
Malloc Lab
&

Midterm Solutions
Recitation 11: Tuesday: 11/08/2016

Carnegie Mellon

2

Malloc

Carnegie Mellon

3

Important Notes about Malloc Lab

⬛ Malloc lab has been updated from previous years
⬛ Supports a full 64 bit address space rather than 32 bit
⬛ Addresses have to be 16 bytes aligned rather than 8 bytes
⬛ Encourages a new programming style

▪ Use structures instead of macros
▪ Study the baseline implementation of implicit allocator to get a better idea

⬛ Divided into two phases:
▪ Checkpoint 1: Due date: 11/17
▪ Final: Due date: 11/28

⬛ Get a correct, reasonably performing malloc by checkpoint
⬛ Optimize malloc by final submission

Carnegie Mellon

4

Playing with structures

⬛ Consider the following structure, where a ‘block’ refers
to an allocation unit

⬛ Each block consists of some metadata (header) and the
actual data (payload)

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

Carnegie Mellon

5

Playing with structures

⬛ The contents of the header is populated as follows

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Pack size and allocation bit into single
word */

static word_t pack(size_t size, bool alloc) {

return size | alloc;

}

Carnegie Mellon

6

Playing with structures

⬛ How do we set the value in the header, given the block and values ?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Set fields in block header */

static void write_header(block_t *block,
size_t size, bool alloc) {

block->header = pack(size, alloc);

}

Carnegie Mellon

7

Playing with structures

⬛ How do we extract the value of the size, given the header ?
⬛ How do we extract the value of the size, given pointer to block ?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Extract size from header */

static size_t extract_size(word_t word) {

return (word & ~(word_t) 0x7);

}

/* Get block size */

static size_t get_size(block_t *block) {

return extract_size(block->header);
}

Carnegie Mellon

8

Playing with structures

⬛ How do we write to the end of the block ?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Set fields in block footer */

static void write_footer(block_t *block,
size_t size,
bool alloc) {

word_t *footerp = (word_t *)((block->payload) +
get_size(block) - 2*wsize);

*footerp = pack(size, alloc);

}

Carnegie Mellon

9

Playing with structures

⬛ How do we get to the start of the block, given the pointer to the
payload ?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Locate start of block, given pointer to payload */

static block_t *payload_to_header(void *bp) {

return (block_t *)(((char *)bp) -
offsetof(block_t, payload));

}

Carnegie Mellon

10

Pointers: casting, arithmetic, and
dereferencing

Carnegie Mellon

11

Pointer casting
⬛ Cast from

▪ <type_a>* to <type_b>*

▪ Gives back the same value

▪ Changes the behavior that will happen when dereferenced

▪ <type_a>* to integer/ unsigned int

▪ Pointers are really just 8-byte numbers

▪ Taking advantage of this is an important part of malloc lab

▪ Be careful, though, as this can easily lead to errors

▪ integer/ unsigned int to <type_a>*

Carnegie Mellon

12

Pointer arithmetic
⬛ The expression ptr + a doesn’t mean the same thing

as it would if ptr were an integer.

⬛ Example:
type_a* pointer = …;
(void *) pointer2 = (void *) (pointer + a);

⬛ This is really computing:
▪ pointer2 = pointer + (a * sizeof(type_a))

▪ lea (pointer, a, sizeof(type_a)), pointer2;

⬛ Pointer arithmetic on void* is undefined

Carnegie Mellon

13

Pointer arithmetic
⬛ int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1;

⬛ char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

⬛ int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

⬛ char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1;

⬛ char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1;

Carnegie Mellon

14

Pointer arithmetic
⬛ int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1; //ptr2 is 0x12341234

⬛ char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

⬛ int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

⬛ char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is 0x12341231

⬛ char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341231

Carnegie Mellon

15

Pointer dereferencing
⬛ Basics

▪ It must be a POINTER type (or cast to one) at the time of
dereference

▪ Cannot dereference expressions with type void*

▪ Dereferencing a t* evaluates to a value with type t

Carnegie Mellon

16

Pointer dereferencing
⬛ What gets “returned?”

int * ptr1 = malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;
int val2 = (int) *((char *) ptr1);

What are val1 and val2?

Carnegie Mellon

17

Pointer dereferencing
⬛ What gets “returned?”

int * ptr1 = malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;
int val2 = (int) *((char *) ptr1);

// val1 = 0xdeadbeef;
// val2 = 0xffffffef;
What happened??

Carnegie Mellon

18

Malloc basics
⬛ What is dynamic memory allocation?

⬛ Terms you will need to know

▪ malloc/ calloc / realloc

▪ free

▪ sbrk

▪ payload

▪ fragmentation (internal vs. external)

▪ coalescing

▪ Bi-directional

▪ Immediate vs. Deferred

Carnegie Mellon

19

Carnegie Mellon

20

Fragmentation
⬛ Internal fragmentation

▪ Result of payload being smaller than block size.

▪ void * m1 = malloc(3); void * m2 = malloc(3);

▪ m1,m2 both have to be aligned to 16 bytes…

⬛ External fragmentation

Carnegie Mellon

21

Carnegie Mellon

22

Implementation Hurdles
⬛ How do we know where the blocks are?

⬛ How do we know how big the blocks are?

⬛ How do we know which blocks are free?

⬛ Remember: can’t buffer calls to malloc and free… must deal with them
real-time.

⬛ Remember: calls to free only takes a pointer, not a pointer and a size.

⬛ Solution: Need a data structure to store information on the “blocks”

▪ Where do I keep this data structure?

▪ We can’t allocate a space for it, that’s what we are writing!

Carnegie Mellon

23

The data structure
⬛ Requirements:

▪ The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

▪ We need to be able to CHANGE the data structure during calls to
malloc and free

▪ We need to be able to find the next free block that is “a good fit
for” a given payload

▪ We need to be able to quickly mark a block as free/allocated

▪ We need to be able to detect when we’re out of blocks.

▪ What do we do when we’re out of blocks?

Carnegie Mellon

24

The data structure
⬛ Common types

▪ Implicit List

▪ Root -> block1 -> block2 -> block3 -> …
▪ Explicit List (Encouraged for Checkpoint 1)

▪ Root -> free block 1 -> free block 2 -> free block 3 -> …
▪ Segregated List

▪ Small-malloc root -> free small block 1 -> free small block 2 -> …
▪ Medium-malloc root -> free medium block 1 -> …
▪ Large-malloc root -> free block chunk1 -> …

Carnegie Mellon

25

Implicit List
⬛ From the root, can traverse across blocks using headers

which store the size of the block

⬛ Can find a free block this way

⬛ Can take a while to find a free block
▪ How would you know when you have to call sbrk?

Carnegie Mellon

26

Explicit List
⬛ Improvement over implicit list

⬛ From a root, keep track of all free blocks in a (doubly)
linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Optimization: using a singly linked list instead (how could we do
this?)

⬛ When malloc is called, can now find a free block quickly
▪ What happens if the list is a bunch of small free blocks but we want a

really big one?

▪ How can we speed this up?

Carnegie Mellon

27

Segregated List
⬛ An optimization for explicit lists

⬛ Can be thought of as multiple explicit lists
▪ What should we group by?

⬛ Grouped by size – let us quickly find a block of the size we
want

⬛ What size/number of buckets should we use?
▪ This is up to you to decide

Carnegie Mellon

28

Malloc Lab is Out!

⬛ Incrementally improve your design
⬛ Start from an implicit allocator
⬛ Heap Checker and GDB, the keys to debugging
⬛ Read the handout carefully
⬛ More on the design and data structures to use in next

recitation
⬛ Warnings:

▪ Most existing Malloc literature from the book has slightly
different guidelines, may be out of date

Carnegie Mellon

29

Midterm Review

Carnegie Mellon

30

Question 1a. ISA Interface

Carnegie Mellon

31

Recall Lec. 1 Slide 19...

Carnegie Mellon

32

Question 1a. ISA Interface

Carnegie Mellon

33

Question 1b. Iron Law (Lec. 2 Slide 20)

Carnegie Mellon

34

Question 1c. Anatomy of Comp Systems (Lec. 1 Slide 21)

Carnegie Mellon

35

Question 1d. Mem Access Time (Lec. 1 Slide 25)

Carnegie Mellon

36

Question 1e. RISC vs CISC (Lec. 2 Slides 9/10)

Carnegie Mellon

37

Question 1f...

Carnegie Mellon

38

Question 2 Bits and Bytes

Q3. Floating Point

Grading scheme:

● 1 point for every correct entry. No
partial credits.

● Entry regarded incorrect if Rounded
Value is simply worded and the value
is not written. e.g: largest denorm
(except infinity)

Bias = 23-1-1 = 3

Q3. Floating Point

When a value requires
E= 2^3-1=7 or above,
the value becomes
infinity and the fractional
part must be cleared.
NaN is only for values
that actually aren’t
numbers

Q4 Assembly

long test(long a, long b, long c)
{
 long answer = ___2____;
 switch(a)
 {
 case _0__:
 c = __b ^ 10___;
 /* Fall through */
 case _2_(4)_:
 case _4_(2)_:
 answer = _10 + c____;
 break;
 case _5__:
 answer = _(b + c) << 1__;
 break;
 case _7__:
 answer = __8___;
 break; (case 5 and 7 are interchangeable)
 default:
 ;
 }
 return answer;
}

initialization

0
1
2
3
4
5
6
7

0

2,4

5

7

Q4 Assembly

9
62

Q5 Smashing the Stack

● Main idea testing here is knowledge of the stack layout in 64 bit
systems & assembly

● Many students got this question wrong, please refer to the slides,
do attack lab & read the book to improve understanding
○ Some confusion between 32 bit & 64 bit systems

Assembly Code

Assembly Code

0x7
0x5

0x4005f8
0xA

Buffer Overflow

Some notes:
● Buffer Overflow != Stack Overflow! No partial credit given here
● For the first example, buffer does not overflow! So regular output is printed

0x5 0x7

‘0x6665656264616564 0x0’ OR ‘0x6665656264616564 0x7’
(First is correct, both get full credit (null terminator on string))

./evil-prog deadbeefdeadbeefdeadbeefdeadbeefdeadbeefDCBADCBA
(40 bytes of junk, address bytes in little-endian order)

Some notes:
● Remember little endian format! Review recitation slides, this concept is key
● Were generous when giving points on these, decent efforts were awarded points

Q6. Pipelined Processor Architecture

Grading scheme:

● Part A
○ 1 point for each correct answer. No partial credits

● Part B
○ 2 points for the correct answer. No partial credits

● Part C
○ 1 point for each sub question. No partial credits

Q6. Pipelined Processor Architecture

● Part A
○ Condition codes are set only for

arithmetic instructions
○ popq and ret both increment the stack pointer in

the execute stage
○ call is the only operation that has to decrement the

stack pointer in the execute stage
○ The execute() stage contains an OP code for

arithmetic operations
○ The execute stage calculates effective memory

address (offset + displacement) for rmmovq or
mrmovq instructions

rmmovq

popq

addq

call

ret

Q6. Pipelined Processor Architecture

● Part B
○ 3 stalls

■ Wait till the write back stage of popq passes
back the results to the decode stage of add

● Part C
○ Memory

■ Pop loads from the memory into a register
■ All loads and stores happen during memory

stage
○ Execute

■ Arithmetic operations happen in the execute
stage

○ Yes, 1
■ Memory and Execute are adjacent stages
■ Forwarding between adjacent stages

requires 1 stall

3 stalls

Memory

Execute

Yes, 1

Problem 7a: Branch Target Buffer & Branch History
Table

Compare: Both used in dynamic branch
prediction.

Contrast: BHT stores direction history,
and used to predict the direction of branch
instruction. BTB stores history of branch
targets, and is used to predict the target of
a branch instruction.

Problem 7b: Register Allocation & Register Renaming

Compare: Both deal with mapping of registers.

Contrast: Register allocation maps virtual to
architecture registers; done by compiler at compile
time. Register renaming maps architecture registers to
physical registers; done by hardware at run time.

Problem 7c: Reservation Station & Reorder Buffer

Compare: Both form the boundaries (front
and back) of Out-of-order Execution core.

Contrast: Reservation Station receives
in-order instructions and outputs
out-of-order instructions. Reorder Buffer
receives out-of-order instructions and
outputs in-order instructions.

Problem 7d: Load Bypassing and Load Forwarding

Compare: Both try to accelerate the
execution of load instructions.

Contrast: LB allows load instructions to
execute earlier than a store instruction that
precedes the load, if determined that the
load will not alias with store.

LF allows a load to get the data directly
from the preceding store if aliasing exists.

Problem 8
● 128 byte data cache
● 2-way associative
● 4 doubles in each line
● Each double is 8 bytes
● A is cache aligned

● Problem 8a:
○ Since there are 4 cache lines and each can hold 4 doubles, in total the cache can hold 16

doubles

● Problem 8b:
○ There are 4 cache lines and it’s a 2-way associative cache, so there are 2 sets.

Each block
contains one

double: 8 bytes

S = 0

S = 1

4 doubles (32 bytes in
each line)

Problem 8c (m = 1)

Since m = 1 and m*n = 32

A[0] A[1] A[2] A[3]

A[8] A[9] A[10] A[11]

A[4] A[5] A[6] A[7]

A[12] A[13] A[14] A[15]

● A[0] - cold miss, hits for A[1] to A[3] in S = 0
A[4] - cold miss, hits for A[5] to A[7] in S = 1
A[8] - cold miss, hits for A[8] to A[11] in S = 0 and so on

● For every miss there are 3 hits.
● And there are no conflict misses, only cold misses

● From the code, you
see that we’re loading
A[0] to A[31] in that
order

Answers for problem 8c

A. Miss rate = ¼
B. Kinds of misses = Cold or compulsory misses. And optionally capacity

misses.
C. Kind of locality? Spatial locality as it’s a stride-1 access of the

elements from A[0] to A[31]

Problem 8d (m = 2)

Since m = 2 and m*n = 32

A[0] A[1] A[2] A[3]

A[8] A[9] A[10] A[11]

A[4] A[5] A[6] A[7]

A[12] A[13] A[14] A[15]

● From the code, you see that we’re
loading A[0], A[2], A[4]... A[30]
followed by A[1], A[3], A[5]... A[31]

● A[0] - cold miss, hit for A[2] in S = 0
A[4] - cold miss, hit for A[6] in S = 1
A[8] - cold miss, hit for A[10] in S = 0
A[12] - cold miss, hit for A[14] in S = 1

Problem 8d (m = 2)
A[16] A[17] A[18] A[19]

A[24] A[25] A[26] A[27]

A[20] A[21] A[22] A[23]

A[28] A[29] A[30] A[31]

1. A[16] - miss & eviction, hit for A[18] in S = 0
A[20] - miss & eviction, hit for A[22] in S = 1
A[24] - miss & eviction, hit for A[26] in S = 0
A[28] - miss & eviction, hit for A[30] in S = 1

2. After A[28], we need to load A[1] and this
maps to the first line of the cache at S=0 and
is a conflict miss.

A[1] - conflict miss, hit for A[3] in S = 0
A[5] - conflict miss, hit for A[7] in S = 1
A[9] - conflict miss, hit for A[11] in S = 0
A[13] - conflict miss, hit for A[15] in S = 1 and
so on

3. Therefore, for every hit there is a miss.
And there are both cold and conflict misses.

Answers for problem 8d

A. Miss rate = 1/2
B. Kinds of misses = Cold or compulsory misses and conflict misses

Problem 8e (m = 16)

Since m = 16 and m*n = 32

A[0] A[1] A[2] A[3]

A[16] A[17] A[18] A[19]

A[4] A[5] A[6] A[7]

A[20] A[21] A[22] A[23]

1. From the code, you see that we’re
loading A[0], A[16], A[1], A[17],
A[2], A[18], A[3], A[19]...

S = 0

S = 1

2. A[0] is a cold miss and A[1], A[2] and A[3]
are hits.
3. Since it’s two way set associative, A[16]
gets mapped to the second line of the first
set (S = 1) and A[20] gets mapped to the
second line of the second set (S = 2)

Answers to problem 8e
Therefore, for every miss in the cache, there are three hits

A. Miss rate = ¼
B. Kinds of misses = Cold or compulsory misses.

IMPORTANT: There was a mistake in the rubric where the correct answer
was
A. Miss rate = 1
B. Kinds of misses = Cold or compulsory misses and conflict misses.
This is wrong.
● If you’ve answered A with ¼, you get 2 points
● And if you’ve answered B with only cold miss you get .5 points more

(should have been awarded .5 points already)

