
Carnegie Mellon

1

Malloc Recitation

Recitation 12: November 15, 2016

Carnegie Mellon

2

Agenda
⬛ Recap

⬛ Data structures and Explicit List

⬛ Debugging using GDB

Carnegie Mellon

3

Malloc Recap

Carnegie Mellon

4

Malloc basics
⬛ What is dynamic memory allocation?

⬛ Terms you will need to know

▪ malloc/ calloc / realloc

▪ free

▪ sbrk

▪ payload

▪ fragmentation (internal vs. external)

▪ coalescing

▪ Bi-directional

▪ Immediate vs. Deferred

Carnegie Mellon

5

Carnegie Mellon

6

Fragmentation
⬛ Internal fragmentation

▪ Result of payload being smaller than block size.

▪ void * m1 = malloc(3); void * m2 = malloc(3);

▪ m1,m2 both have to be aligned to 16 bytes…

⬛ External fragmentation

Carnegie Mellon

7

Carnegie Mellon

8

Implementation Hurdles
⬛ How do we know where the blocks are?

⬛ How do we know how big the blocks are?

⬛ How do we know which blocks are free?

⬛ Remember: can’t buffer calls to malloc and free… must deal with them
real-time.

⬛ Remember: calls to free only takes a pointer, not a pointer and a size.

⬛ Solution: Need a data structure to store information on the “blocks”

▪ Where do I keep this data structure?

▪ We can’t allocate a space for it, that’s what we are writing!

Carnegie Mellon

9

Malloc: Deep Dive

Carnegie Mellon

10

The data structure
⬛ Requirements:

▪ The data structure needs to tell us where the blocks are, how big they are,
and whether they’re free

▪ We need to be able to CHANGE the data structure during calls to malloc
and free

▪ We need to be able to find the next free block that is “a good fit for” a
given payload

▪ We need to be able to quickly mark a block as free/allocated

▪ We need to be able to detect when we’re out of blocks.

▪ What do we do when we’re out of blocks?

Carnegie Mellon

11

The data structure
⬛ It would be convenient if it worked like:

malloc_struct malloc_data_structure;
…

ptr = malloc(100, &malloc_data_structure);

…
free(ptr, &malloc_data_structure);
…

⬛ Instead all we have is the memory we’re giving out.

▪ All of it doesn’t have to be payload! We can use some of that for our data
structure.

Carnegie Mellon

12

The data structure
⬛ The data structure IS your memory!

⬛ A start:
▪ <h1> <pl1> <h2> <pl2> <h3> <pl3>

▪ What goes in the header?

▪ That’s your job!

▪ Let’s say somebody calls free(p2), how can I coalesce?

▪ Maybe you need a footer? Maybe not?

Carnegie Mellon

13

The data structure
⬛ Common types

▪ Implicit List

▪ Root -> block1 -> block2 -> block3 -> …
▪ Explicit List

▪ Root -> free block 1 -> free block 2 -> free block 3 -> …
▪ Segregated List

▪ Small-malloc root -> free small block 1 -> free small block 2 -> …
▪ Medium-malloc root -> free medium block 1 -> …
▪ Large-malloc root -> free block chunk1 -> …

Carnegie Mellon

14

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

Carnegie Mellon

15

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

Carnegie Mellon

16

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

– Header, Payload, Footer

▪ Does a free block need data to be stored in payload ? Can we reuse
this space ?

Carnegie Mellon

17

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

– Header, Payload, Footer

▪ Does a free block need data to be stored in payload ? Can we reuse this space ?

– How can we overlap two different types of data at the same location ?

Carnegie Mellon

18

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

– Header, Payload, Footer

▪ Does a free block need data to be stored in payload ? Can we reuse this space ?

– How can we overlap two different types of data at the same location ?

▪ Does an allocated block need next and previous pointers to be stored ?

▪ Does an allocated block need a footer ?

Carnegie Mellon

19

Explicit List
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

⬛ When malloc is called, can now find a free block quickly

▪ What happens if the list is a bunch of small free blocks but we want a
really big one?

▪ How can we speed this up?

Carnegie Mellon

20

Segregated List
⬛ An optimization for explicit lists

⬛ Can be thought of as multiple explicit lists
▪ What should we group by?

⬛ Grouped by size – let’s us quickly find a block of the size
we want

⬛ What size/number of buckets should we use?
▪ This is up to you to decide

Carnegie Mellon

21

Instrumentation
⬛ Find aspects of the code which degrade performance

⬛ Example: find_fit takes a lot of time

▪ What metric to collect? Compute the ratio of blocks viewed to calls

Carnegie Mellon

22

Heap Checker
⬛ Part of the assignment is writing a heap checker

▪ This is here to help you.

▪ Write the heap checker as you go, don’t think of it as something to do at the end

▪ A good heap checker will make debugging much, much easier

⬛ Heap checker tips

▪ Heap checker should run silently until it finds an error

▪ Otherwise you will get more output than is useful

▪ You might find it useful to add a “verbose” flag, however

▪ Consider using a macro to turn the heap checker on and off

▪ This way you don’t have to edit all of the places you call it

▪ There is a built-in macro called __LINE__ that gets replaced with the line number it’s on

▪ You can use this to make the heap checker tell you where it failed

▪ Call the heap checker at places that have a logical end. Eg: End of malloc(), free(), coalesce()

▪ Call heap checker at the start and end of these functions

Carnegie Mellon

23

Design Considerations
⬛ I found a chunk that fits the necessary payload… should I

look for a better fit or not? (First fit vs. Best fit)
⬛ Pros and Cons of First fit vs Best fit
⬛ Can we speed up Best fit ?

Carnegie Mellon

24

Design Considerations
⬛ Free blocks: address-ordered or LIFO

▪ What’s the difference?

▪ Pros and cons?

⬛ Coalescing
▪ When do you coalesce?

⬛ You will need to be using an explicit list at minimum score
points

▪ But don’t try to go straight to your final design, build it up
iteratively.

Carnegie Mellon

25

Possible Optimizations

⬛ Eliminate footers in allocated blocks. But, you still need to be able to
implement coalescing

⬛ Decrease the minimum block size. But, you must then manage free blocks
that are too small to hold the pointers for a doubly linked free list

⬛ Reduce headers below 8 bytes. But, you must support all possible block
sizes, and so you must then be able to handle blocks with sizes that are too
large to encode in the header

⬛ Set up special regions of memory for small, fixed-size blocks. But, you will
need to manage these and be able to free a block when given only the
starting address of its payload

Carnegie Mellon

26

Debugging
⬛ Debugging Tips using mm-baseline.c

▪ Using GDB

▪ Using heapchecker

▪ Using hprobes

⬛ We have injected a small bug in mm-baseline.c
⬛ We attempt to trace it using the above debugging tools

Carnegie Mellon

27

Debugging using GDB

⬛ Set the optimization level to 0 before debugging
⬛ Reset the optimization level back after debugging

Carnegie Mellon

28

Bug Type I: Segmentation Faults

⬛ Recollect the recitation on debugging using GDB
⬛ Very useful to obtain the backtrace
⬛ Examine values of variables

Carnegie Mellon

29

Segmentation Fault

● Notice the footer value
● It is outside the range of the heap

Carnegie Mellon

30

Bug Type 2: Correctness error report by driver

Carnegie Mellon

31

Setting breakpoints

⬛ The tracefile contains a lot allocations and few frees
⬛ Most likely mm_malloc() has the issue
⬛ Set breakpoint at every call to malloc

Carnegie Mellon

32

Setting breakpoints

Carnegie Mellon

33

Setting breakpoints

Should have been:
asize = round_up(size, dsize) + dsize;

Carnegie Mellon

34

Heapchecker

⬛ The above problem is easy to identify using heap checker

Carnegie Mellon

35

Using Hprobes

⬛ Use hprobes as mentioned in the handout on the
defaulting block

⬛ Useful to check the contents of the heap

Carnegie Mellon

36

(gdb) break place if block = 0x800000738

(gdb) print hprobes(block, 0, asize)

Examine header and footer

Carnegie Mellon

37

Using watchpoints

⬛ Now use watchpoints to observe when the header and
footer values change
▪ watch *0x800000e67, where 0x800000e67 is the address of the

header as shown by hprobes

▪ watch *0x800000738, where 0x800000738 is the address of the
footer as shown by hprobes

⬛ Exercise: Try to see if you can catch the error that we
caught earlier by stepping through the code

Carnegie Mellon

38

Summary

⬛ You can use dbg_printf and friends for more verbose
debugging

⬛ Use GDB, heapchecker and hprobes generously
⬛ Write the heapchecker in parallel with the code
⬛ Read the handout carefully
⬛ Encapsulate complexity within helper functions:

▪ add_free_block(), remove_free_block()

▪ find_next_blk(), find_prev_blk()

▪ find_bucket() for segregated lists….

