18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

October 9, 2017

» Required Reading Assignment: {Ky Electrical & Computer

» Chapter 8 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 1

Socrative Experiment (Continuing)

» Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC
» Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z

» Microphone/Speak out/Raise Hand: Still G-R-E-A-T!
» Socrative:

* Let’s me open floor for electronic questions, putting questions into a visual queue so |

don’t miss any
* Let’s me do flash polls, etc.

* Prevents cross-talk and organic discussions in more generalized forums from pulling

coteries out of class discussion into parallel question space.

» Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.

 Won’t allow more than 150 students per “room”

* So, | created one room per campus
* May later try random assignment to a room, etc.

10/9/2017 18-600 Lecture #12

Carnegie Mellon University 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

%Anatomy of a Computer System: SW/HW

» What is a Computer System?

% Software + Hardware

¢ Programs + Computer =» [Application program + OS] + Computer

¢ Programming Languages + Operating Systems + Computer Architecture

COMPILER =

OS| =

ARCHITECTURE =

—

N—
—

\Yd

Application programs

Operating system

Processor [Main memory| |/O devices

\

_/
—~

Software
(programs)

L Hardware

—

(computer)

10/9/2017

18-600 Lecture #12 Carnegie Mellon University 3

Anatomy of a Computer System: OS

User Mode <

Kernel Mode <

Computer

A

CS:APP

Application programs

system calls upcalls

Ch.2 &3

| 4 :
\ | Operating system é:hS.SA Zpg
Processes
I
L — . N
Virtual memory
A
-

commands interrupts:

Files/NIC

-

 Processor |Main memory

\
CS:APP
B} Ch. 6, 9, 10
/O devices

10/9/2017

18-600 Lecture #12

Carnegie Mellon University 4

18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

Basics of Operating System
Exceptional Control Flow

Processes

Process Control (&) Eel\lc'%cialhgé%’énl |\u|t§

L
L
m Exceptions
L
[

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 5

What is an Operating System?

[Hsien-Hsin Sean Lee, 2007]

» An intermediate program between a user of a computer and the
computer hardware (to hide messy details)

» Goals:

Execute user programs and make solving user problems easier
Make the computer system convenient and efficient to use

IE

User Mode { PwrPoint Gemb

Compiler Editors Shell

Kernel Mode { Operating System

Instruction Set Architecture

Microarchitecture

Physical Devices

} Application programs

} System programs

10/9/2017 18-600 Lecture #12

Carnegie Mellon University ¢

Computer System Components

» Hardware
Provides basic computing resources (CPU, memory, 1/O)
» Operating System

Controls and coordinates the use of the hardware among various application
programs for various users

» Application Programs

Define the ways in which the system resources are used to solve the computing
problems of users (e.g. database systems, 3D games, business applications)

» Users
People, machines, other computers

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstract View of Computer System Components

User User User .. User
1 2 3 N
gcc firefox emacs mySQL

System and application programs

Operating System

10/9/2017

18-600 Lecture #12 Carnegie Mellon University &

Time-Sharing Computing Systems

» CPU is multiplexed among several jobs that are kept in memory and on disk
(The CPU is allocated to a job only if the job is in memory)

» Ajob is swapped in and out of memory from and to the disk

» On-line communication between the user and the system is provided
= When the OS finishes the execution of one command, it seeks the next “control

statement” from the user’s keyboard

» On-line system must be available for users to access data and code
» MIT MULTICS (MULtiplexed Information and Computing Services)

Ken Thompson went to Bell Labs and wrote one for a PDP-7
Brian Kernighan jokingly dubbed it UNICS (UNIplexed ..)
Later spelled to UNIX and moved to PDP-11/20

IEEE POSIX used to standardize UNIX

10/9/2017

18-600 Lecture #12 Carnegie Mellon University ¢

Operating System Concepts

» Process Management

» Main Memory Management

» File Management

» 1/0 System Management
» Networking

» Protection System

» Command-Interpreter System

Usars

Shalf or GUI

Application System
FPrograms Utilities

Systam call library

Oparating System
Kemel

Single processor
workstation with
128MEB RAM,
16GE Hard Disk

System A

Shalf or GUI

Application System
FPrograms Utilities

System call library

Operating System
Kemel

Dual processor
sorver with
512MB RAM,
100GE RAID array

System B

10/9/2017

18-600

Lecture #12

Carnegie Mellon University 10

[Xuxian Jiang, NCSU 2009]

How Does an Operating System Work?

system calls upcalls

! 1

hardware dependent commands interrupts

! !

* Receives requests from the application: system calls
 Satisfies the requests: may issue commands to hardware
* Handles hardware interrupts: may upcall the application

> Abstraction
= Process, memory, I/0, file, socket, ...

> Tradeoff

= Separation between mechanisms and policies

APPLICATION (user)

hardware independent
OS

HARDWARE

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 1

Operating System Abstractions

Abstraction 1: Processes

application: application
OS: process
hardware: computer

Abstraction 3: File System

application: copy filel file2
OS: files, directories
hardware: disk

Abstraction 2: Virtual Memory

application: address space
OS: virtual memory
hardware: physical memory

Abstraction 4: Messaging

application: sockets
OS: TCP/IP protocols
hardware: network interface

10/9/2017

18-600 Lecture #12 Carnegie Mellon University 12

Abstraction 1: Process

A process Is a system abstraction:
illusion of being the only job In the system

user: application
OS: process
hardware: computer
» Mechanism:
= Creation, destruction, suspension, context switch, signalling, IPC, etc.
> Policy:

= How to share system resources between multiple processes?

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 13

Abstraction 2: Virtual Memory

Virtual memory Is a memory abstraction:
illusion of large contiguous memory, often more
memory than physically available

application: address space
OS: virtual memory
Virtual Address
hardware: physical memory
> Main Memory

O

L®]

S

Physical Address | ©

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 14

Virtual Memory Mechanism and Policy

» Mechanism:
= Virtual-to-physical memory mapping, page-fault, etc.

virtual address spaces
pl p2

Processes. ‘ I

v-to-p memory mappings

physical memory:

> Policy:
= How to multiplex a virtual memory that is larger than the physical memory onto what is
available?

= How to share physical memory between multiple processes?

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 15

Abstraction 3: File System

A file system Is a storage abstraction:
illusion of structured storage space

application/user: copy filel file2
OS: files, directories
hardware: disk
> Mechanism:
= File creation, deletion, read, write, file-block- to-disk-block mapping, file buffer cache, etc.
> Policy:

= Sharing vs. protection?
= Which block to allocate for new data?
= File buffer cache management?

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 16

Abstraction 4: Messaging

Message passing Is a communication abstraction:
illusion of reliable (sometimes ordered) transport

application: sockets
OS: TCP/IP protocols
hardware: network interface
> Mechanism:
= Send, receive, buffering, retransmission, etc.
> Policy:

= Congestion control and routing
= Multiplexing multiple connections onto a single NIC

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 17

Abstraction 5: Threaad

Athread Is a processor abstraction:
illusion of having 1 processor per execution context

application: execution context
Process vs. Thread:
oS thread Process is the Unl'!' of |
resource ownership, while
Thread is the unit of
hardware: processor instruction execution.
> Mechanism:
= Creation, destruction, suspension, context switch, signalling, synchronization, etc.
> Policy:

= How to share the CPU between threads from different processes?
= How to share the CPU between threads from the same process?

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 18

Threads vs. Processes

Threads:

» A thread has no data segment or
heap

» A thread cannot live on its own, it
must live within a process

» There can be more than one thread
in a process, the first thread calls
main and has the process’s stack

» Inexpensive creation

» Inexpensive context switching

» If a thread dies, its stack is reclaimed
by the process

Processes:

» A process has code/data/heap and
other segments

» There must be at least one thread in
a process

» Threads within a process share
code/data/heap, share 1/0, but each
has its own stack and registers

» Expensive in creation

» Expensive context switching

» If a process dies, its resources are
reclaimed and all threads die

Carnegie Mellon University 19

Process Management

» A process is a program in execution

» A process contains
= Address space (e.g. read-only code, global data, heap, stack, etc)
= PC, Ssp, CPU registers
= Opened file handles

» A process needs certain resources, including CPU time, memory, files, and
1/O devices

» The OS is responsible for the following activities for process management
= Process creation and deletion
= Process suspension and resumption
= Provision of mechanisms for:
o Process synchronization
o Process communication

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 2

Process State

» As a process executes, it changes state:

" New: The process is being created

® Ready: The process is waiting to be assigned to a processor

® Running: nstructions are being executed

" Waiting: The process is waiting for some event (e.g. |/0) to occur
® Terminated: The process has finished execution

admitted interrupt

scheduler dispatch

I/O or event completion I/0O or event wait

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 2

Process Control Block (PCB)

Information associated with each process:

Process state and Process ID (PID)
Program counter

CPU registers (for context switch)

CPU scheduling information (e.g. priority)

Memory-management information (e.g. page table,

segment table)

Accounting information (PID, user time, constraint)
1/0O status information (list of I/O devices allocated,

list of open files etc.)

process state

process number

program counter

reqgisters

memory limits

list of open files

10/9/2017

18-600 Lecture #12

Carnegie Mellon University 22

CPU Switches from Process to Process

process P, operating system process P,
interrupt or system call process D
executing | /]
A save state into PCB,, i free memory
\ idle
reload state from PCB, / e process C
o interrupt or system call S Interpreter
l \ "
save state into PCB, Drocess B
> idle
reload state from PCB
/ 0 -
——— ‘\ kernel

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 23

18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

Basics of Operating System
Exceptional Control Flow

Processes

Process Control (&) Eel\lctg:lalhgl‘z%’énl |\u|t(e§

L
L
m Exceptions
L
L

10/9/2017 18-600 Lecture #12 Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes (interprets) a sequence
of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

inst,

inst,
Time Inst
inst,
<shutdown>

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Carnegie Mellon University 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions
= Change in control flow in response to a system event
(i.e., change in system state)
= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3. Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Carnegie Mellon University 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Thir ition

18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

Basics of Operating System
Exceptional Control Flow

L

L

m Exceptions
m Processes
[

Process Control

10/9/2017 18-600 Lecture #12

Carnegie Mellon University 2s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions

m An exception is a transfer of control to the OS kernel in response to
some event (i.e., change in processor state)

= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request

completes, typing Ctrl-C

User code

Event — |_current
| _next

<

Kernel code

Exception

* Return to | _current
* Return to | _next
* Abort

: Exception processing
by exception handler

Carnegie Mellon University 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exception Tables

Exception
numbers
Code for m Each type of event has a
exception handler 0 unique exception number k
¢ Exception Code for
Table .
tion handler 1 . . .
0 ¢ exception handler m k=index into exception table
L :// — | Code for (a.k.a. interrupt vector)
2 exception handler 2
n-1 e

m Handler k is called each time
exception k occurs

Code for
exception handler n-1

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
" Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/Ointerrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Carnegie Mellon University 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions

m Caused by events that occur as a result of executing an instruction:
" Traps
= |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction
" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Carnegie Mellon University 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Carnegie Mellon University 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SOx2,%eax # open is syscall #2
e5d7e: 0f05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

User code Kernel code m $rax containssyscall number
m Otherargumentsin $rdi, $rsi,
Exception srdx, srl0, 5r8, 5r9

syscall ¥ .

cmp | - , m Returnvaluein $rax
Open file . .
Returns m Negative value is an error

| corresponding to negative errno

y

Carnegie Mellon University 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault

m User writes to memory location

m That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

80483b7/: c7 05 10 94 04 08 0Od mov.l

$0xd, 0x8049d10

User code Kernel code

' Exception: page fault i

mov/| >
Return and disk to memory

reexecute movl

v

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

int a[l1000];
main ()

{

a[5000] = 13;
}

80483b"7: c7 05 o0 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

Exception: page fault

movl

A 4

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Thir ition

18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

Basics of Operating System
Exceptional Control Flow

|

|

m Exceptions
m Processes
[

Process Control

10/9/2017 18-600 Lecture #12

Carnegie Mellon University 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

m Definition: A process is an instance of a running program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions: Memory
" logical control flow Stack
= Each program seems to have exclusive use of the CPU Heap
= Provided by kernel mechanism called context switching gc?;ae
" Private address space
= Each program seems to have exclusive use of main memory. CPU
= Provided by kernel mechanism called virtual memory Registers

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously

= Applications for one or more users
= Web browsers, email clients, editors, ...

= Background tasks
= Monitoring network & 1/0 devices

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

Xxterm

Proceszses: 123 total, b5 running, 9 stuck, 109 sleeping,. 611 threads
Load Awg: 1,048, 1,13, 1,14 CPU wusage: 3,27% user, 5,15% =sysz, 91.56% idle

SharedLibs: 57BE resident, OB data, OB linkedit,

MemRegions: 27358 total, 1127M resident, 38M private, 494M shared,
PhyzMem: 1029M wired, 1974M actiwe, 10B2M inactive, 4076M used, 1BM free,
YH: 280G weize, 1091M framework wsize, 23075213(1) pageins, S843367(0) pageouts, |

Metworks: packets: 410462285116 in, BEOEA0E/7/G out,
Disk=: 17/874391/234906 read, 12847373/0840 written,

FII
93217-
93051
H300E
24286
24285
h5333-
h47h1
b4 739
b4 TET
h4713
b4 0l
h4BE1
h4Bh3
L2818

COMMANT

Microsoft OF

Lsbmuzd

i TunezHelper

bazh
xterm

Microsoft Ex

=leep

l aunchdadd

Ltop

automountd

oczpd
Grab
cook ied
mdworker

02328, 34
Qo04, 10
00301, 23
Qo011
0000, 83
21358,97
(03 Q0 00
00 (0, 00
Q002,53
Q0 (0, 02
000, 05
Qo302 75
Q000,15
00301, 67

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

#
4
3
&
1
1
1
1
&
1
7
4
B
&
4

0

/1

#U0 #PORT #MREGC RPREMWT

b G R T T e D T e e

202
47
ha
20
3
360
17
33
A0
b3
B1
222+
i)
hi

418 Z1H
BB 426k,
/a 728k
24 224k,
73 EhEk,
954 1EH
20 92k
bl daak
23 1416k
G4 BEOkK
04 1263k
83+ 1hh+
Bl 3316k
31 /B28k
2464k
280k
bk

(RN

11147307
1

RSHRD RSIZE WPRWT YSIZE

24 21M GBM 7R3M

JIEK 480K BOM 2422M

324K 1124K 434 2429M

732K 484K 17M 237aM

a7k BIZK 9728K 23AM

GGH 46M 114M 10G7H

212K FEOK 9BE2K 2370N

220K 1736K 4BM 2409M

JIEK 224K 17 237aM

21K 2184K 53 2413M

Oh44K FLIZK GOM 2426M

Jfb+ 40+ 7GH+ 2GEAH

24K 4DEEK 42H 2411H

FAI2K 1BM 4BM 2436M

GL4BK G97EK 4dM 2434M |

a7k B3ZK 9700K 23aoM

2IEK B3K 1M 233 |

———aa e b PR TN}

Carnegie Mellon University <o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data .o Data

Code Code Code

Saved Saved Saved
registers registers reqisters

CPU m Single processor executes multiple processes
Registers concurrently

" Process executions interleaved (multitasking)

= Address spaces managed by virtual memory system (later in

course)

= Register values for nonexecuting processes saved in memory

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

m Save current registers in memory

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
VAN
CPU
Registers

Carnegie Mellon University 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

m Schedule next process for execution

Memory
Stack Stack Stack
Heap § Heap Heap
Data : Data Data
Code Code Code
Saved : Saved Saved
reqisters reqisters reqisters
CPU
Registers

Carnegie Mellon University 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
\/
CPU
Registers

m Load saved registers and switch address space (context switch)

Carnegie Mellon University 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data . Data L eee Data

Code , Code : Code

Saved - Saved : Saved
registers registers registers

= = m Multicore processors

" Multiple CPUs on single chi

Registers Registers P _ 5 P

] = Share main memory (and some of the caches)

= Each can execute a separate process

= Scheduling of processes onto cores done
by kernel

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their flows overlap in
time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A& B,A&C
= Sequential: B& C

Process A Process B Process C

Time

Carnegie Mellon University <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes

m Control flows for concurrent processes are physically disjoint in time

m However, we can think of concurrent processes as running in parallel
with each other

Process A Process B Process C

Time

Carnegie Mellon University 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching

m Processes are managed by a shared chunk of memory-resident OS
code called the kernel

" |Important: the kernel is not a separate process, but rather runs as part of
some existing process.

m Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code } context switch

Time
user code

kernel code } context switch

|
|
I user code
|
|
|

Carnegie Mellon University <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Thir ition

18-600 Foundations of Computer Systems

Lecture 12:
“Exceptional Control Flow I
Exceptions and Processes”

Basics of Operating System
Exceptional Control Flow

|

|

m Exceptions
m Processes
[

Process Control

10/9/2017 18-600 Lecture #12

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling

m On error, Linux system-level functions typically return -1 and set global
variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
" Only exception is the handful of functions that return void

m Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

Carnegie Mellon University 5o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

}

if ((pid = fork()) < 0)
unix_error("fork error");

Carnegie Mellon University 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers

m We simplify the code we present to you even further by using

Stevens-style error-handling wrappers:

pid_t Fork(void)

{
pid_t pid;

if ((pid = fork()) < 0)
unix_error("Fork error");
return pid;

}

pid = Fork();

Carnegie Mellon University 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

Carnegie Mellon University 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as being in one
of three states

m Running

" Process is either executing, or waiting to be executed and will eventually be
scheduled (i.e., chosen to execute) by the kernel

m Stopped

= Process execution is suspended and will not be scheduled until further notice (next
lecture when we study signals)

m Terminated
" Process is stopped permanently

Carnegie Mellon University 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine

= Calling the exit function

B void exit(int status)
" Terminates with an exit status of status
= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

Carnegie Mellon University 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

m Parent process creates a new running child process by calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
" Child is almost identical to parent:
= Child get an identical (but separate) copy of the parent’s virtual address space.
= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

{

int main()

pid_t pid;
intx=1;

pid = Fork();
if (pid ==0){ /* Child */
printf("child : x=%d\n", ++x);
exit(0);
}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

linux> ./fork
parent: x=0
child : x=2

fork.c

m Call once, return twice

m Concurrent execution
" Can’t predict execution order of
parent and child
m Duplicate but separate address
space

" x has avalue of 1 when fork
returns in parent and child

= Subsequent changes to x are
independent
m Shared open files

" stdout is the same in both parent
and child

Carnegie Mellon University 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling £ork with Process Graphs

m A process graph is a useful tool for capturing the partial ordering of
statements in a concurrent program:
= Each vertex is the execution of a statement
" a->b means a happens before b
= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible total ordering.

" Total ordering of vertices where all edges point from left to right

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

} fork.c

int main()
{
pid_t pid;
intx=1;
child: x=2 :
pid = Fork(); r?ntf e;:.it Child
if (pid == 0) { /* Child */ P
Lo gL " : ==1 arent: x=0
printf(Fhl|d :x=%d\n", ++x); o X P o - Parent
exit(0); main fork printf exit

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs

m Original graph:

child: x=2

>@ >®
printf exit
X== parent: x=0
@ >® »®
main fork printf exit
m Relabled graph:
l e g:
@ >@® >®
a b C d

Feasible total ordering:

Carnegie Mellon University 6o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive £orks

Bg/e
void fork2() printf
{ L1l J Bye

printf("L0\n"); Printf fork printf
fork(); Bye
printf("L1\n"); printf
fork();
printf("Bye\n"); L.O §! }-.1 l]Eg’e
} forks.c printf fork printf ork printf
Feasible output: Infeasible output:
LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye
Bye Bye

Carnegie Mellon University 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()
{
printf("LO\n");
if (fork() '=0) {
printf("L1\n");
if (fork() '=0) {
printf("L2\n");
}

}
printf("Bye\n");

}

forks.c

LO

printf

Bye

printf
‘ L2 B
> >® >¥ <

».
>

printf fork printf fork printf printf

Feasible output:
LO

L1

Bye

Bye

L2

Bye

Infeasible output:
LO

Bye

L1

Bye

Bye

L2

Carnegie Mellon University 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested £orks in children

void fork5()
{
printf("LO\n");
if (fork() ==0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");
}
}
printf("Bye\n");
}

forks.c

LO

L2 Bye
pi‘intf pf:l’.ntf
L1l Bye
prf%tf fork prntf
Bye
>

».
>

printf fork printf

Feasible output: Infeasible output:
LO LO

Bye Bye

L1 L1

L2 Bye

Bye Bye

Bye L2

Carnegie Mellon University 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes

m ldea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait or waitpid)
" Parentis given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?
= |f any parent terminates without reaping a child, then the orphaned child will be
reaped by init process (pid == 1)
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Carnegie Mellon University ¢4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

forks.c

. void fork7() {
Zom ble if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n", getpid());
Example o0}
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 }
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks -
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated —H
linux> ps &=
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

ps shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to be
reaped by init

Carnegie Mellon University ¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void fork8()
{
Non- f (fork() = 0) {
/* Child */
-te rmi nati n printf("Running Child, PID = %d\n",
g getpid());
. while (1)
Child Example e
}else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> ./forks 8 J forks.c
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even though
linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
66760 ttyp9d 00:00:06 fork m Must kill child explicitly, or else will
0677 ttypd OOM keep running indefinitely
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Carnegie Mellon University ¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set to a
value that indicates reason the child terminated and the exit status:

= Checked using macros definedin wait.h

- WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

— See textbook for details

Carnegie Mellon University 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {
int child_status;
HC exit
: »® o
if (fork() ==0) { printf
printf("HC: hello from child\n");
exit(0);
CT
} else { Bye
printf("HP: hello from parent\n"); s fl.P e 3:
wait(&child_status); fork printf wait printf
printf("CT: child has terminated\n");
}
printf("Bye\n");
} forks.c
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye
Bye HC

Carnegie Mellon University es

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example

m If multiple children completed, will take in arbitrary order
m Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) ==0) {
exit(100+i); /* Child */
}
for (i=0; i< N; i++) { /* Parent */
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

Carnegie Mellon University 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int &status, int options)
= Suspends current process until specific process terminates

= Various options (see textbook)

void fork11() {
pid_t pid[N];
inti;
int child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i=N-1;i>=0; i--) {
pid t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

forks.c

Carnegie Mellon University 70

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

m int execve (char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename
= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)
= ..with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns
= _.exceptif thereis an error

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of

the stack when
a New program

starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n—-1]

envp [0]

argv[argc] = NULL

argv[argc-1]

argv

argv[0]

(In $rsi)

argc
(in $rdi)

Stack frame for
libc start main

Future stack frame for
main

Bottom of stack

environ

_|-(global var)

envp
(in $rdx)

Top of stack

Carnegie Mellon University 72

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

m Executes “/bin/ls -1t /usr/include” in child process using current

—> “/usr/include”

> “—]1t”

environment:
myargv [argc] = NULL
(argc == 3) myargv [2]
myargv [1]
myargv [0]

myargv ———>

— “/bin/1s”

envp[n] = NULL

envp [n-1]

——> “PWD=/usr/droh”

, envp [0]
environ >

—> “USER=droh”

if (execve(myargv[0], myargy, environ) < 0) {

exit(1);
}
}

if ((pid = Fork()) ==0){ /* Child runs program */

printf("%s: Command not found.\n", myargv[0]);

Carnegie Mellon University 73

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

m Exceptions
" Events that require nonstandard control flow

" Generated externally (interrupts) or internally (traps and
faults)

m Processes
" At any given time, system has multiple active processes
" Only one can execute at a time on a single core, though

" Each process appears to have total control of
processor + private memory space

Carnegie Mellon University 74

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)

m Spawning processes
" Call fork

®= One call, two returns
m Process completion

" Callexit

" One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)
" One call, (nhormally) no return

Carnegie Mellon University 7

yant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow Il
Signals and Nonlocal Jumps”

Next Time

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 8 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

October 11, 2017

Carnegie Mellon University 7

