18-600 Foundations of Computer Systems

Lecture 3.
“Bits, Bytes, and Integers”

September 6, 2017

» Required Reading Assignment:
* Chapter 2 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron

» Assignments for This Week: (&) Electrical & Computer

& Lab1 ENGINEERING

18-600 Lecture #3 Carnegie Mellon University 1

Socrative Experiment

e Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC
* Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z
* Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

* Socrative:
* Let’s me open floor for electronic questions, putting questions into a visual queue so |
don’t miss any
* Let’s me do flash polls, etc.

* Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
» Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.
 Won’t allow more than 150 students per “room”

* So, | created one room per campus
* May later try random assignment to a room, etc.

9/7/2016 (©Zhiyi Yu & John Shen) 18-600 Lecture #3 Carnegie Mellon University 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

* Representing information as bits

* Integers
* Representation: unsigned and sighed
* Conversion (casting), expanding
e Addition, multiplication, shifting

* Representations in memory, pointers, strings

18-600 Lecture #3 Carnegie Mellon University 3

Everything is bits

* Everything in computers including instructions and data are bits
(binary digits)
* The binary (two) digits are 0 and 1, represented by low or high voltages

* Why bits (digital) vs continuous (analog)?
e Easier to tell “on” vs “off” than 18.3% vs 22.5%, etc.

» Especially true once wires act as antennas and pick up extraneous signals and also act as
resistors and lose data signal. Precise levels become noisy. Signal-noise ratio (SNR) can go
from high (good) to low (bad), but in the real world always needs to be a “tolerance” for

noise. « 0 o e 1 R —0
1.1V : o
0.9V
0.0V

Carnegie Mellon University 4

Power-of-two bases Group Binary Nicely

e Base-2 (Binary) groups 1 bit (0-1) into 2 digits (0,1)
* Base-4 groups 2 bits (00-11) into 4 digits (0, 1, 2, 3)
* Base-8 (Octal) groups 3 bits (000-111) into 8 digits (0, 1, 2, 3, 4,5, 6, 7)

* Base-16 (Hexadecimal) groups 4 bits (0000-1111) into 16 digits
(Ol 1IZI 3) 4) 5) 6) 7) 8) 9’ AI BI CI Dl EI F)
* Letters conventionally used past 0-9. They’re familiar and we know the order.

18-600 Lecture #3 Carnegie Mellon University s

Power-of-two Bases, Example Grouping

* Consider 0111111101011010 (Base-2)

* 0111 11 11 01 01 10 10
1 3 3 3 1 1 2 2(Base-4)

« 000 111 111 101 011 010 (Base-2)
o 7 7 5 3 2(Base-8, Octal)

* Note leading Os don’t change value. They just fill out grouping.
* Important to group from the right.

0011 1111 1010 1101 (Base-2)
3 F A D (Base-16, Hexadecimal)

* Note leading Os don’t change value. They just fill out grouping.
* Important to group from the right.

18-600 Lecture #3 Carnegie Mellon University ¢

Octal and (Mostly) Hexadecimal Best Choices

* They have “approximately” as many digits as decimal @’0\ Q
Convenient for humans. Q& o X

0 0 0000
o , 1 1 0001
* Fewer digits means longer numbers, which are harder for 2 [2 [0010
humans 3 | 3 | 0011
4 4 0100
5 5 0101
o o 6 | 6 | 0110
* More digits means shorter numbers, but it is hard forhumansto | 7 [7 | 0111
keep track of more digits to interpret the numbers and numbers |8 | 8 | 1000
: 9 9 1001
that group too many bits are harder to keep track of and break A 10 | 1010
down to manipulate. B [11 [1011
C |12 | 1100
D [13 | 1101
“ ” . . - E [14 | 1110
* “Hex” is most common because, in practice, it is most F |15 | 1111

convenient balance of complexity and length.

18-600 Lecture #3 Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

* Representing information as bits
* Bit-level manipulations

* Integers
* Representation: unsigned and signed
e Conversion (casting), expanding
e Addition, multiplication, shifting

* Representations in memory, pointers, strings

* Summary

18-600 Lecture #3 Carnegie Mellon University s

Representing Positive and Non-Positive Numbers

* Non-negative values are straight-forward to represent.
* Read bit values directly as powers of 2 and add together
* But, how to represent a negative number?

* Can reserve left-most bit to represent minus sign: O (non-negative), 1 (Negative)
* 1010 represents -2
* Maximum range is -7 to +7, +/- 0 values (1000, 0000)
e Bit pattern is discontinuous, which special cases arithmetic, e.g. -0+1=0 and (7+1=0),etc.

* Use “2s complement” to represent negative numbers
* Represent negative numbers as complement of number plus 1
e E.g.-5=(~0101 +1) = (1010 + 1) = (1011)
* Addition with negative and positive numbers works, allowing subtraction by addition.
1011 + 0101 = 1 0000
* Number line stays clean

18-600 Lecture #3 Carnegie Mellon University ¢

Let's play with binary arithmetic

* We're building up to why this “weird 2s complement thing” works

* Assumption:
 Computers have finite memory. Numbers have finite sizes, e.g. a fixed number of bits.
* For this example, we assume 4-bit integers (Real systems typically have 8-64 bit integers)

e 0000 + 0001 = 0001 (Make sense? Sure it does)
* 0001 + 0001 = 0010 (We still good?)

1111 + 0001 = 1 0000 (Wrap-Around!)

* But, we lose the 1 since we only have 4 digits. It is “Carry out”, which processors typically
store separately in a flag.

18-600 Lecture #3 Carnegie Mellon University 10

New Math! Let's Keep Playing!

1111 +1 =1 0000 (Wrap-Around!)

e But, we lose the 1 since we only have 4 digits. It is “Carry out”

1111 +1 =0 (Wow! New math!)
« Remember: We lost the “carry out” since it couldn’t fit in 4 digits

*(1111+1)-1=0-1 (Let’s do some algebra)
1111 = -1 (Huh. That s curious. Let’s roll with it)

18-600 Lecture #3 Carnegie Mellon University 11

That's strange! Can 1111 really represent -1?

e 1111 + 0101 =0100 (-1+5 = 4) 10 1111

* Look right. It worked! 1111 (-1) +
* 1111 + 0100 = 0011 (-1+4 =3) , 0101 (5)

* Still consistas-1+4,,=-1+(5,,-1) and 0011 = (0100-1) | = —cemmm-
* 1111 + 0001 = O (We expect -1+1 = 0. Note carry-out) 1 0100 (4)

* Look right. It worked!

e0+-1111=0-1111=-1111 (Okay, still consistent, 0 —1 =-1) 1111
1111 (-1) +

0001 (1)

1 0000 (0)

* Yes, yes, 1111 can really represent -1!

18-600 Lecture #3 Carnegie Mellon University 12

It 1111 represents -1, what does 1000 represent?

* 1111 =1000 (x,,) + 0111 (7,5) (Just addition)

¢ -1=x+7,,P-1-7,=x=Px=-8,

* 1000 (-8,4) + 0100 (4,0) = 1100 (4,,)

* 1000 (-8,,) + 0010 (2,,) = 1010 (-6,,)

* 1000 (-8,,) + 0001 (1,,) = 1001 (-7,,)

* 1000 (-8,,) + 0100 (4,,) + 0010 (2,,) + 0001 (1,,) = 1111 (-1,,)

* Upshot: For 4-bit 2s complement, 1000 is -8,,

* We’ll show that this generalizes w.r.t. powers-of-two and the left-most bit
position, ie. -2¥1, where w is the number of bits used to represent a number.

* E.g. For 16-bit numbers the most negative value is -21°

18-600 Lecture #3 Carnegie Mellon University 13

2s Complement As A Ring/Modular Arithmetic

Subtract

9/7/2016 (©Zhiyi Yu & John Shen) 18-600 Lecture #3 Carnegie Mellon University 14

Signed Number Line: Bit Patterns and Values

e Zero is always represented with a bit pattern of all Os
* E.g. 0000 (04,

* The most negative number always has the bit pattern 1000...000
« E.g. 1000 (-8,,)

* The most positive number always has the bit pattern 0111...1111
* E.g0111 (7,,)

* The most negative number always has a value of -2%-1

* Where w is the width of the number in bits, e.g. 1101 has a width of 4

* This is because the left-most digit represents Base"!
* e.g. the third digit from the left in decimal represents 107
« and the 37 digit in binary represents 22

* The most positive number always has a value of 2%-1+1

18-600 Lecture #3 Carnegie Mellon University 15

Signed Number Line: Overarching Properties

* Non-negative binary numbers start at 0 and add from there
* 0101=0+4+2

* Negative (2s complement numbers) start with -2¥-! and add from there
¢ 1101=-8+4+1=-3

* The number line is off-balance, e.g. -8 to 7
* The high-order bit is negative
* The sum of the low-order bits is less than the high-order bit, e.g. 1000=0111+1

* There is only one zero, the bit pattern with all Os
* It is not represented in 2s complement

* Thus we say that we use twos complement for “negative numbers”
* Not “non-positive numbers”

* Thus, 0 comes out of the otherwise-positive side of the number line (another way to
remember the off-balanced-ness)

18-600 Lecture #3 Carnegie Mellon University 16

Summary: Signed Numbers and Arithmetic

* Negative numbers are represented via “2s complement”
 Complement all bits and add 1

 Subtraction is accomplished by adding to a 2s complement (negative) number.
* The carry-out and the added bit work together to make this work
* This means that computers only need an adder, not a subtractor

* A number can be made negative by complementing it and adding 1

* A negative number can be made positive by subtracting one and
complementing it

* The most negative number has no peer on the positive side of the number line
e Subtracting one and complementing it gives itself, because it “wraps around”

18-600 Lecture #3 Carnegie Mellon University 17

Encoding Integers: Closed Form Expressions

Unsigned Signed: Two’s Complement
B2U(X) = x;,-2" L, .
i=0 B2T(X) = -x ,x2" +axx2
* Sign Bit =0

* For 2's complement, most significant bit indicates sign
* 0 for nonnegative

* 1 for negative

e Equation: x+ (-x) =0 slgn Bit

 Cshort (2 bytes)

short 1nt x = 100;
short 1int y = -100;
Decimal Hex Binary
x 100 OO0 64 00000000 01100100
Y -100 FF 9C 11111111 10011100

18-600 Lecture #3 Carnegie Mellon University 18

Numeric Ranges: Summary

* Unsigned Values
* UMin =
000...0

* UMax

111...1
e Observations

e |TMin |
* UMax

Values for W =16

* Two’s Complement Values

* TMin = —wl
100...0
2% =1 * TMax = 2wil-g
011...1
TMax + 1
2*TMax + 1
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32/768 80 00| 10000000 0OOOOOOOO
-1 -1 FF FF| 11111111 11111111
) 0 00 00| 00000000 0OOOOOOOO

Carnegie Mellon University 19

Example Data Representations in Byte

C Data Type Typical 32-bit Typical 64-bit

char 1
short 2
int 4
long 4
float 4
double 8
pointer 4

1

2

4

18-600 Lecture #3

Carnegie Mellon University 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

* Representing information as bits

* Integers
* Representation: unsigned and sighed
e Conversion (casting), expanding
e Addition, multiplication, shifting

* Representations in memory, pointers, strings

18-600 Lecture #3 Carnegie Mellon University 21

Mapping Between Signed & Unsigned

Two’s Complement

Unsigned

ux

T2U

| T2B

X

B2U

Maintain Same Bit Pattern

U2T

- U2B

X

B2T

Maintain Same Bit Pattern

* Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Unsigned

ux

Two’s Complement

, X

18-600 Lecture #3

Carnegie Mellon University 22

Mapping Signed <> Unsig

neg

Carneg

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 —> 2
0011 3 3
0100 4 4
0101 5 5
0110 5 6
0111 7 — L& 7
1000 _8 — U2T |+¥—— g
1001 -7 9
1010 -6 10
1011 -5 +/-16 11
1100 -4 44— 12
1101 -3 13
1110 -2 14
1111 -1 15

Signed vs. Unsigned in C

* Constants
» By default are considered to be signed integers

* Unsigned if have “U” as suffix
0U, 42949672590

* Casting
* Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (1int) ux;
uy = (unsigned) ty;

* Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

18-600 Lecture #3 Carnegie Mellon University 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

* Contrast to Logical Operators
* &&,], !

* View 0 as “False”

* Examples
e 10x41
e 10x00
e 110x41

* 0x69 && 0x55 xR0x01
e 0x69 || Ox55 R0x01

18-600 Lecture #3 Carnegie Mellon University 2

Shift Operations

e Left Shift: x << vy Argumentx | 01100010
* Shift bit-vector x left y positions << 3 00010000
* Throw away extra bits on left
* Fill with O’s on right Log. >> 2 00011000
. Right Shift: X >> vy Arith. >> 2 00011000
* Shift bit-vector x right y positions
* Throw away extra bits on right Argument x 10100010
* Logical shift
* Fill with O’s on left << 3 00010000
* Arithmetic shift Log. >> 2 00101000
* Replicate most significant bit on left Arith. >> 2 17101000

 Undefined Behavior
e Shift amount < 0 or = word size

18-600 Lecture #3 Carnegie Mellon University 26

Casting Surprises

* If there is a mix of unsigned and signed in single expression, signed values implicitly
cast to unsigned. Including comparison operations <, >, ==, <=, >=

* Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

* Constant, Constant, Relation Evaluation
0 0U == unsigned
1 0 < sighed
1 oU > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U S signed

18-600 Lecture #3 Carnegie Mellon University *’

Sign Extension

* Task:
* Given w-bit signed integer x
e Convert it to w+k-bit integer with same value

* Rule:
* Make k copies of sign bit:
([] X' — XW—lf'"’ XW—]_.’XW_l’XW_Z FXLXY) XO < W >

k copies of MSB

«— Kk >< w >

18-600 Lecture #3 Carnegie Mellon University 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

* Representing information as bits
* Bit-level manipulations

* Integers
* Representation: unsigned and signed
e Conversion (casting), expanding
* Addition, multiplication, shifting

* Representations in memory, pointers, strings

* Summary

18-600 Lecture #3 Carnegie Mellon University 2

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

e Standard Addition Function
* |gnores carry output

u

+ 1%

u-+tv

UAdd, (u , v)

* Implements Modular Arithmetic

s = UAdd (u, v) =

u+v mod 2%

18-600 Lecture #3

Carnegie Mellon University 3

Visualizing (Mathematical) Integer Addition

* Integer Addition Add,(u , v)
e 4-bitintegersu, v
* Compute true sum Add,(u, v)

* Values increase linearly with u
and v

* Forms planar surface

Integer Addition

18-600 Lecture #3 Carnegie Mellon University 3

Visualizing Unsigned Addition

* Wraps Around

e |f true sum > 2%

Overflow
\

* At most once

True Sum
2W+1

Overflow

2w --__:]:

Modular Sum

UAdd,(u , v)

18-600 Lecture #3

Carnegie Mellon University 32

Twos Complement Addition

Operands: w bits y
True Sum: w+1 bits Y
u-tv
Discard Carry: w bits
TAdd (u, v)

e TAdd and UAdd have Identical Bit-Level Behavior

* Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
* Will give s ==

18-600 Lecture #3

Carnegie Mellon University 33

Twos Compliment Add Overtlow (TAdd)

* Functionality True Sum

* True sum requires w+1 bits 0111..1 w_1] T

* Drop off MSB PosOver TAdd Result

* Treat remaining bits as 2’s comp. 0 100...0 w-1_1 =+ - 0111

integer

0000..0 0 T T 000..0
1011..1 _ow-1 + L 1000
1 000...0 _yw L NegOver

18-600 Lecture #3 Carnegie Mellon University 34

Visualizing 2's Complement Addition

NegOver

* Values \
* 4-bit two’s comp.

* Range from -8 to +7

* Wraps Around

 If sum>2w-1
* Becomes negative
* At most once

* If sum < —2w-1
* Becomes positive
* At most once

u ‘e PosOver

18-600 Lecture #3 Carnegie Mellon University 35

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* Either signed or unsigned

e But, exact results can be bigger than w bits
e Unsigned: up to 2w bits
 Resultrange:0<x*y<(2w—-1)2 = 22w—-2wl 4+
 Two’s complement min (negative): Up to 2w-1 bits
* Resultrange: x*y > (=2w1)*(2w-1-1) = —22w-24 Qw-1
* Two’s complement max (positive): Up to 2w bits, but only for (TMin,)?
* Resultrange: x * y < (—2w1) 2 = 22w

* SO0, maintaining exact results...

* would need to keep expanding word size with each product computed

* isdone in software, if needed
e e.g., by “arbitrary precision” arithmetic packages

18-600 Lecture #3 Carnegie Mellon University 36

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits | cocC XX

UMult, (u , v)

Discard w bits: w bits

* Standard Multiplication Function
* Ignores high order w bits

* Implements Modular Arithmetic
UMult (u,v) = u -v mod2%

18-600 Lecture #3 Carnegie Mellon University 37

True Product: 2*w bits

Signed Multiplication in C

Operands: w bits

Discard w bits: w bits

* Standard Multiplication Function
* Ignores high order w bits

* Some of which are different for signed vs. unsigned

multiplication
 Lower bits are the same

TMult, (u , v)

18-600 Lecture #3

Carnegie Mellon University 3s

Power-of-2 Multiply with Shift

* Operation
e u << kgivesu * 2k

* Both signed and unsigned .
u o 6 o
Operands: w bits ¢ 2 [0] sss TOTATO] =ss 010
True Product: w+k bits w2 oo Qf eee |00
Discard k bits: w bits UMult,(u , 2%) XX O eee O[O

TMult, (u, 2)
* Examples
*u << 3 == u * 8
* (u << 5) - (u << 3) == u * 24
* Most machines shift and add faster than multiply
* Compiler generates this code automatically

18-600 Lecture #3 Carnegie Mellon University 39

Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2
e u > kgives Lu / 2¢]
e Uses logical shift (arithmetic shift for signed)

k
u eo00 (XX Binary Point
Operands:
/ 2k 0 XX 01110 XX 010, /
Division: u/ 2k 0 eee 1010 XX r/ XX
Result: | /2K | 0 XX 0l0 XX
Division Computed Hex Binary

x 15213 15213 3B 6D| 00111011 01101101

x >> 7606.5 7606 1D B6| 00011101 10110110

x >> 950.8125 950 03 B6| 00000011 10110110

x >> 50.4257813 59 OO0 3B| 00000000 00111011

18-600 Lecture #3

Carnegie Mellon University <o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

* Representing information as bits

* Integers
* Representation: unsigned and sighed
* Conversion (casting), expanding
e Addition, multiplication, shifting

* Representations in memory, pointers, strings

18-600 Lecture #3 Carnegie Mellon University 4

Byte-Oriented Memory Organization

* Programs refer to data by address
* Conceptually, envision it as a very large array of bytes
* In reality, it’s not, but can think of it that way

* An address is like an index into that array
* and, a pointer variable stores an address

* Note: system provides private address spaces to each “process”
* Think of a process as a program being executed
* So, a program can clobber its own data, but not that of others

18-600 Lecture #3 Carnegie Mellon University 42

Machine Words

* Any given computer has a “Word Size”

* Nominal size of integer-valued data
* and of addresses

* Until recently, most machines used 32 bits (4 bytes) as word size
* Limits addresses to 4GB (232 bytes)

* Increasingly, machines have 64-bit word size

* Potentially, could have 18 EB (exabytes) of addressable memory
* That’s 18.4 X 1018

* Machines still support multiple data formats
* Fractions or multiples of word size
* Always integral number of bytes

18-600 Lecture #3 Carnegie Mellon University 43

Word-Oriented Memory Organization
32-bit 64-bit Buyte Add

* Addresses Specify Byte Locations Words -~ Words
. . 0000
* Address of first byte in word Addr 0001
» Addresses of successive words differ by 4 (32-bit) 0000 0002
or 8 (64-bit) o Addr 0003
0000 0004
Addr - 0005
0004 0006
0007
0008
Addr 0009
0998 Addr VOL0
_ 0011
0008 0012
Addr 0013
0012 0014
18-600 Lecture #3 —megiefmﬂniye(}giéf 44

Byte Ordering

* So, how are the bytes within a multi-byte word ordered in memory?

e Conventions

* Big Endian: Sun, PPC Mac, Internet
» Least significant byte has highest address

* Little Endian: x86, ARM processors running Android, iOS, and Windows
* Least significant byte has lowest address

18-600 Lecture #3 Carnegie Mellon University 45

Byte Ordering Example

* Example
* Variable x has 4-byte value of 0x01234567
* Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 O0x101 0x102 0x103
67 45 23 01

18-600 Lecture #3 Carnegie Mellon University 46

Representing Integers

Decimal: 18600
Binary: 0100 1000 1010 1000

int A = 18600;

Hex: 4 8 A 8
IA32, x86-64 Sun long int C = 18600;
A8 00
48 00 |A32 X86-64 Sun
00 A8 48 | { 48 00
00 1 00 48
int B = -18600; 00 [+ 00 A8
00
|IA32, x86-64 Sun 00
58 FF 00
B7 FF |~ 00
FF 57 | T—
FF 58 Two’s complement representation

18-600 Lecture #3 Carnegie Mellon University 47

Examining Data Representations

* Code to Print Byte Representation of Data
» Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

vold show bytes (pointer start, size t len) {
size t 1;
for (1 = 0, 1 < len; i++)
printf ("%p\t0x%.2x\n", start+i, start([i]);
printf ("\n") ;
}

Printf directives:

%p: Print pointer

%t Tab space

%X: Print Hexadecimal

18-600 Lecture #3 Carnegie Mellon University 43

show bytes Execution Example

int a = 18600;
printf ("int a = 18600;\n");
show bytes ((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 18600;

Ox7fffb7f71dbc A8
Ox7fffb7f71dbd 48
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

18-600 Lecture #3

Carnegie Mellon University 4

Representing Pointers

int B = -15213;
int *P = &B;
Sun |A32 X86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
7F
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

18-600 Lecture #3 Carnegie Mellon University so

Representing Strings

* Stringsin C
* Represented by array of characters

 Each character encoded in ASCII format

* Standard 7-bit encoding of character set
e Character “0” has code 0x30
e Digiti has code 0x30+i

 String should be null-terminated
* Final character =0

* Compatibility
* Byte ordering not an issue

char S[o6] = "18600";

|A32 Sun
31 31
38 38
36 36
30 30
30 30
00 00

18-600 Lecture #3

Carnegie Mellon University 51

Integer C Puzzles

Initialization °

int x = foo(); :
int yv = bar(); .
unsigned ux = X; :
unsigned uy = y; .

x < 0 L ((x*2) < 0)
ux >=

X & 1 == 1 (x<<30) < O
ux > -1

X >y] -x < =y

X * x >= 0

x>0 && v >0 [0 x + v >0
x >= 0] -x <=0

x <= 0] -x >= 0
(X]|—-x)>>31 == -1

ux >> == ux/8

X >> 3 == x/8

X & (x-1) =0

Carnegie Mellon University

18-600 Foundations of Computer Systems

Lecture 4.
“Floating Point”

September 11, 2017

Next Time

Ky Electrical & Computer
ENGlNEERlNG

9090

18-600 Lecture #3 Carnegie Mellon University s

