Carnegie Mellon

18600 Final Exam Review Recitation

Carnegie Mellon

General Topics

The Big Picture

Assembly

Pipeline/Superscalar/Memory Hierarchy & Program Optimization
Exceptional Control Flow

Virtual Memory

Dynamic Memory Allocation

Parallel Architecture/Cache Coherence

System Level I/0, Network Programming

Concurrent Programming

Note: other topics may appear on the final exam!

Carnegie Mellon

Logistics for Final Exam

Thursday, December 15
5:30pm - 8:30pm (ET)

= Closed book, paper exam

Note Sheet Allowed - ONE double sided 8 72 x 11 paper
= No worked out problems on that sheet

Carnegie Mellon

The Big Picture

Multiple choice questions focused around concepts covered in lab assignments,
and recitations.

Carnegie Mellon

The Big Picture - Sample Question 1

Dynamic memory is used because:
1. The heap is significantly faster than the stack.
2. The stack is prone to corruption from buffer overflows.
3. Storing data on the stack requires knowing the size of that data at compile
time
4. None of the above.

* Programmers use dynamic memory allocators
(such asmalloc)to acquire VM at run time.

* For data structures whose size is only known at
runtime.

Answer: 3

Carnegie Mellon

The Big Picture - Sample Question 2

Which of the following socket APl is not used by the server:

1. bind
2. connect
3. getaddrinfo
4. accept
int connect(int socket, struct sockaddr *address, socklen_t address_len);
Answer: 2 » attempt to connect to the specified IP address and port described in address

= used by clients

Assembly

m Similar problems to those seen in the midterm
= Reading assembly, answering questions about the layout of the stack

m General Advice
= Brush up on Assembly syntax
* Understand x86-64 stack conventions
* Be able to draw a stack diagram
= Study Attack Lab
= Study the Midterm question

Assembly: Practice Problem

void fill (char *dest, char *src, int a)
{
if (a !'= Oxdeadbeef)
{
fill (dest, src, Oxdeadbeef) ;
return;
}
strcpy (dest, src) ;

void getbuf (void)
{
int buf[2]; //way too small

fill ((char*) (&buf[0]), "complexes",0x15213) ;

printf ("0x%.8x \n",buf[0]);
printf ("0x%.8x \n", buf[l]);
printf ("0x%.8x \n",buf[6]);

int main (void)

getbuf () ;
return 0;

Carnegie Mellon

Dump of assembler code for function getbuf:

0x00000000004005e2
0x00000000004005e6
0x00000000004005€9
0x00000000004005ee
0x00000000004005£3
0x00000000004005£f6
0x00000000004005fb
0x00000000004005fe
0x0000000000400600
0x0000000000400605
0x000000000040060a
0x000000000040060£
0x0000000000400613
0x0000000000400615
0x000000000040061a
0x000000000040061£
0x0000000000400624
0x0000000000400628
0x000000000040062a
0x000000000040062£
0x0000000000400634
0x0000000000400639
0x000000000040063d

<+0>:
<+4>:
<+7>:

<+12>:
<+17>:
<+20>:
<+25>:
<+28>:
<+30>:
<+35>:
<+40>:
<+45>:
<+49>:
<+51>:
<+56>:
<t61>:
<t66>:
<+70>:
<+72>:
<+77>:
<+82>:
<+87>:
<+91>:

sub
mov
mov
mov
mov
callg
mov
mov
mov
mov
callg
mov
mov
mov
mov
callg
mov
mov
mov
mov
callg
add
retg

$0x18, %rsp

Srsp, srax

$0x15213, $edx
$0x40074c, %Sesi

$rax, srdi

0x400590 <fill>
($rsp), Seax

$eax, sesi

$0x400756, $edi

$0x0, $eax

0x4003£f8 <printf@plt>
0x4 (%rsp), 5eax

%eax, $esi

$0x400756, $edi

$0x0, $eax

0x4003£f8 <printf@plt>
0x18 (%rsp), seax

%eax, sesi

$0x400756, $edi

$0x0, $eax

0x4003f8 <printf@plt>
$0x18, %rsp

Dump of assembler code for function main:

0x000000000040063e
0x0000000000400642
0x0000000000400647
0x000000000040064c
0x0000000000400651
0x0000000000400655

<+0>:
<+4>:
<+9>:

<+14>:
<+19>:
<+23>:

sub
mov
callg
mov
add
retqg

$0x8, $rsp
$0x0, $eax
0x4005e2 <getbuf>
$0x0, $eax
$0x8, $rsp

Carnegie Mellon

. c 0x63
Assembly: Practice Problem
e 0x65
Assume that immediately before the call to “getbuf’ in ‘main’, the register "%rsp’ ' Ox6c
contains "Ox7fffd178".
. . N . . m Ox6d
You might need the following ascii values (in hex) for the different characters --------- >
Remember to keep in mind that addresses are 64 bits long o Ox6f
. NP . p 0x70
B Whatis the address of the buffer "buf’ in "getbuf'?
Ans: 0x7fffd158 (remember, 8 bytes used for return address) s 0x73
B Immediately after “fill" returns, what are the values that are printed by each of .
the three print statements? (The format string ""0x%.8x"" prints in a X 0x78 Stack Dlagram
hexadecimal format with 8 digits, zero-padded.)
Print statement 1: 0x706d6f63 < -
end of main frame>
Print statement 2 : Ox6578656¢ 0x7iffd178
Print statement 3 : 0x0040064c
0x7ffd170 Ret addr: 0x0040064c
B Isthe stack frame corrupted?
Ans: No
B If your answer above is Yes, enter 0 below. Otherwise, enter the 0x7fffd168
minimum number of additional characters which must be written
0x7fffd160 0x0073

to corrupt the stack.

Ans: 15 ox7fffd1ss | buf = 0x6578656¢706d6163

Program Optimization

m Memory Aliasing
m General Optimizations

10

Program Optimization - Memory Aliasing

Case where two pointers may designate the same memory location is referred to as memory aliasing.

Let’s take the simple example of strcpy(char *dest, char *src)
char *strcpy(char *dest, const char *src)

{
unsigned i;
for (i=0; src[i] !="\0'; ++i)
dest[i] = src[i];
dest[i] ="\0";
return dest;

}

If dest = src + 1: the result would be different from a character-by-character copy.

Compiler can’t assume that src and dest do not overlap; generates more assembly to take care of cases

where there is an overlap.

Aside: In actual implementation: restrict keyword is used to tell the compiler there is no overlap; leads to

more efficient code.
11

Program Optimization - General Optimizations

m CPE: Cycles Per Element is a useful metric to measure program performance

m We illustrate a series of optimization technique for calculating the sum of a
vector

m Inall the examples get_vec_element() does bound checking on the vector

m A vectoris represented by header information plus an array of designated

length

len(Length of vector) 0 len -1

data —

12

Carnegie Mellon

Initial Implementation

void combinel (vec_ptr v, data_ t *dest)
{

long int i;

*dest = 0;
for (i = 0; i < vec_length(v); i++) {
data t val;

get vec element(v, i, &val);
*dest = *dest + wval;

What is the simplest optimization on this program °?

13

Carnegie Mellon

Improve efficiency of loop test

void combine2 (vec_ptr v, data t *dest)
{
long int i;

long int length = vec_length(v);

*dest = 0;
for (i = 0; i < length; i++) {
data_t val;

get vec element(v, i, &val);
*dest = *dest + wval;

}

Move function calls that do not change the return value out of the loop.

What else can be optimized ? Do we really need the bound check ?

14

Carnegie Mellon

Eliminate all function calls within the loop if possible

void combine3(vec_ptr v, data t *dest)
{
long int i;
long int length = vec_length(v);
data t *data = get vec start(v);
*dest = 0;
for (i = 0; i < length; i++) {
*dest = *dest + datal[i];

Can we avoid some memory references ?

15

Carnegie Mellon

Accumulate result in temporary

void combine4 (vec_ptr v, data_ t *dest)
{
long int i;
long int length = vec_length(v);
data t *data = get vec start(v);
data t acc = 0;
for (i = 0; i < length; i++) {
acc = acc + datal[i];

}

*dest = acc;

Holding accumulated value in local variable avoids repeated access to memory.
We now have a loop. Can you think of a familiar optimization ?)

16

Carnegie Mellon

Loop Unrolling

/* Unroll loop by 2 */
void combine5 (vec_ptr v, data t *dest)
{
long int i;
long int length = vec_ length(v);
long int limit = length-1; Anything more ?
data t *data = get_vec_start(v);

data t acc = 0; Can you think of strategies
/* Combine 2 elements at a time */ that make use of parallelism in
for (i = 0; i < limit; i+=2) { superscalar processors ?

acc = (acc + data[i]) + data[i+l1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

acc = acc + datal[i];

}

*dest = acc;

17

Loop Unrolling 2

void combine6(vec_ptr v, data_t *dest)

{ Maintain multiple accumulators to make
long int i, length = vec_length(v); better use of multiple functional units
long int limit = length-1;
data_t *data = get_vec_start(v):
data_t accO = O;
data_t accl = O;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
accO = accO + datal[i];
accl = accl + data[i+1];
}
for (i < length; i++) {
accO = accO + datal[i];
}

*dest = accO + accl;

18

Carnegie Mellon

Virtual Memory

m Virtual memory is a memory management CPU Package
technique that maps memory addresses used
by a program, called virtual addresses into
physical addresses.

m Allows multiple programs to run in the same 41@4iViftUﬂ| Address (VA)

CPU

address range .
m Virtual addresses used by programs get MMU
mapped to the actual physical address in r
main memory by the memory-management Physical Address (PA)
unit. Main Memory
m VM can be thought of as an array of N gla23 5167 uuu@@

contiguous bytes on disk, with the M bytes
of physical memory as cache.

19

Carnegie Mellon

Address Translation

Virtual Address Space V=1{0, 1, ..., N-1} Virtual Address

m virtual addresses are n bits long (2" = N) Virtual Page Number | Virtual Page Offset
Physical Address Space P={0, 1, ..., M-1} Page Table

m physical addresses are m bits long (2™ = M) valid_Physical page number (PPN} acoess

Memory is divided into “pages”
/ / \

m page size is P bytes; the offset into a page is p bits

(PPO) are the same! validbit=0: /Vvalid bit = 1, «':1gceesfsEl Slt;:nied:
o no need to translate those bits page fault access K pag

Page table is an array of entries which specify for each ~ [Pysica .Page humber|Physical Page Offset
virtual page whether the page is in memory the Physical Address 8
physical page number, etc.

(2°=P) :
m Vvirtual page offset (VPO) and physical page offset / //

20

Carnegie Mellon

Address Translation Concepts

On a page fault

m CPU suspends the instruction that caused the fault
m Pageisloaded in memory and marked as present in the page table entry

Multi-Level Page Tables

m A table of page tables
m Top-level page table (page directory) stays in memory
m Second level pages can be demand-paged like other data

Translation Lookaside Buffer (TLB)

m Hardware cache in MMU
m TLB hit eliminates memory access to get the page table entry

21

Carnegie Mellon

Translation Lookaside Buffer (TLB)

VPN

/\

VA| TLB tag (TLBT) | TLBindex (TLB) VPO |

Set0
v| tag | PTE v | tag | PTE TLBI

selects
set

Setl v| tag | PTE v| tag | PTE

SetT-1 ||v| tag | PTE v| tag | PTE

22

Q5

1 MB of virtual memory 4 KB page size

256 KB of physical memory TLB: 8 entries, 2-way set associative

= How many bits are needed to represent the virtual address space?
= How many bits are needed to represent the physical address space?

= How many bits are needed to represent the page offset?
= How many bits are needed to represent the VPN?

= How many bits are in the TLB index?
= How many bits are in the TLB tag?

23

1 MB of virtual memory 4 KB page size

256 KB of physical memory TLB: 8 entries, 2-way set associative

= How many bits are needed to represent the virtual address space?

= How many bits are needed to represent the physical address space?
= 2() virtual (1MB = 220), 18 physical (256 KB = 218)

= How many bits are needed to represent the page offset?

= How many bits are needed to represent the VPN?
= 12 offset bits (4 KB = 212), 8 bits for VPN (20-12)

= How many bits are in the TLB index?

= How many bits are in the TLB tag?
= 2 index bits (4 sets = 22), 6 tag bits (8-2)

24

Carnegie Mellon

= Translate 0x15213, given the contents of the TLB and the first 32
entries of the page table below.

_ VPN PPN Valid| VPN PPN _Valid
r Sl . Index | Tag PPN Valid 00 17 1 10 26 O
z 01 28 1 | 11 17 O
set 0 |05 13 1 02 14 1 | 12 0 1
ixassociativej 3F 15 1 03 0B 0 |13 10 1
T — o4 26 0 | 14 13 1
\\| 1 |10 OF 1 05 13 0 | 15 18 1
% 06 OF 1 | 16 31 1
A \ OF £ 0 07 10 1 | 17 12 0
2 1F 01 i | 08 1C O 18 23 1
09 25 1 | 19 04 O
n 1F 0 OA 31 0 | 1A oC 1
3 |03 2B 1 OB 16 1 | 1B 2B O
oc 01 O |1C 1IE O
1Ib 23 O oo 15 0 | 1D 3E 1
OE OC 0 | 1E 27 1
O0F 2B 1 | IF 15 1

1918171615 1415312 1110 9 8 7 6 b 4 3 2 1 0

DRl ROt 0 (0]1]10({0]10|0]2]0]0]1

1
VPN e VPO >

VPN ="?
TLBI =?
TLBT =?

26

19 181716151413 12 1110 9 8 7 6 5 4 3 2 1 0

ololof[1|0o|1|0|l2|/0|0|2|0|l0]|0|O|1|0]|0O]|2|1
st .
™~ TLB\T{PN e s
Index | Tag PPN Valid
TLBI=1 3F 15 1
TLBT = 0x05 1 |10 oF 1 | We g;g‘gf;;f“k e
OF 1E 0
2 |1F 01 1
1 1F 0
3 J]o3 2B 1
0

1D 23

27

79 18171615 A B 2 1109 8 7 B 54 3 2 1D

S C Tt i 0 (0]110(0]10(0]11010]1)1
VPN _PPN_Valid | VPN _PPN_ Valid
00 17 1 10 26 0
01 28 1 i s i 0
02 14 1 12 O0E 1 Page Table Hit
. 03 0B O 13 10 1 PPN = ?
VPN = 0x15 04 26 0 | 14 13 1 Offset = ?
TLBI=1 05 13 0 15 18 1
06 OF 1 16 31 1 - ;
TLBT = 0x05 o7 10 & | i 12 o Physical Address:
08 1C o0 | 18 23 1 ?
09 25 1 19 04 0
0A 31 0 1A 0C 1
OB 16 1 1B 2B O
oc 01 0 i 1E O
oD 15 0 1D 3E 1
OE OC O 1IE 27 1
OF 2B 1 1F 15 1 .

Carnegie Mellon

19 18371615 141332 1110 8 8 7 6 O 4 3 2 1. 'O
OO RO et 0 (0(1]0]10]0|0]|1)10]0]|1]1

VPN PPN Valid| VPN PPN Valid

00 17 1 10 26 0

01 28 1 1 17 0

02 14 1 | 12 O0E 1 Page Table Hit
e TR - e G

Offset = 0x213

TLBI=1 05 13 0 15 18 1
TLBT = 0x05 gg [1“; i ﬁ E 3 Physical Address:

8 1C o0 | 18 23 1 0x18213

09 25 1 19 04 0

OA 31 0 1A 0C 1

OB 16 1 1B 2B 0

oc 01 O 1C 1E 0

oD 15 0 1D 3E 1

OE 0OC O 1IE 27 1

OF 2B 1 1F 15 1)

Carnegie Mellon

Question 7 Malloc ,
Typical format of heap block that uses a boundary tag

31 3210

a = 001: Allocated
Block siza alt | Header z - 000: Free

J

Payload
(allocated block only)

|I
II
Padding (optional), ‘f
VI

Block size .ELI'U Footer

e

30

Carnegie Mellon

First fit vs best fit

First Fit fits data into memory by scanning from the beginning of
available memory to the end,until the first free space which is at
least big enough to accept the data is found. This space is then
allocated to the data.

Best Fit tries to determine the best place to put the new data. The
definition of 'best' may differ between implementations, but one
example might be to try and minimise the wasted space at the
end of the block being allocated - i.e.use the smallest space
which is big enough.

31

Carnegie Mellon

What the heap IOOkS IikE? allocated block free block
e A single explicit free list 48a | 128f
e All memory blocks have a size that is a multiple of 16 bytes and is at least 32 bytes
e All headers, footers and pointers are 8 bytes in size
e immediately coalesced after freeing
e Free blocks consist of a header First fit
e All searches for free blocks start at the head of the list

ptrl = malloc(48)
ptr2 = malloc(32)
ptr3 = malloc(32)
free(ptr3)
free(ptrl)
ptrd = malloc(32)

32

Carnegie Mellon

What the heap IOOkS IIkE? allocated block free block
e A single explicit free list 48a | 1281
e All memory blocks have a size that is a multiple of 16 bytes and is at least 32 bytes
e All headers, footers and pointers are 8 bytes in size
e immediately coalesced after freeing
e Free blocks consist of a header First fit
e All searches for free blocks start at the head of the list

ptrl = malloc(48) 64a
ptr2 = malloc(32) 64a 48a
ptr3 = malloc(32) 64a 48a 48a
free(ptr3) 64a 48a A8f
free(ptrl)

64f 48a 48f

ptrd = malloc(16)
32a 32f 48a 48f

33

Carnegie Mellon

What the heap looks like? allocated block free block

A single explicit free list 48a | 128f
All memory blocks have a size that is a multiple of 16 bytes and is at least 32 bytes
All headers, footers and pointers are 8 bytes in size

immediately coalesced after freeing

Free blocks consist of a header

All searches for free blocks start at the head of the list

ptrl = malloc(48) 64a
ptr2 = malloc(32) 64a 48a
ptr3 = malloc(32) 64a 48a 48a
free(ptr3) 64a 48a A8f
free(ptrl)

64f 48a 48f
ptrd = malloc(16)

32a 32f 48a 48f

How about best fit?

34

Carnegie Mellon

Cache Coherence

Review lecture slides on:
1. MSI Cache Coherence Protocol
2. MESI Protocol

35

MESI Protocol

m Variation used in many Intel processors
= 4-State Protocol
= Modified: <1,0,0...0>
= Exclusive: <1,0,0,...,1>
= Shared: <1,X,X,...,1>
» Invalid: <0,X,X,...X>
m Bus/Processor Actions
= Same as MSI|
s Adds shared signal to indicate if other caches have a copy

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 Carnegie Mellon University 35

Carnegie Mellon

Processes, Signals and Threads (Practice Q)

Problem 8. (10 points):

Excepional controd flow: Consider the following C program, (For space reasons, we are not checking ermor
return codes, so assume that all functions return nommally.)

int main()
int val = 2;

printf("&d®, 0);
fflushi{stdout} ;

if {(fork() == 0) {
val++;
printf ("%d". wal):
fflush(stdout}) ;

elsa |
A -
printf(*"%d®, wval);
fflushi(stdout);
wait (NULL}) ;

val++;

P intE("8%d"™, wal):
fflush{stdout};
exit (D) ;

37

Carnegie Mellon

Processes, Signals and Threads

- Recall that...
- fork() returns O for the child process
- fork() returns the PID of the child for the parent process
- wait(null) waits for a child process to finish
- No guarantee of ordering of execution

- ldentify what orderings of executions can happen, and which
cannot

38

Carnegie Mellon

Processes, Signals and Threads (Practice Q)

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.
You will be graded on each sub-problem as follows:

o [f you circle no answer, you get) points.
e [f you circle the nght answer, you get 2 points.

e If you circle the wrong answer, you get —1 points (so don’t just guess wildly).

A. 01432 Y N No (4 before 3 is impossible)
B. 01342 Y N Yes

C. 03142 Y N Yes

D. 01234 ¥ N NO (2 must be last)

E. 03412) 4 N Yes

39

Carnegie Mellon

Problem 11. (9 points):

Synchronization. This problem is about using semaphores to synchronize access to a shared bounded FIFO

‘ o n C u r re n cy queue in a producer/consumer system with an arbitrary number of producers and consumers.

e The queue is initially empty and has a capacity of 10 data items.
e Producer threads call the insert function to insert an item onto the rear of the queue.

e Consumer threads call the remove function to remove an item from the front of the queue.

Se m a p h O res e The system uses three semaphores: mutex, items, and slots.

M utex Your task is to use P and V semaphore operations to correctly synchronize access to the queue.
R a c e A. What is the initial value of each semaphore?
mutex =

Deadlock o
Starvation alots =
P rod u ce r/co n su m e r B. Add the appropriate P and V operations to the psuedo-code for the insert and remove functions:

void insert (int item) int remowve ()
{ {
/+ Insert sem ops here =/ /+ Insert sem ops here =/
add_item(item); item = remove_item();
/* Insert sem ops here x*/ /* Insert sem ops here =*/
} return item;

40

Carnegie Mellon

Problem 11. (9 points):

Synchronization. This problem is about using semaphores to synchronize access to a shared bounded FIFO
‘ o n c u r re n cy queue in a producer/consumer system with an arbitrary number of producers and consumers.

e The queue is initially empty and has a capacity of 10 data items.
e Producer threads call the insert function to insert an item onto the rear of the queue.
e Consumer threads call the remove function to remove an item from the front of the queue.

e The system uses three semaphores: mutex, items, and slots.
Your task is to use P and V semaphore operations to correctly synchronize access to the queue.

A. What is the injltial value of each semaphore?

:
items = I O

slots =

mutex =

B. Add the appropriate P and V operations to the psuedo-code for the insert and remove functions:
void insert (int item) int remowve ()

g {

/+ Insert sem ops here =/ /+ Insert sem ops here =/

P(slots); P(items);
P(mutex); P(mutex);

add_item(item); item = remove_item();
/* Insert sem ops here x*/ /* Insert sem ops here =*/

V(mutex); V(mutex);
V(items); V(slots);

} return item;

41

Carnegie Mellon

System Level I/0

/+ buf is initialized to be all zeroces */
File name | File contents char buf[20] = {0};
file_1.txt file

int main(int argec, char+ argv[]) |

.]) int £dl, fd2 = open("file_l.txt", O RDONLY);
The file file_1.txt contains

the single word “file” with fdl = dup(£fd2);
no white spaces read (fd2, buf, 3);
Assume that close (£fd2) ;

° When each program read(fdl, &buf[3], 1);

finishes execution,

. . rintf [("%s", buf);
the file contents will P)

be reset to that /% Don’t worry about file descriptors not being closed =/
shown above. return 0;
e All system calls will }
succeed and the files
are in the same | output to stdout from Program 1: |

directory as the two
programs.

42

System Level I/0

/# buf is initialized to be all zeroes =/
char buf[20] = (0};

int main{int argc, char+ argv([]) {
int fdl, fd2 = open("file_ 1.txt", O RDONLY);

fdl = dup(£fd2);
read(fd2, buf, 3);
close (£d2) ;

read(fdl, &buf[3], 1);:

printf ("%s", buf);

/= Don't worry about file descriptors not being closed =/
return 0;

| output to stdout from Program 1: | file

43

Carnegie Mellon

Questions?

44

