Carnegie Mellon

Malloc Recitation

Recitation 12: November 15, 2016

Carnegie Mellon

Agenda

m Recap
m Data structures and Explicit List
m Debugging using GDB

Carnegie Mellon

Malloc Recap

Malloc basics

B Whatis dynamic memory allocation?

B Terms you will need to know
= malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
= coalescing
= Bi-directional
= Immediate vs. Deferred

Carnegie Mellon

Allocation Example

Pl = malloc(4)
P2 = malloc (5)
P33 = malloc(6)
free (p2)

P4 = malloc(2)

Carnegie Mellon

Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
" void * ml = malloc(3); void * m2 = malloc(3);

= ml,m2 both have to be aligned to 16 bytes...

m External fragmentation

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

Pl = malloc (4)

P2 = malloc(3)

P33 = malloc(6)

free (p2)

r4 = malloc (6) Oops! (what would happen now?)

m Depends on the pattern of future requests

" Thus, difficult to measure

Carnegie Mellon

Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must deal with them
real-time.

Remember: calls to £ree only takes a pointer, not a pointer and a size.
Solution: Need a data structure to store information on the “blocks”

= Where do | keep this data structure?
= We can’t allocate a space for it, that’s what we are writing!

Carnegie Mellon

Malloc: Deep Dive

Carnegie Mellon

The data structure

B Requirements:

= The data structure needs to tell us where the blocks are, how big they are,
and whether they’re free

= We need to be able to CHANGE the data structure during calls to malloc
and free

= We need to be able to find the next free block that is “a good fit for” a
given payload

= We need to be able to quickly mark a block as free/allocated
= We need to be able to detect when we’re out of blocks.
= What do we do when we’re out of blocks?

10

Carnegie Mellon

The data structure

B 1t would be convenient if it worked like:

malloc_struct malloc_data_structure;

ptr = malloc (100, &malloc data structure);
free(ptr, &malloc data structure);

B Instead all we have is the memory we’re giving out.

= All of it doesn’t have to be payload! We can use some of that for our data
structure.

11

Carnegie Mellon

The data structure

m The data structure IS your memory!

m Astart:
= <hl1><pll><h2><pl2><h3> <pl3>
= What goes in the header?
= That’s your job!
= Let’s say somebody calls free(p2), how can | coalesce?
= Maybe you need a footer? Maybe not?

12

Carnegie Mellon

The data structure

m Common types

= |Implicit List
= Root -> block1 -> block2 -> block3 -> ...

= Explicit List
- Root -> free block 1 -> free block 2 -> free block 3 -> ...

= Segregated List
= Small-malloc root -> free small block 1 -> free small block 2 -> ...
= Medium-malloc root -> free medium block 1 -> ...
= Large-malloc root -> free block chunk1 -> ...

13

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?

14

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?

15

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?
— Header, Payload, Footer

= Does a free block need data to be stored in payload ? Can we reuse
this space ?

16

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?
— Header, Payload, Footer
= Does a free block need data to be stored in payload ? Can we reuse this space ?
— How can we overlap two different types of data at the same location ?

17

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?
— Header, Payload, Footer
= Does a free block need data to be stored in payload ? Can we reuse this space ?
— How can we overlap two different types of data at the same location ?
= Does an allocated block need next and previous pointers to be stored ?
= Does an allocated block need a footer ?

18

Carnegie Mellon

Explicit List

B Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list

= Remember a doubly linked list has pointers to next and previous
B When mallocis called, can now find a free block quickly

= What happens if the list is a bunch of small free blocks but we want a
really big one?
= How can we speed this up?

19

Carnegie Mellon

Segregated List

m An optimization for explicit lists

m Can be thought of as multiple explicit lists
= What should we group by?

m Grouped by size — let’s us quickly find a block of the size
we want

m What size/number of buckets should we use?

= This is up to you to decide

20

Carnegie Mellon

Instrumentation

m Find aspects of the code which degrade performance
m Example: find_fit takes a lot of time

= What metric to collect? Compute the ratio of blocks viewed to calls

static block t *find fit(size_ t asize)
{
block_t *block; call count++;
for (block = heap listp; get_size(block) > 0;

block = find next (block))
{ block count++;

if (! (get_alloc(block)) && (asize <= get_size(block)))
{
return block;
}
}

return NULL; // no fit found

21

Carnegie Mellon

Heap Checker

B Part of the assignment is writing a heap checker
* This is here to help you.
= Write the heap checker as you go, don’t think of it as something to do at the end
* A good heap checker will make debugging much, much easier
Il Heap checker tips
* Heap checker should run silently until it finds an error
» Otherwise you will get more output than is useful
= You might find it useful to add a “verbose” flag, however
= Consider using a macro to turn the heap checker on and off
= This way you don’t have to edit all of the places you call it
= Thereis a built-in macro called LINE that gets replaced with the line number it’s on
= You can use this to make the heap checker tell you where it failed
= Call the heap checker at places that have a logical end. Eg: End of malloc(), free(), coalesce()

= Call heap checker at the start and end of these functions

22

Carnegie Mellon

Design Considerations

m | found a chunk that fits the necessary payload... should |
look for a better fit or not? (First fit vs. Best fit)

m Pros and Cons of First fit vs Best fit

m Can we speed up Best fit ?

23

Carnegie Mellon

Design Considerations

m Free blocks: address-ordered or LIFO
= What's the difference?
* Pros and cons?
m Coalescing
= When do you coalesce?
m You will need to be using an explicit list at minimum score
points

= But don’t try to go straight to your final design, build it up
iteratively.

24

Possible Optimizations

B Eliminate footers in allocated blocks. But, you still need to be able to
implement coalescing

B Decrease the minimum block size. But, you must then manage free blocks
that are too small to hold the pointers for a doubly linked free list

B Reduce headers below 8 bytes. But, you must support all possible block
sizes, and so you must then be able to handle blocks with sizes that are too
large to encode in the header

B Set up special regions of memory for small, fixed-size blocks. But, you will
need to manage these and be able to free a block when given only the
starting address of its payload

25

Carnegie Mellon

Debugging

m Debugging Tips using mm-baseline.c
= Using GDB
= Using heapchecker
= Using hprobes
m We have injected a small bug in mm-baseline.c
m We attempt to trace it using the above debugging tools

26

Carnegie Mellon

Debugging using GDB

m Set the optimization level to 0 before debugging
m Reset the optimization level back after debugging

= gCcC

= clang

= -08
= -Wall -Wextra -Werror -g -DDRIVER -Wno-unused-function -Wno-unused-parameter
= -Im -1rt

27

Carnegie Mellon

Bug Type I: Segmentation Faults

m Recollect the recitation on debugging using GDB
m Very useful to obtain the backtrace
m Examine values of variables

28

Carnegie Mellon

ash-4.25% g --args ./mdriver -c traces/syn-array.rep
NI ndh fGDRY Rad Hat Fnternrice linux 7 A 1-80 al7
opyright (C) 2813 Free Software Foundation, Inc.
icense GPLv3+: GNU GPL wersion 3 or later <http://fanu.org/licenses/fgpl.html=
his is free software: you are free to change and redistribute it.
here is MO WARRANTY, to the extent permitted by law. Type "show copying”
nd "show warranty"” for details.
his GDB was configured as "x86_64-redhat-linux-gnu".
or bug reporting instructions, please see:
http://www.gnu.org/software/gdb/bugs/=>...
eading symbols from fafs/andrew.cmu.edufusrs/preetium/private/labs/malloclabcheckpoint-hand
(gdb) run
tarting program: /fafs/andrew.cmu.edu/usr5/preetium/private/labs/malloclabcheckpoint-handout
[Thread debugging using libthread_db enabled]
sing host libthread db library "/libs4/libthread db.so.1".
ound benchmark throughput 19868 for cpu type Intel(R)Xeon(R}CPUES-2680v2@2.80GHz, benchmark

hroughput targets: min=9934, max=17881, benchmark=19868

krogram received signal SIGSEGY, Segmentation fault.
DA 350 LI flud_plev gb1ULR—UADUUUUUUUU) dL mm.C:628
28 size t size = extract size(*footerp);
wLss1ng sepa “ate debuginfos, use: debuginfo-install glibc-2.17-186.e17_2.8.x86_64
(gdb) bt
Hs U GAGUsooeIBB040634d in find_prev (block=0x808600808) at mm.c:628
1 GxBEEEEEEEEE4B5b92 in coalesce (block=0x800000000) at mm.c:417
2 OxBEEOEBEEEE4B568F in extend_heap (size=4096) at mm.c:406
3 OxB00000006046854T0 in mm_init () at mm.c:219
BxBORORBEEEE40322a 1n eval_mm_valid (trace=0x61d4c@, ranges=0x61d488) at mdriver.c:1832
S Oxeeee00000084015ad in run_tests (num_tracefiles=1, tracedir=0x60cled <tracedir> "./", tr
5 AvAARARRARARARLASA Sn main (qrge=3, argv=ax7fffffffdfdd) at mdriver.c:586
(gdb) p footerp
1 = (word_t *) Ox7fffffffs
(gdb) p mem_heap_hi()
eap 2 = (void *) exseeep1eef
(gdb) p mem_heap_lo()

3 = (vold *) Ox300006080
L:-—lh‘l |

o -

Carnegie Mellon

Bug Type 2: Correctness error report by driver

P races/syn-array.rep
Found benchmjrk throuthut 17422 for cpu type Intel(R)Xeon(R)CPUE5-2688v2@E2.80CGHz, benchmark checkpoint

Throughput targets: min=3484, max=15680, benchmark=17422

Testing mm malloc

Results for mm malloc:
valid util ops MSecs Kops trace
* no - - .ftraces/syn-array.rep

30

Carnegie Mellon

Setting breakpoints

m The tracefile contains a lot allocations and few frees
m Most likely mm_malloc() has the issue
m Set breakpoint at every call to malloc

31

Carnegie Mellon

breakpoints

Brea :point 1 at 6x40562c file mm.c, line 235.

(adb; «un

Starting program: fafs/fandrew.cmu.edufusrS/preetium/private/labs/malloclabcheckpoint-handouty. /mdriver -c traces/syn-array.rep
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Found benchmark throughput 19868 for cpu type Intel(R)Xeon(R)CPUES-2680v2@2.80CGHz, benchmark regular

Throughput targets: min=9934, max=17881, benchmark=19868

Breakpoint 1, mm_malloc (size=1820) at mm.c:235

235 void *bp = NULL;

issing separate debuginfos, use: debuginfo-install glibc-2.17-186.el7_2.8.x86_64
(gdb) c

Continuing.

Breakpoint 1, mm_malloc (size=6632) at mm.c:235
235 voild *bp = NULL;

(gdb) c

Continuing.

BEreakpoint 1, mm_mallec (size=12) at mm.c:235
vold *bp = MULL;

Continuing.

Breakpoint 1, mm_mallec (size=2772) at mm.c:235

235 vold *bp = MULL;

(gdb) c

Continuing.

ERROR [trace ./ traces/syn-array.rep, line 8]: Payload (0x800800740:0x800001213) overlaps another payload (@0x800000740:0x8000021:

correctness check finished, by running tracefile "traces/syn-array.rep".
== incorrect.

Terminated with 1 errors
[Inferior 1 (process 14438) exited normally]
(adb) I

Setting breakpoints

L I R [y

Egdb} run

Starting program: fafsfandrew.cmu.edufusr5/preetium/private/labs/malloclabcheckp
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib&4/libthread db.so.1".

Found benchmark throughput 19868 for cpu type Intel(R)Xeon({R)CPUE5-2680v2{@2.80GH

Should have been: Throughput targets: min=9934, max=17881, benchmark=19868
asize = round_up(size, dsize) + dsize;
Breakpoint 1, mm_malloc (size=2772) at mm.c:239
239 dbg_requires({mm_checkheap};
Missing separate debuginfos, use: debuginfo-install glibc-2.17-1086.e17_2
Y n
vold *bp = NULL;

if (heap_listp == NULL) // Initialize heap if it isn't initialized

if (size == 8) // Ignore spurious request
asize = round_up(size, wsize) + dsize;

block = find_fit(asize);

33

Carnegie Mellon

Heapchecker

m The above problem is easy to identify using heap checker

bash-4.2% ./mdriver -p -V -D -f traces/syn-array.rep
ound benchmark throughput 17422 for cpu type Intel(R)Xeon(R)CPUE5-2680v2@2.80CGHz, benchmark checkpoint

hroughput targets: min=3484, max=15680, benchmark=17422

esting mm malloc
EduLing Lidiel LLE. LIdLesf5YIi-dl 1 dY .1 e
Zheckiqg mm_malloc for correctness, Line 8, Heap errnrrin block Ox800000738. Header (Gx19f1) != footer (8x19f9)

mRun [Lidie fLidlesfsyili-dilldy.l1ep, LLIE []. '_Cleckinedpy 1Tewdlied 1duse

esults for mm malloc:
valid util ops Kops trace
- .ftracesfsyn-array.rep

erminated with 1 errors

34

Carnegie Mellon

Using Hprobes
m Use hprobes as mentioned in the handout on the

defaulting block
m Useful to check the contents of the heap

35

(gdb) break place if block = 0x800000738

Examine header and footer

(gdb) print hprobes(block, 0, asize)

@ PSR V. PN | ey

Jeadi g symbols from fafs/andrew.cmu.edufusr5/preetium/private/labs/ma’ Loclabcheckpoint-handout/mdriver...done.
gdb) break place if block=8xBBBEEETZE
freak oint 1 at B8x485948: file mm.c, line 463.
agdb) run
b+- ting program: fafsfandrew.cmu.edufusr5fpreetiumfprivate/labs/malloclabcheckpoint-handout/. /mdriver -c traces/syn-array.rep

aread debugging using libthread_db enabled]
sing host libthread_db library " flibé4/libthread_db.so.1".
ound benchmark throughput 19868 for cpu type Intel{R}Xeon{R)}CPUES-26B8v2@2.B80Hz, benchmark regular

hroughput targets: min=9934, max=1TEBB1, benchmark=19B&E

Breakpoint 1, place (block=0xBBBBEETIE, asize=1B48) at mm.c:463

B3 size_t csize = get_size(block);

issing separate debuginfos, use: debuginfo-install glibc-2.17-186.el7_2.8B.xB6_64
gdb} print hprobe({block, @, B)

pytes 6xBOOOOOT3F...0xB00000728: Ox000000000E000000

Bl = void

gdb} print hprobe{block, @, 16)

Pytes 6xB0000O747...0xB00008728: 0x0000000000000000000000000000000E

if ({csize - asize) »= min_block_size)
write_header(block, asize, true};

write_footer(block, asize, true);
be{block, @, B}
pytes 6xBOBOBOT3F...0xB00008728: Bx0000000000088731

block_next = find_next{block);
gdb} print hprobe{block, @, B)
pytes 6xBOOOOOT3F...0xB00008728: Ox0000000000000731
b4 = void
gdb} print asize
S = 1848
gdb} print (block-=payload} + get_size(block) - dsize
7 ALAROAAR-En TN an
{gdb} print hprobe(block, 8, asize)
lytes BxBEBBBAe6Y...OxBO6068738: 6xBO0EBE0EE6666T316¢ J060000000060060000000000000000E0E0060000000000000000E0000600E080000
TAANANAAAAANAANANAAAAAAAAAANANANANARAANARAARAAARANANY 100EAE00000000000000000000000000000060000000000000A00E00E000000000000000A00E000060000000000000000000000000
po80606000
pEaE66606680600000000000000006000EE00E00060000000000000000000000060
hoa660606000000000006000000060000000000A0000000000000000000000PRE00E00000000000AE0RAEEE0EE00000000000000E0R0E00E0000000000000AERE000000000000000000000000000000
pE8E666000E00
hEa660666800000000000000000006000000000RA00E00000000000000000RAPRE0EE00000000R00AEARAEEEEEE00000000RA0EAAEAEEE00E00000000000E00EEE00E000000000000000000E00E00006
poo0606000
po8068600BE080008
hEa86060668000000000000000000600000000000000000000000000000000A0RE000000000000000000AEEE00E0000000000000AERE0E00000000000000000E0E000000000000000000000000E00000
poo0606000D000E00EE0E
pE8E666000E00
hEa66066600000000000000000006000000000RA00EEE000000000000000RAPRE0EE00000000R0PAEARAEEEEEE000000000A0ERAEAEEE00E00000000000E00EEE00E000000000000000000E00E00006
po00606000
hoaea8666006600000000060000060000000000000006000000000000000000000660000000000000000000060000000000000000000006000E080000
hE0860600000000000000000000000000000000000067 0880860606000
po8060600000000000000000000000000000000000000(00000000000 00000000E00000000000000000000000000000000(DODODEODDOED000

Carnegie Mellon

Using watchpoints

m Now use watchpoints to observe when the header and
footer values change

= watch *0x800000e67, where 0x800000e67 is the address of the
header as shown by hprobes

= watch *0x800000738, where 0x800000738 is the address of the
footer as shown by hprobes

m Exercise: Try to see if you can catch the error that we
caught earlier by stepping through the code

37

Carnegie Mellon

Summary

m You can use dbg printf and friends for more verbose
debugging

Use GDB, heapchecker and hprobes generously
Write the heapchecker in parallel with the code
Read the handout carefully

Encapsulate complexity within helper functions:

= add_free_block(), remove_free_block()
= find_next_blk(), find_prev_blk()
= find_bucket() for segregated lists....

38

