
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 3:
“Bits, Bytes, and Integers”

September 6, 2017

18-600 Lecture #3 1

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 2 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

➢ Assignments for This Week:
❖ Lab 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socrative Experiment

• Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC

• Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z

• Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

• Socrative:
• Let’s me open floor for electronic questions, putting questions into a visual queue so I

don’t miss any

• Let’s me do flash polls, etc.

• Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
• Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.

• Won’t allow more than 150 students per “room”
• So, I created one room per campus

• May later try random assignment to a room, etc.

18-600 Lecture #39/7/2016 (©Zhiyi Yu & John Shen) 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

• Representing information as bits

• Integers
• Representation: unsigned and signed

• Conversion (casting), expanding

• Addition, multiplication, shifting

• Representations in memory, pointers, strings

18-600 Lecture #3 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits

• Everything in computers including instructions and data are bits
(binary digits)

• The binary (two) digits are 0 and 1, represented by low or high voltages

• Why bits (digital) vs continuous (analog)?
• Easier to tell “on” vs “off” than 18.3% vs 22.5%, etc.

• Especially true once wires act as antennas and pick up extraneous signals and also act as
resistors and lose data signal. Precise levels become noisy. Signal-noise ratio (SNR) can go
from high (good) to low (bad), but in the real world always needs to be a “tolerance” for
noise.

0.0V
0.2V

0.9V
1.1V

0 1 0

18-600 Lecture #3 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-two bases Group Binary Nicely

• Base-2 (Binary) groups 1 bit (0-1) into 2 digits (0,1)

• Base-4 groups 2 bits (00-11) into 4 digits (0, 1, 2, 3)

• Base-8 (Octal) groups 3 bits (000-111) into 8 digits (0, 1, 2, 3, 4, 5, 6, 7)

• Base-16 (Hexadecimal) groups 4 bits (0000-1111) into 16 digits
(0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

• Letters conventionally used past 0-9. They’re familiar and we know the order.

18-600 Lecture #3 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-two Bases, Example Grouping

• Consider 0111111101011010 (Base-2)

• 01 11 11 11 01 01 10 10

1 3 3 3 1 1 2 2 (Base-4)

• 000 111 111 101 011 010 (Base-2)

0 7 7 5 3 2 (Base-8, Octal)
• Note leading 0s don’t change value. They just fill out grouping.

• Important to group from the right.

• 0011 1111 1010 1101 (Base-2)
3 F A D (Base-16, Hexadecimal)

• Note leading 0s don’t change value. They just fill out grouping.

• Important to group from the right.

18-600 Lecture #3 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Octal and (Mostly) Hexadecimal Best Choices

18-600 Lecture #3 7

• They have “approximately” as many digits as decimal

• Convenient for humans.

• Fewer digits means longer numbers, which are harder for
humans

• More digits means shorter numbers, but it is hard for humans to
keep track of more digits to interpret the numbers and numbers
that group too many bits are harder to keep track of and break
down to manipulate.

• “Hex” is most common because, in practice, it is most
convenient balance of complexity and length.

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers
• Representation: unsigned and signed

• Conversion (casting), expanding

• Addition, multiplication, shifting

• Representations in memory, pointers, strings

• Summary

18-600 Lecture #3 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Positive and Non-Positive Numbers

• Non-negative values are straight-forward to represent.
• Read bit values directly as powers of 2 and add together

• But, how to represent a negative number?

• Can reserve left-most bit to represent minus sign: 0 (non-negative), 1 (Negative)
• 1010 represents -2

• Maximum range is -7 to +7, +/- 0 values (1000, 0000)

• Bit pattern is discontinuous, which special cases arithmetic, e.g. -0+1=0 and (7+1=0),etc.

• Use “2s complement” to represent negative numbers
• Represent negative numbers as complement of number plus 1

• E.g. -5 = (~0101 + 1) = (1010 + 1) = (1011)

• Addition with negative and positive numbers works, allowing subtraction by addition.
• 1011 + 0101 = 1 0000

• Number line stays clean

18-600 Lecture #3 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Let’s play with binary arithmetic

• We’re building up to why this “weird 2s complement thing” works

• Assumption:
• Computers have finite memory. Numbers have finite sizes, e.g. a fixed number of bits.

• For this example, we assume 4-bit integers (Real systems typically have 8-64 bit integers)

• 0000 + 0001 = 0001 (Make sense? Sure it does)

• 0001 + 0001 = 0010 (We still good?)

• …

• 1111 + 0001 = 1 0000 (Wrap-Around!)
• But, we lose the 1 since we only have 4 digits. It is “Carry out”, which processors typically

store separately in a flag.

18-600 Lecture #3 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

New Math! Let’s Keep Playing!

• 1111 + 1 = 1 0000 (Wrap-Around!)
• But, we lose the 1 since we only have 4 digits. It is “Carry out”

• 1111 + 1 = 0 (Wow! New math!)
• Remember: We lost the “carry out” since it couldn’t fit in 4 digits

• (1111 + 1) - 1 = 0 – 1 (Let’s do some algebra)

•1111 = -1 (Huh. That is curious. Let’s roll with it)

18-600 Lecture #3 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

That’s strange! Can 1111 really represent -1?

• 1111 + 0101 = 0100 (-1+5 = 4) 10

• Look right. It worked!

• 1111 + 0100 = 0011 (-1+4 = 3) 10

• Still consist as -1 + 410 = -1 + (510 -1) and 0011 = (0100 -1)

• 1111 + 0001 = 0 (We expect -1+1 = 0. Note carry-out)
• Look right. It worked!

• 0 + –1111 = 0 – 1111 = -1111 (Okay, still consistent, 0 – 1 = -1)

• Yes, yes, 1111 can really represent -1!

18-600 Lecture #3 12

1 1 1 1

1111 (-1) +
0001 (1)

1 0000 (0)

1 1 1 1

1111 (-1) +
0101 (5)

1 0100 (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If 1111 represents -1, what does 1000 represent?

• 1111 = 1000 (x10) + 0111 (710) (Just addition)

• -1 = x + 710 -1 -710 = x  x = -810

• 1000 (-810) + 0100 (410) = 1100 (410)

• 1000 (-810) + 0010 (210) = 1010 (-610)

• 1000 (-810) + 0001 (110) = 1001 (-710)

• 1000 (-810) + 0100 (410) + 0010 (210) + 0001 (110) = 1111 (-110)

• Upshot: For 4-bit 2s complement, 1000 is -810

• We’ll show that this generalizes w.r.t. powers-of-two and the left-most bit
position, ie. -2w-1, where w is the number of bits used to represent a number.

• E.g. For 16-bit numbers the most negative value is -215

18-600 Lecture #3 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

6

4

1

3

2

5

7

2s Complement As A Ring/Modular Arithmetic

18-600 Lecture #39/7/2016 (©Zhiyi Yu & John Shen) 14

0

-2

-4

1

3

2

-3

-1

Add
Add

Subtract Subtract

000

001

010

011

100

101

110

111
000

001

010

011

100

101

110

111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Number Line: Bit Patterns and Values

• Zero is always represented with a bit pattern of all 0s
• E.g. 0000 (010)

• The most negative number always has the bit pattern 1000…000
• E.g. 1000 (-810)

• The most positive number always has the bit pattern 0111…1111
• E.g 0111 (710)

• The most negative number always has a value of -2w-1

• `Where w is the width of the number in bits, e.g. 1101 has a width of 4

• This is because the left-most digit represents Basew-1

• e.g. the third digit from the left in decimal represents 102

• and the 3rd digit in binary represents 22

• The most positive number always has a value of 2w-1+1

18-600 Lecture #3 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Number Line: Overarching Properties

• Non-negative binary numbers start at 0 and add from there
• 0101 = 0 + 4 + 2

• Negative (2s complement numbers) start with -2w-1 and add from there
• 1101 = -8 + 4 + 1 = -3

• The number line is off-balance, e.g. -8 to 7
• The high-order bit is negative

• The sum of the low-order bits is less than the high-order bit, e.g. 1000 = 0111 + 1

• There is only one zero, the bit pattern with all 0s
• It is not represented in 2s complement

• Thus we say that we use twos complement for “negative numbers”
• Not “non-positive numbers”

• Thus, 0 comes out of the otherwise-positive side of the number line (another way to
remember the off-balanced-ness)

18-600 Lecture #3 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Signed Numbers and Arithmetic

• Negative numbers are represented via “2s complement”
• Complement all bits and add 1

• Subtraction is accomplished by adding to a 2s complement (negative) number.
• The carry-out and the added bit work together to make this work

• This means that computers only need an adder, not a subtractor

• A number can be made negative by complementing it and adding 1

• A negative number can be made positive by subtracting one and
complementing it

• The most negative number has no peer on the positive side of the number line
• Subtracting one and complementing it gives itself, because it “wraps around”

18-600 Lecture #3 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers: Closed Form Expressions

short int x = 100;

short int y = -100;

• Sign Bit
• For 2’s complement, most significant bit indicates sign

• 0 for nonnegative

• 1 for negative

• Equation: x + (-x) = 0

• C short (2 bytes)

B2T (X) = -xw-1 ×2w-1 + xi × 2i

i=0

w-2

å
B2U(X)  xi 2

i

i0

w1



Unsigned Signed: Two’s Complement

Sign Bit

 Decimal Hex Binary
x 100 00 64 00000000 01100100

y -100 FF 9C 11111111 10011100

18-600 Lecture #3 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges: Summary

• Unsigned Values

• UMin = 0
000…0

• UMax = 2w – 1
111…1

• Two’s Complement Values

• TMin = –2w–1

100…0

• TMax = 2w–1 – 1
011…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

18-600 Lecture #3 19

• Observations
• |TMin | = TMax + 1

• UMax = 2 * TMax + 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations in Byte

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

18-600 Lecture #3 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

• Representing information as bits

• Integers
• Representation: unsigned and signed

• Conversion (casting), expanding

• Addition, multiplication, shifting

• Representations in memory, pointers, strings

18-600 Lecture #3 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

• Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

18-600 Lecture #3 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

=

+/- 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

• Constants
• By default are considered to be signed integers

• Unsigned if have “U” as suffix
0U, 4294967259U

• Casting
• Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

• Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

18-600 Lecture #3 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

• Contrast to Logical Operators
• &&, ||, !

• View 0 as “False”

• Anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Examples (char data type)
• !0x41 0x00

• !0x00 0x01

• !!0x41 0x01

• 0x69 && 0x55 0x01

• 0x69 || 0x55 0x01

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

18-600 Lecture #3 25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left

• Fill with 0’s on right

• Right Shift: x >> y

• Shift bit-vector x right y positions
• Throw away extra bits on right

• Logical shift

• Fill with 0’s on left

• Arithmetic shift
• Replicate most significant bit on left

• Undefined Behavior
• Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

18-600 Lecture #3 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises

• If there is a mix of unsigned and signed in single expression, signed values implicitly
cast to unsigned. Including comparison operations <, >, ==, <=, >=

• Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

• Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

18-600 Lecture #3 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

• Task:
• Given w-bit signed integer x

• Convert it to w+k-bit integer with same value

• Rule:
• Make k copies of sign bit:

• X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB • • •X

X  • • • • • •

• • •

w

wk

18-600 Lecture #3 28

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers
• Representation: unsigned and signed

• Conversion (casting), expanding

• Addition, multiplication, shifting

• Representations in memory, pointers, strings

• Summary

18-600 Lecture #3 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

• Standard Addition Function
• Ignores carry output

• Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits
UAddw(u , v)

18-600 Lecture #3 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

• Integer Addition
• 4-bit integers u, v

• Compute true sum Add4(u , v)

• Values increase linearly with u
and v

• Forms planar surface

Add4(u , v)

u

v

18-600 Lecture #3 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

• Wraps Around
• If true sum ≥ 2w

• At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

18-600 Lecture #3 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

• TAdd and UAdd have Identical Bit-Level Behavior
• Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

• Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits
TAddw(u , v)

18-600 Lecture #3 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Twos Compliment Add Overflow (TAdd)

• Functionality
• True sum requires w+1 bits

• Drop off MSB

• Treat remaining bits as 2’s comp.
integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

18-600 Lecture #3 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

• Values
• 4-bit two’s comp.

• Range from -8 to +7

• Wraps Around
• If sum  2w–1

• Becomes negative

• At most once

• If sum < –2w–1

• Becomes positive

• At most once

TAdd4(u , v)

u

v

PosOver

NegOver

18-600 Lecture #3 35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication

• Goal: Computing Product of w-bit numbers x, y
• Either signed or unsigned

• But, exact results can be bigger than w bits
• Unsigned: up to 2w bits

• Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

• Two’s complement min (negative): Up to 2w-1 bits
• Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

• Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

• Result range: x * y ≤ (–2w–1) 2 = 22w–2

• So, maintaining exact results…
• would need to keep expanding word size with each product computed

• is done in software, if needed
• e.g., by “arbitrary precision” arithmetic packages

18-600 Lecture #3 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

• Standard Multiplication Function
• Ignores high order w bits

• Implements Modular Arithmetic
UMultw(u , v) = u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

18-600 Lecture #3 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

• Standard Multiplication Function
• Ignores high order w bits

• Some of which are different for signed vs. unsigned
multiplication

• Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

18-600 Lecture #3 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

• Operation
• u << k gives u * 2k

• Both signed and unsigned

• Examples
• u << 3 == u * 8

• (u << 5) – (u << 3) == u * 24

• Most machines shift and add faster than multiply
• Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2k

True Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

18-600 Lecture #3 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Divide with Shift

• Quotient of Unsigned by Power of 2
• u >> k gives  u / 2k 

• Uses logical shift (arithmetic shift for signed)

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:

•••

k

••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

18-600 Lecture #3 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

• Representing information as bits

• Integers
• Representation: unsigned and signed

• Conversion (casting), expanding

• Addition, multiplication, shifting

• Representations in memory, pointers, strings

18-600 Lecture #3 41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Oriented Memory Organization

• Programs refer to data by address
• Conceptually, envision it as a very large array of bytes

• In reality, it’s not, but can think of it that way

• An address is like an index into that array
• and, a pointer variable stores an address

• Note: system provides private address spaces to each “process”
• Think of a process as a program being executed

• So, a program can clobber its own data, but not that of others

• • •

18-600 Lecture #3 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words

• Any given computer has a “Word Size”
• Nominal size of integer-valued data

• and of addresses

• Until recently, most machines used 32 bits (4 bytes) as word size
• Limits addresses to 4GB (232 bytes)

• Increasingly, machines have 64-bit word size
• Potentially, could have 18 EB (exabytes) of addressable memory

• That’s 18.4 X 1018

• Machines still support multiple data formats
• Fractions or multiples of word size

• Always integral number of bytes

18-600 Lecture #3 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization

• Addresses Specify Byte Locations
• Address of first byte in word

• Addresses of successive words differ by 4 (32-bit)
or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

18-600 Lecture #3 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering

• So, how are the bytes within a multi-byte word ordered in memory?

• Conventions
• Big Endian: Sun, PPC Mac, Internet

• Least significant byte has highest address

• Little Endian: x86, ARM processors running Android, iOS, and Windows
• Least significant byte has lowest address

18-600 Lecture #3 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example

• Example
• Variable x has 4-byte value of 0x01234567

• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

18-600 Lecture #3 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Integers
Decimal: 18600

Binary: 0100 1000 1010 1000

Hex: 4 8 A 8

A8

48

00

00

IA32, x86-64

48

A8

00

00

Sun

int A = 18600;

58

B7

FF

FF

IA32, x86-64

B7

58

FF

FF

Sun

Two’s complement representation

int B = -18600;

long int C = 18600;

00

00

00

00

A8

48

00

00

x86-64

48

A8

00

00

Sun

A8

48

00

00

IA32

18-600 Lecture #3 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data Representations

• Code to Print Byte Representation of Data
• Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer

%t: Tab space

%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

18-600 Lecture #3 48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 18600;

printf("int a = 18600;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 18600;

0x7fffb7f71dbc A8

0x7fffb7f71dbd 48

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00

18-600 Lecture #3 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;
x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

18-600 Lecture #3 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18600";

Representing Strings

• Strings in C
• Represented by array of characters

• Each character encoded in ASCII format
• Standard 7-bit encoding of character set

• Character “0” has code 0x30

• Digit i has code 0x30+i

• String should be null-terminated
• Final character = 0

• Compatibility
• Byte ordering not an issue

IA32 Sun

31

38

36

30

30

00

31

38

36

30

30

00

18-600 Lecture #3 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integer C Puzzles

• x < 0 ((x*2) < 0)

• ux >= 0

• x & 7 == 7 (x<<30) < 0

• ux > -1

• x > y -x < -y

• x * x >= 0

• x > 0 && y > 0 x + y > 0

• x >= 0 -x <= 0

• x <= 0 -x >= 0

• (x|-x)>>31 == -1

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

Lecture 4:
“Floating Point”

September 11, 2017

18-600 Lecture #3 53

18-600 Foundations of Computer Systems

