• Won’t allow more than 150 students per “room”
• So, I created one room per campus

• May later try random assignment to a room, etc. 

10/16/2017 18-600   Lecture #14 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z


Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

➢ Powerful (but dangerous) user-level mechanism for transferring control to an 
arbitrary location
• Controlled to way to break the procedure call / return discipline

• Useful for error recovery and signal handling

➢int setjmp(jmp_buf j)

• Must be called before longjmp

• Identifies a return site for a subsequent longjmp

• Called once, returns one or more times

➢ Implementation:
• Remember where you are by storing  the current register context, stack pointer,  and

PC value in jmp_buf

• Return 0

10/16/2017 18-600   Lecture #14 3



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

➢void longjmp(jmp_buf j, int i)

• Meaning:

• return from the setjmp remembered by jump buffer j again ... 

• … this time returning i instead of 0

• Called after setjmp

• Called once, but never returns

➢longjmp Implementation:
• Restore register context (stack pointer, base pointer, PC value) from jump buffer j

• Set %eax (the return value) to i

• Jump to the location indicated by the PC stored in jump buf j

10/16/2017 18-600   Lecture #14 4



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

➢Goal: return directly to original caller from a deeply-nested function

/* Deeply nested function foo */
void foo(void)
{

if (error1)
longjmp(buf, 1);

bar();
}

void bar(void)
{

if (error2)
longjmp(buf, 2);

}

10/16/2017 18-600   Lecture #14 5



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
case 0:

foo();
break;

case 1:
printf("Detected an error1 condition in foo\n");
break;

case 2:
printf("Detected an error2 condition in foo\n");
break;

default:
printf("Unknown error condition in foo\n");

}
exit(0);

}

setjmp/longjm
p Example (cont)

10/16/2017 18-600   Lecture #14 6



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
➢Works within stack discipline

• Can only long jump to environment of function that has been called but 
not yet completed

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp
jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{  . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}
10/16/2017 18-600   Lecture #14 7



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
➢Works within stack discipline

• Can only long jump to environment of function that has been called but not yet 
completed

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}
10/16/2017 18-600   Lecture #14 8



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program 
That Restarts Itself When ctrl-c’d

restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{

siglongjmp(buf, 1);
}

int main()
{

if (!sigsetjmp(buf, 1)) {
Signal(SIGINT, handler);

Sio_puts("starting\n");
}
else

Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

}
10/16/2017 18-600   Lecture #14 9



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:
“System Level I/O”

10/16/2017 18-600   Lecture #14 10

18-600  Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 A Linux file is a sequence of m bytes:
▪ B0 , B1 , .... , Bk , .... , Bm-1

 Cool fact: All I/O devices are represented as files:
▪ /dev/sda2 (/usr disk partition)

▪ /dev/tty2 (terminal)

 Even the kernel is represented as a file:
▪ /boot/vmlinuz-3.13.0-55-generic (kernel image) 

▪ /proc (kernel data structures)

10/16/2017 18-600   Lecture #14 11



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 Elegant mapping of files to devices allows kernel to export simple 
interface called Unix I/O:
▪ Opening and closing files

▪ open()and close()

▪ Reading and writing a file

▪ read() and  write()

▪ Changing the current file position (seek)

▪ indicates next offset into file to read or write

▪ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

10/16/2017 18-600   Lecture #14 12



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

 Each file has a type indicating its role in the system
▪ Regular file: Contains arbitrary data

▪ Directory:  Index for a related group of files

▪ Socket: For communicating with a process on another machine

 Other file types beyond our scope
▪ Named pipes (FIFOs)

▪ Symbolic links

▪ Character and block devices

10/16/2017 18-600   Lecture #14 13



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary files

▪ Text files are regular files with only ASCII or Unicode characters

▪ Binary files are everything else

▪ e.g., object files, JPEG images

▪ Kernel doesn’t know the difference!

 Text file is sequence of text lines
▪ Text line is sequence of chars terminated by newline char (‘\n’)

▪ Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
▪ Linux and Mac OS: ‘\n’ (0xa)

▪ line feed (LF)

▪ Windows and Internet protocols: ‘\r\n’ (0xd 0xa) 

▪ Carriage return (CR) followed by line feed (LF)

10/16/2017 18-600   Lecture #14 14



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

 Directory consists of an array of links
▪ Each link maps a filename to a file

 Each directory contains at least two entries
▪ . (dot) is  a link to itself

▪ .. (dot dot) is a link to the parent directory in the directory hierarchy (next slide)

 Commands for manipulating directories
▪ mkdir: create empty directory

▪ ls: view directory contents

▪ rmdir: delete empty directory

10/16/2017 18-600   Lecture #14 15



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory 
named / (slash)

 Kernel maintains current working directory (cwd) for each process
▪ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

10/16/2017 18-600   Lecture #14 16



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames
 Locations of files in the hierarchy denoted by pathnames

▪ Absolute pathname starts with ‘/’ and denotes path from root

▪ /home/droh/hello.c

▪ Relative pathname denotes path from current working directory

▪ ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

10/16/2017 18-600   Lecture #14 17



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

 Opening a file informs the kernel that you are getting ready to access that 
file

 Returns a small identifying integer file descriptor
▪ fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three open files 
associated with a terminal:
▪ 0: standard input (stdin)

▪ 1: standard output (stdout)

▪ 2: standard error (stderr)

int fd;   /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

10/16/2017 18-600   Lecture #14 18



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

 Closing a file informs the kernel that you are finished accessing that file

 Closing an already closed file is a recipe for disaster in threaded programs 
(more on this later)

 Moral: Always check return codes, even for seemingly benign functions 
such as close()

int fd;     /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

10/16/2017 18-600   Lecture #14 19



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files
 Reading a file copies bytes from the current file position to memory, and 

then updates file position

 Returns number of bytes read from file fd into buf
▪ Return type ssize_t is signed integer

▪ nbytes < 0 indicates that an error occurred

▪ Short counts (nbytes < sizeof(buf) ) are possible and are not errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open file fd ...  */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

10/16/2017 18-600   Lecture #14 20



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files
 Writing a file copies bytes from memory to the current file position, 

and then updates current file position

 Returns number of bytes written from buf to file fd

▪ nbytes < 0 indicates that an error occurred

▪ As with reads, short counts are possible and are not errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

10/16/2017 18-600   Lecture #14 21



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example

 Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void)

{

char c;

while(Read(STDIN_FILENO, &c, 1) != 0)

Write(STDOUT_FILENO, &c, 1);

exit(0);

}

10/16/2017 18-600   Lecture #14 22



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

 Short counts can occur in these situations:

▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:

▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts. 

10/16/2017 18-600   Lecture #14 23



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:

“System Level I/O”

18-600  Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/16/2017 18-600   Lecture #14 24



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package

 RIO is a set of wrappers that provide efficient and robust I/O in apps, 
such as network programs that are subject to short counts

 RIO provides two different kinds of functions
▪ Unbuffered input and output of binary data

▪ rio_readn and rio_writen

▪ Buffered input of text lines and binary data

▪ rio_readlineb and rio_readnb

▪ Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the 
same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
 src/csapp.c and include/csapp.h

10/16/2017 18-600   Lecture #14 25

http://csapp.cs.cmu.edu/public/code.html


Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output
 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on the 
same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

10/16/2017 18-600   Lecture #14 26



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn

csapp.c
10/16/2017 18-600   Lecture #14 27

/*

* rio_readn - Robustly read n bytes (unbuffered)

*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n) 

{

size_t nleft = n;

ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {

if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */

nread = 0;       /* and call read() again */

else

return -1;       /* errno set by read() */ 

} 

else if (nread == 0)

break;              /* EOF */

nleft -= nread;

bufp += nread;

}

return (n - nleft);         /* Return >= 0 */

}



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially cached in 

an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file fd and stores 
the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪ maxlen bytes read

▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

10/16/2017 18-600   Lecture #14 28



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

▪ rio_readnb reads up to n bytes from file fd

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered

▪ Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily 
on the same descriptor

▪ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

10/16/2017 18-600   Lecture #14 29



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation
 For reading from file

 File has associated buffer to hold bytes that have been read from 
file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readnot in buffer unseen

Current File Position

Buffered Portion

10/16/2017 18-600   Lecture #14 30



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration

 All information contained in struct

typedef struct {

int rio_fd;                /* descriptor for this internal buf */

int rio_cnt;               /* unread bytes in internal buf */

char *rio_bufptr;          /* next unread byte in internal buf */

char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

10/16/2017 18-600   Lecture #14 31



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RIO Example

 Copying the lines of a text file from standard input to standard output

#include "csapp.h"

int main(int argc, char **argv) 

{

int n;

rio_t rio;

char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) 

Rio_writen(STDOUT_FILENO, buf, n);

exit(0);

} cpfile.c

10/16/2017 18-600   Lecture #14 32



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:

“System Level I/O”

18-600  Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/16/2017 18-600   Lecture #14 33



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel
▪ accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev;      /* Device */

ino_t         st_ino;      /* inode */

mode_t st_mode;     /* Protection and file type */

nlink_t st_nlink;    /* Number of hard links */

uid_t st_uid;      /* User ID of owner */

gid_t st_gid;      /* Group ID of owner */

dev_t st_rdev;     /* Device type (if inode device) */

off_t st_size;     /* Total size, in bytes */

unsigned long st_blksize;  /* Blocksize for filesystem I/O */

unsigned long st_blocks;   /* Number of blocks allocated */

time_t st_atime;    /* Time of last access */

time_t st_mtime;    /* Time of last modification */

time_t st_ctime;    /* Time of last change */

};

10/16/2017 18-600   Lecture #14 34



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv) 

{

struct stat stat;

char *type, *readok;

Stat(argv[1], &stat);

if (S_ISREG(stat.st_mode))     /* Determine file type */

type = "regular";

else if (S_ISDIR(stat.st_mode))

type = "directory";

else

type = "other";

if ((stat.st_mode & S_IRUSR)) /* Check read access */

readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

10/16/2017 18-600   Lecture #14 35



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open files. Descriptor 1 
(stdout) points to terminal, and descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in 
stat

struct

10/16/2017 18-600   Lecture #14 36



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through two distinct 

open file table entries
▪ E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A (disk)

File B (disk)

10/16/2017 18-600   Lecture #14 37



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files
▪ Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

10/16/2017 18-600   Lecture #14 38



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files

 After fork:

▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

10/16/2017 18-600   Lecture #14 39



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

 Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function

▪ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

10/16/2017 18-600   Lecture #14 40



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

10/16/2017 18-600   Lecture #14 41



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)
▪ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A

File B

10/16/2017 18-600   Lecture #14 42



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:

“System Level I/O”

18-600  Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/16/2017 18-600   Lecture #14 43



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

 The C standard library (libc.so) contains a collection of higher-level 
standard I/O functions
▪ Documented in Appendix B of K&R

 Examples of standard I/O functions:
▪ Opening and closing files (fopen and fclose)

▪ Reading and writing bytes (fread and fwrite)

▪ Reading and writing text lines (fgets and fputs)

▪ Formatted reading and writing (fscanf and fprintf)

10/16/2017 18-600   Lecture #14 44



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams
 Standard I/O models open files as streams

▪ Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams 
(defined in stdio.h)

▪ stdin (standard input)

▪ stdout (standard output)

▪ stderr (standard error)

#include <stdio.h>

extern FILE *stdin;  /* standard input  (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error  (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

10/16/2017 18-600   Lecture #14 45



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation
 Applications often read/write one character at a time

▪ getc, putc, ungetc

▪ gets, fgets

▪ Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
▪ read and write require Unix kernel calls

▪ > 10,000 clock cycles

 Solution: Buffered read
▪ Use Unix read to grab block of bytes

▪ User input functions take one byte at a time from buffer

▪ Refill buffer when empty

unreadalready readBuffer

10/16/2017 18-600   Lecture #14 46



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or exit, or return 

from main. 

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

10/16/2017 18-600   Lecture #14 47



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

 You can see this buffering in action for yourself, using the always 
fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6)               = 6

...

exit_group(0)                        = ?

#include <stdio.h>

int main()

{

printf("h");

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

exit(0);

}

10/16/2017 18-600   Lecture #14 48



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:

“System Level I/O”

18-600  Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/16/2017 18-600   Lecture #14 49



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions 
(accessed via system calls)

Standard I/O 
functions

C application program

fopen  fdopen

fread  fwrite 

fscanf fprintf  

sscanf sprintf 

fgets  fputs 

fflush fseek

fclose

open   read

write  lseek

stat   close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

10/16/2017 18-600   Lecture #14 50



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

 Pros

▪ Unix I/O is the most general and lowest overhead form of I/O

▪ All other I/O packages are implemented using Unix I/O functions

▪ Unix I/O provides functions for accessing file metadata

▪ Unix I/O functions are async-signal-safe and can be used safely in signal handlers

 Cons

▪ Dealing with short counts is tricky and error prone

▪ Efficient reading of text lines requires some form of buffering, also tricky and error 
prone

▪ Both of these issues are addressed by the standard I/O and RIO packages

10/16/2017 18-600   Lecture #14 51



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

 Pros:
▪ Buffering increases efficiency by decreasing the number of read and write

system calls

▪ Short counts are handled automatically

 Cons:

▪ Provides no function for accessing file metadata

▪ Standard I/O functions are not async-signal-safe, and not appropriate for signal 
handlers

▪ Standard I/O is not appropriate for input and output on network sockets

▪ There are poorly documented restrictions on streams that interact badly 
with restrictions on sockets (CS:APP3e, Sec 10.11)

10/16/2017 18-600   Lecture #14 52



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions

 General rule: use the highest-level I/O functions you can

▪ Many C programmers are able to do all of their work using the standard I/O functions

▪ But, be sure to understand the functions you use!

 When to use standard I/O

▪ When working with disk or terminal files

 When to use raw Unix I/O 

▪ Inside signal handlers, because Unix I/O is async-signal-safe

▪ In rare cases when you need absolute highest performance

 When to use RIO

▪ When you are reading and writing network sockets

▪ Avoid using standard I/O on sockets

10/16/2017 18-600   Lecture #14 53



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: What’s 

wrong with this 

snippet?

void incorrect_password(const char *user) {

int ret;

/* User names are restricted to 256 or fewer characters */

static const char msg_format[] = "%s cannot be 

authenticated.\n";

size_t len = strlen(user) + sizeof(msg_format);

char *msg = (char *)malloc(len);

if (msg == NULL) {

/* Handle error */

}

ret = snprintf(msg, len, msg_format, user);

if (ret < 0) {

/* Handle error */

} else if (ret >= len) {

/* Handle truncated output */

}

fprintf(stderr, msg);

free(msg);

}

18-600   Lecture #1410/16/2017 54



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Security Violation

 NEVER use a USER input string as the format for a *printf
▪ The user can create an exploit against your program this way

▪ Check the “%n” format string

 Acceptable solutions
▪ fprintf(stream, “%s: cannot be authenicated”, user); /* won’t 

get evaluated again by *printf */

▪ -OR-

▪ fputs(msg, stream); /* fputs doesn’t evaluate msg again */

 NEVER use `gets`

▪ There is absolutely no safe way to use that function

18-600   Lecture #1410/16/2017 55



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Functions you should never use on binary files
▪ Text-oriented I/O such as fgets, scanf, rio_readlineb

▪ Interpret EOL characters. 

▪ Use functions like rio_readn or rio_readnb instead

▪ String functions

▪ strlen, strcpy, strcat

▪ Interprets byte value 0 (end of string) as special

10/16/2017 18-600   Lecture #14 56



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information

 The Unix bible:

▪ W. Richard  Stevens & Stephen A. Rago, Advanced Programming in the Unix 
Environment, 2nd Edition, Addison Wesley, 2005

▪ Updated from Stevens’s 1993 classic text

 The Linux bible:

▪ Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

▪ Encyclopedic and authoritative

10/16/2017 18-600   Lecture #14 57



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

10/16/2017 18-600   Lecture #14 58



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

10/16/2017 18-600   Lecture #14 59



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

10/16/2017 18-600   Lecture #14 60



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv[1];

fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

Write(fd1, "pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write(fd3, "jklmn", 5);

fd2 = dup(fd1);  /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return 0;

} ffiles3.c

10/16/2017 18-600   Lecture #14 61



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries

▪ dirent structure contains information about a directory entry

▪ DIR structure contains information about directory while stepping through its entries

#include <sys/types.h>

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

...

if (!(directory = opendir(dir_name)))

error("Failed to open directory");

...

while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);

}

...

closedir(directory);

}

10/16/2017 18-600   Lecture #14 62



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 15:
“Virtual Memory Concepts and Systems”

John P. Shen & Gregory Kesden
October 18, 2017

10/16/2017 18-600   Lecture #14 63

18-600  Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 9 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.


