
Carnegie Mellon

1

Proxy Recitation

Recitation 13: November 29, 2016

Carnegie Mellon

2

Outline
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 8th

▪ Grace days allowed

⬛ String Manipulation in C

Carnegie Mellon

3

The Web in a Textbook
⬛ Client request page, server provides, transaction done.

⬛ A sequential server can handle this. We just need to serve
one page at a time.

⬛ This works great for simple text pages with embedded
styles.

Web
server

Web
client

(browser)

Carnegie Mellon

4

Telnet/Curl Demo
⬛ Telnet

▪ Interactive remote shell – like ssh without security

▪ Must build HTTP request manually

▪ This can be useful if you want to test response to malformed headers

[rjaganna@makoshark ~]% telnet www.cmu.edu 80
Trying 128.2.42.52...
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu (128.2.42.52).
Escape character is '^]'.
GET http://www.cmu.edu/ HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Sat, 11 Apr 2015 06:54:39 GMT
Server: Apache/1.3.42 (Unix) mod_gzip/1.3.26.1a mod_pubcookie/3.3.4a mod_ssl/2.8.31 OpenSSL/0.9.8e- fips-rhel5
Location: http://www.cmu.edu/index.shtml
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at www.cmu.edu Port 80</ADDRESS>
</BODY></HTML>
Connection closed by foreign host.

Carnegie Mellon

5

Telnet/cURL Demo
⬛ cURL

▪ “URL transfer library” with a command line program

▪ Builds valid HTTP requests for you!

▪ Can also be used to generate HTTP proxy requests:

[rjaganna@makoshark ~]% curl http://www.cmu.edu/
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at www.cmu.edu Port 80</ADDRESS>
</BODY></HTML>

[rjaganna@makoshark ~]% curl --proxy lemonshark.ics.cs.cmu.edu:3092 http://www.cmu.edu/
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at www.cmu.edu Port 80</ADDRESS>
</BODY></HTML>

Carnegie Mellon

6

How the Web Really Works
⬛ In reality, a single HTML page today may depend on 10s or 100s of support files (images,

stylesheets, scripts, etc.)

⬛ Builds a good argument for concurrent servers

▪ Just to load a single modern webpage, the client would have to wait for 10s of back-to-back
request

▪ I/O is likely slower than processing, so back

⬛ Caching is simpler if done in pieces rather than whole page

▪ If only part of the page changes, no need to fetch old parts again

▪ Each object (image, stylesheet, script) already has a unique URL that can be used as a key

Carnegie Mellon

7

How the Web Really Works
⬛ Excerpt from www.cmu.edu/index.html:

<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
 ...
 <link href="homecss/cmu.css" rel="stylesheet" type="text/css"/>
 <link href="homecss/cmu-new.css" rel="stylesheet" type="text/css"/>
 <link href="homecss/cmu-new-print.css" media="print" rel="stylesheet" type="text/css"/>
 <link href="http://www.cmu.edu/RSS/stories.rss" rel="alternate" title="Carnegie Mellon Homepage Stories"
type="application/rss+xml"/>
 ...
 <script language="JavaScript" src="js/dojo.js" type="text/javascript"></script>
 <script language="JavaScript" src="js/scripts.js" type="text/javascript"></script>
 <script language="javascript" src="js/jquery.js" type="text/javascript"></script>
 <script language="javascript" src="js/homepage.js" type="text/javascript"></script>
 <script language="javascript" src="js/app_ad.js" type="text/javascript"></script>
 ...
 <title>Carnegie Mellon University | CMU</title>
</head>
<body> ...

Carnegie Mellon

8

Sequential Proxy

Carnegie Mellon

9

Sequential Proxy
⬛ Note the sloped shape of when requests finish

▪ Although many requests are made at once, the proxy does not
accept a new job until it finishes the current one

▪ Requests are made in batches. This results from how HTML is
structured as files that reference other files.

⬛ Compared to the concurrent example (next), this page
takes a long time to load with just static content

Carnegie Mellon

10

Concurrent Proxy

Carnegie Mellon

11

Concurrent Proxy
⬛ Now, we see much less purple (waiting), and less time

spent overall.

⬛ Notice how multiple green (receiving) blocks overlap in
time

▪ Our proxy has multiple connections open to the browser to handle
several tasks at once

Carnegie Mellon

12

How the Web Really Works
⬛ A note on AJAX (and XMLHttpRequests)

▪ Normally, a browser will make the initial page request then request
any supporting files

▪ And XMLHttpRequest is simply a request from the page once it has
been loaded & the scripts are running

▪ The distinction does not matter on the server side – everything is
an HTTP Request

Carnegie Mellon

13

Outline
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 8th

▪ Grace days allowed

⬛ String Manipulation in C

14

Carnegie Mellon

Sockets
⬛ What is a socket?

▪ To an application, a socket is a file descriptor that lets the application read/write from/to the
network

▪ (all Unix I/O devices, including networks, are modeled as files)

⬛ Clients and servers communicate with each other by reading from and writing to socket descriptors

⬛ The main difference between regular file I/O and socket I/O is how the application “opens” the
socket descriptors

1
5

Carnegie Mellon

Overview of the Sockets Interface

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlin
eb

rio_writen
rio_readlin

eb

rio_writen

Connection
request

rio_readlin
eb

close

close
EOF

Await connection
request from

next client

open_listenfd
open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

16

Host and Service Conversion: getaddrinfo
⬛ getaddrinfo is the modern way to convert string representations of host, ports,

and service names to socket address structures.

▪ Replaces obsolete gethostbyname - unsafe because it returns a pointer to a
static variable

⬛ Advantages:

▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code(IPv4 and IPv6)

▪ Given host and service, getaddrinfo returns result that points to a
linked list of addrinfo structs, each pointing to socket address struct, which
contains arguments for sockets APIs.

⬛ getnameinfo is the inverse of getaddrinfo, converting a socket address to the
corresponding host and service.

Sockets API
⬛ int socket(int domain, int type, int protocol);

▪ Create a file descriptor for network communication

▪ used by both clients and servers

▪ int sock_fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

▪ One socket can be used for two-way communication

⬛ int bind(int socket, const struct sockaddr *address, socklen_t address_len);

▪ Associate a socket with an IP address and port number

▪ used by servers

▪ struct sockaddr_in sockaddr – family, address, port

17

Carnegie Mellon

Sockets API
⬛ int listen(int socket, int backlog);

▪ socket: socket to listen on

▪ used by servers

▪ backlog: maximum number of waiting connections

▪ err = listen(sock_fd, MAX_WAITING_CONNECTIONS);

⬛ int accept(int socket, struct sockaddr *address, socklen_t *address_len);

▪ used by servers

▪ socket: socket to listen on

▪ address: pointer to sockaddr struct to hold client information after accept
returns

▪ return: file descriptor
18

Carnegie Mellon

Sockets API
⬛ int connect(int socket, struct sockaddr *address, socklen_t address_len);

▪ attempt to connect to the specified IP address and port described in address

▪ used by clients

⬛ int close(int fd);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: socket fd to close

19

Carnegie Mellon

Sockets API
⬛ ssize_t read(int fd, void *buf, size_t nbyte);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: (socket) fd to read from

▪ buf: buffer to read into

▪ nbytes: buf length

⬛ ssize_t write(int fd, void *buf, size_t nbyte);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: (socket) fd to write to

▪ buf: buffer to write

▪ nbytes: buf length 20

Carnegie Mellon

Carnegie Mellon

21

Outline
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 8th

▪ Grace days allowed

⬛ String Manipulation in C

Carnegie Mellon

22

Outline
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Thursday, December 8th

▪ Grace days allowed

⬛ String Manipulation in C

Carnegie Mellon

23

Byte Ordering Reminder
⬛ So, how are the bytes within a multi-byte word ordered in

memory?

⬛ Conventions
▪ Big Endian: Sun, PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and
Windows

▪ Least significant byte has lowest address

Carnegie Mellon

24

Byte Ordering Reminder
⬛ So, how are the bytes within a multi-byte word ordered in

memory?

⬛ Conventions

▪Big Endian: Sun, PPC Mac, Internet
▪ Least significant byte has highest address

⬛ Make sure to use correct endianness

Carnegie Mellon

25

Proxy - Functionality
⬛ Should work on vast majority of sites

▪ Twitch, CNN, NY Times, etc.

▪ Some features of sites which require the POST operation (sending data to the website), will not
work
− Logging in to websites, sending Facebook message

▪ HTTPS is not expected to work

− Google, YouTube (and some other popular websites) now try to push users to HTTPs by
default; watch out for that

⬛ Cache previous requests

▪ Use LRU eviction policy

▪ Must allow for concurrent reads while maintaining consistency

▪ Details in write up

Carnegie Mellon

26

Proxy - Functionality
⬛ Why a multi-threaded cache?

■ Sequential cache would bottleneck parallel proxy

■ Multiple threads can read cached content safely

■ Search cache for the right data and return it

■ Two threads can read from the same cache block

■ But what about writing content?

■ Overwrite block while another thread reading?

■ Two threads writing to same cache block?

Carnegie Mellon

27

Proxy - How
⬛ Proxies are a bit special - they are a server and a client at the same time.

⬛ They take a request from one computer (acting as the server), and make it on
their behalf (as the client).

⬛ Ultimately, the control flow of your program will look like a server, but will
have to act as a client to complete the request

⬛ Start small

▪ Grab yourself a copy of the echo server (pg. 946) and client (pg. 947) in the
book

▪ Also review the tiny.c basic web server code to see how to deal with HTTP
headers

▪ Note that tiny.c ignores these; you may not

Carnegie Mellon

28

Proxy - How
⬛ What you end up with will resemble:

Server
(port
80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Proxy

Proxy server socket address
128.2.194.34:15213

Proxy client socket address
128.2.194.34:52943

Carnegie Mellon

29

Summary
⬛ Step 1: Sequential Proxy

▪ Works great for simple text pages with embedded styles

⬛ Step 2: Concurrent Proxy

▪ multi-threading

⬛ Step 3 : Cache Web Objects

▪ Cache individual objects, not the whole page

▪ Use an LRU eviction policy

▪ Your caching system must allow for concurrent reads while maintaining
consistency. Concurrency? Shared Resource?

Carnegie Mellon

30

Proxy – Testing & Grading
⬛ Autograder

▪ ./driver.sh will run the same tests as autolab:

▪ Ability to pull basic web pages from a server

▪ Handle a (concurrent) request while another request is still
pending

▪ Fetch a web page again from your cache after the server has
been stopped

▪ This should help answer the question “is this what my proxy is
supposed to do?”

▪ Please don’t use this grader to definitively test your proxy; there
are many things not tested here

Carnegie Mellon

31

Proxy – Testing & Grading
⬛ Test your proxy liberally

▪ The web is full of special cases that want to break your proxy (think
small images, large images, videos, etc.)

▪ Generate a port for yourself with ./port-for-user.pl [andrewid]

▪ Generate more ports for web servers and such with ./free-port.sh

⬛ Create a handin file with make handin
▪ Will create a tar file for you with the contents of your

proxylab-handin folder

Carnegie Mellon

32

Outline
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 8th

▪ Grace days allowed

⬛ String Manipulation in C

Carnegie Mellon

33

String manipulation in C
⬛ sscanf: Read input in specific format

int sscanf(const char *str, const char *format, …);

Example:

buf = “213 is awesome”

// Read integer and string separated by white space from buffer ‘buf’

// into passed variables

ret = sscanf(buf, “%d %s %s”, &course, str1, str2);

This results in:

course = 213, str1 = is, str2 = awesome, ret = 3

Carnegie Mellon

34

String manipulation (cont)
⬛ sprintf: Write input into buffer in specific format

int sprintf(char *str, const char *format, …);

Example:

buf[100];

str = “213 is awesome”

// Build the string in double quotes (“”) using the passed arguments

// and write to buffer ‘buf’

sprintf(buf, “String (%s) is of length %d”, str, strlen(str));

This results in:

buf = String (213 is awesome) is of length 14

Carnegie Mellon

35

String manipulation (cont)
Other useful string manipulation functions:

⬛ strcmp, strncmp, strncasecmp

⬛ strstr

⬛ strlen

⬛ strcpy, strncpy

Carnegie Mellon

36

String Manipulation (cont)

⬛ Beware: String operations will NOT work properly with
binary data
▪ E.g. images, videos, etc

▪ Think about the null terminator string operations check for

▪ Remember this when caching data objects

⬛ Solution: use memcpy instead
▪ void *memcpy(void *dest, const void *src, size_t n);

Carnegie Mellon

37

Aside: Setting up Firefox to use a proxy
⬛ You may use any browser,

but we’ll be grading with
Firefox

⬛ Preferences > Advanced >
Network > Settings…
(under Connection)

⬛ Check “Use this proxy for
all protocols” or your proxy
will appear to work for
HTTPS traffic.

Carnegie Mellon

38

Questions?

