Malloc Lab
&
Midterm Solutions

Recitation 11: Tuesday: 11/08/2016

Carnegie Mellon

Malloc

Carnegie Mellon

Important Notes about Malloc Lab

Malloc lab has been updated from previous years
Supports a full 64 bit address space rather than 32 bit
Addresses have to be 16 bytes aligned rather than 8 bytes
Encourages a new programming style

= Use structures instead of macros

= Study the baseline implementation of implicit allocator to get a better idea
Divided into two phases:

= Checkpoint 1: Due date: 11/17

= Final: Due date: 11/28
Get a correct, reasonably performing malloc by checkpoint
Optimize malloc by final submission

Carnegie Mellon

Playing with structures

m Consider the following structure, where a ‘block’ refers
to an allocation unit

m Each block consists of some metadata (header) and the
actual data (payload)

/* Basic declarations */

typedef uint64 t word_t;
static const size t wsize = sizeof(word_t);

typedef struct block {
// Header contains size + allocation flag
word_t header;
char payload[@];
} block_t;

Carnegie Mellon

Playing with structures

m The contents of the header is populated as follows

/* Basic declarations */
/* Pack size and allocation bit into single
word */ typedef uint64 t word_t;
static const size t wsize = sizeof(word t);
static word_t pack(size_t size, bool alloc) {
typedef struct block {
// Header contains size + allocation flag
word_t header;
} char payload[0];
} block t;

return size | alloc;

Playing with structures

m How do we set the value in the header, given the block and values ?

/* Set fields in block header */ /* Basic declarations */
static void write_header(block t *block, type?ef uint64Tt WOPd_FE '
size t size, bool alloc) { static const size_t wsize = sizeof(word_t);
block->header = pack(size, alloc); typedef struct bl?Ck {_ .
// Header contains size + allocation flag
} word_t header;

char payload[0];
} block t;

Playing with structures

m How do we extract the value of the size, given the header ?
m How do we extract the value of the size, given pointer to block ?

/* Extract size from header */
static size_t extract_size(word_t word) { /* Basic declarations */

return (word & ~(word_t) 0x7); typedef uint64_t word_t;
) static const size_t wsize = sizeof(word_t);
typedef struct block {
// Header contains size + allocation flag
word_t header;
char payload[0];
} block t;

/* Get block size */
static size_t get_size(block_t *block) {

return extract_size(block->header);

Carnegie Mellon

Playing with structures

m How do we write to the end of the block ?

/* Set fields in block footer */ /* Basic declarations */
static void write_footer(block_t *block, type?ef uint64Tt WOPd_FE '
size t size, static const size_t wsize = sizeof(word_t);

bool alloc
) A typedef struct block {

word_t *footerp = (word_t *)((block->payload) + // Header contains size + allocation flag
get_size(block) - 2*wsize); word_t header;
char payload[@];
*footerp = pack(size, alloc); } block_t;

Carnegie Mellon

Playing with structures

m How do we get to the start of the block, given the pointer to the
payload ?

/* Locate start of block, given pointer to payload */ /* Basic declarations */

static block t *payload to_header(void *bp) { typedef uint64_t word_t; '
static const size t wsize = sizeof(word t);
return (block t *)(((char *)bp) -

offsetof(block_t, payload)); typedef struct block {
- // Header contains size + allocation flag

} word_t header;
char payload[0];
} block t;

Pointers: casting, arithmetic, and

dereferencing

10

Carnegie Mellon

Pointer casting

m Castfrom
= <type_a>* to <type_b>*
= Gives back the same value
= Changes the behavior that will happen when dereferenced
= <type a>* to integer/ unsigned int
= Pointers are really just 8-byte numbers
- Taking advantage of this is an important part of malloc lab
= Be careful, though, as this can easily lead to errors

= integer/ unsigned int to <type_a>*

11

Carnegie Mellon

Pointer arithmetic

m The expression ptr + a doesn’t mean the same thing
as it would if ptr were an integer.

m Example:
type a* pointer = .;
(void *) pointer2 = (void *) (pointer + a);

m Thisis really computing:
" pointer2 = polnter + (a * sizeof (type a))
" lea (pointer, a, sizeof(type a)), polnter2;

m Pointer arithmetic on void* is undefined

12

Carnegie Mellon

Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1;

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

B char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1;

B char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1;

13

Carnegie Mellon

Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1; //ptr2 is 0x12341234

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

B char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is 0x12341231

B char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341231

14

Carnegie Mellon

Pointer dereferencing

m Basics

= |t must be a POINTER type (or cast to one) at the time of
dereference

= Cannot dereference expressions with type void*

= Dereferencing a t * evaluates to a value with type t

15

Carnegie Mellon

Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int));
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

What are vall and val2?

16

Carnegie Mellon

Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int));
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

// vall = Oxdeadbeef;
// val2 = Oxffffffef;
What happened??

17

Malloc basics

B Whatis dynamic memory allocation?

B Terms you will need to know
= malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
= coalescing
= Bi-directional
= Immediate vs. Deferred

18

Carnegie Mellon

Allocation Example

Pl = malloc(4)
P2 = malloc (5)
P33 = malloc(6)
free (p2)

P4 = malloc(2)

19

Carnegie Mellon

Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
" void * ml = malloc(3); void * m2 = malloc(3);

= ml,m2 both have to be aligned to 16 bytes...

m External fragmentation

20

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

rl malloc (4)

P2 = malloc(3)

P3 = malloc(6)
free (p2)
r4 = malloc (6) Oops! (what would happen now?)

m Depends on the pattern of future requests

" Thus, difficult to measure

21

Carnegie Mellon

Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must deal with them
real-time.

Remember: calls to £ree only takes a pointer, not a pointer and a size.
Solution: Need a data structure to store information on the “blocks”

= Where do | keep this data structure?
= We can’t allocate a space for it, that’s what we are writing!

22

Carnegie Mellon

The data structure

m Requirements:

= The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

= We need to be able to CHANGE the data structure during calls to
malloc and free

= We need to be able to find the next free block that is “a good fit
for” a given payload

= We need to be able to quickly mark a block as free/allocated

= We need to be able to detect when we’re out of blocks.
« What do we do when we’re out of blocks?

23

Carnegie Mellon

The data structure

m Common types

= |Implicit List
= Root -> block1 -> block2 -> block3 -> ...

= Explicit List (Encouraged for Checkpoint 1)
- Root -> free block 1 -> free block 2 -> free block 3 -> ...

= Segregated List
= Small-malloc root -> free small block 1 -> free small block 2 -> ...
= Medium-malloc root -> free medium block 1 -> ...
= Large-malloc root -> free block chunk1 -> ...

24

Implicit List

m From the root, can traverse across blocks using headers
which store the size of the block
m Can find a free block this way

m Can take a while to find a free block

= How would you know when you have to call sbrk?

25

Explicit List

m Improvement over implicit list
m From aroot, keep track of all free blocks in a (doubly)
linked list

= Remember a doubly linked list has pointers to next and previous

= Optimization: using a singly linked list instead (how could we do
this?)
m When malloc is called, can now find a free block quickly

= What happens if the list is a bunch of small free blocks but we want a
really big one?

= How can we speed this up?

26

Carnegie Mellon

Segregated List

m An optimization for explicit lists

m Can be thought of as multiple explicit lists
= What should we group by?

m Grouped by size — let us quickly find a block of the size we
want

m What size/number of buckets should we use?

= This is up to you to decide

27

Carnegie Mellon

Malloc Lab is Out!

Incrementally improve your design

Start from an implicit allocator

Heap Checker and GDB, the keys to debugging

Read the handout carefully

More on the design and data structures to use in next
recitation

Warnings:

= Most existing Malloc literature from the book has slightly
different guidelines, may be out of date

28

Carnegie Mellon

Midterm Review

29

Question 1a. ISA Interface

1. (10 points) The Big Picture
(a) (3 points) For each term below, indicate whether it is above or below the ISA
mterface. Circle your answer.
A. Compiler (above or below)
Cache Memory (above or below) What is the ISA?
Processor Pipeline (above or below)
Operating Svstem (above or below)

Amdahl’s Law (above or below)

TEUOW

Moore’s Law (above or below)

30

Carnegie Mellon

Recall Lec. 1 Slide 19...
?Anatomy of a Computer System: SW/HW

» What is a Computer System?
¢ Software + Hardware
¢ Programs + Computer =» [Application program + OS] + Computer
¢ Programming Languages + Operating Systems + Computer Architecture

COMPILER { Application programs Software
0S { Operating system \programs)
: : Hardware
ARCHITECTURE { Processor ‘Maln memory‘ /O devices }(mmputer)

)/2016 (€).P. Shen) 18-600 Lecture #1 Carnegiv Mellon o niversity %

31

Carnegie Mellon

Question 1a. ISA Interface

1. (10 points) The Big Picture

(a) (3 points) For each term below, indicate whether it is above or below the ISA
interface. Cirele your answer.

A. Compiler ‘J]' below)
Cache Memory (above or@Qelow)

Processor Pipeline (above

Rubric: cach correet option 13 half point cach

Operating Systemn
Amdahl’s Law (above o @@
Moore’s Law (above or Iﬂgj\v

COMPILER { ///Application programs

OS { Operating system

i'”!"'-!zf'?!:

Software
(programs)

_ _ Hardware
ARCHITECTURE{ Processor |Main memory| 1/O devices }(cgmputEF)

32

Carnegie Mellon

Question 1b. Iron Law (Lec. 2 Slide 20)

(b) (3 points) Based on the Iron-Law of processor performance, name the three funda-
mental ways of improving performance: Rubrie: each correct answer is worth 1 point.

“Iron Law" of Processor Performance

= In the 1930

Time (decade of
i T ST SRR, ST
1/ComputerPerformance Eraan gt i
1 2 3 = CPI: 5.0 1.15
Instructions Cycles Time = In Lhe 1990’
= | s [X | e | X e (decade of
Program Instruction Cycle superscalar):
. \ ; . . * CPI;1.15 2 0.5
{inst. count) (CPI) (cycle time) (best case) ’

Architecture = Implementation < Realization = !nthe 2000%s:
« we learn the
Compiler Designer Processor Designer Chip Designer power lesson

* [LP = TLP

Carnegie Viellon University 2

33

Carnegie Mellon

Question 1c. Anatomy of Comp Systems (Lec. 1 Slide 21)

(¢) (1 point) Indicate which of the following is CORRECT.
A. Operating system issues system calls to Application Programs.
B. Operating System issues interrupts to the Processor.

Processor issues interrupts to the Operating System. (correct)

D. KO Devices issue system calls to the Operating System.

Anatymy of a Computer System: OS

\ P CS:APP
icatian programs :
USE‘I’ M'Dde "‘l Qﬂlﬂm cais Jq?na..Ep WS et Ch.2 &3
= Rl v ? CS-APP
perating system ¥ ch 580

Prnc:esses

Kernel Mode -

CS:APP amme
Ch 4 &5 JL

Virtual memory

i ~
' Files/NIC CS:APP

: S Ch.6, 9,10
Main memaory| 1/Q devices

Carmesic Melbon University 2

Computer

34

Carnegie Mellon

Question 1d. Mem Access Time (Lec. 1 Slide 25)

(d) (1 point) Indicate which of the following is : _ .
INCORRECT regarding access time. Example Memory Hierarchy

L3 cache is faster than L1 cache~eexrect.) Srmaller, H'/Reas\ " OPU venisters hold worr reteved from cahe
. . ;: L. S L1 esch , [Teamocy,
B. Registers are fasterthes-nain memory. - cotler ol TRany L1 mche hulds cache lnes relsved
‘ —— - CS:APP o by} = T from the L2 caene.
C. Local disks are faster than distributec Chapter reck /(SR N\) 13 i holds cachs lines reiieved
. —— Fd el “x\ | from L3 cache
D. SRAM is faster than DRAM. (SRAM) T R A
. L3 cache holde cache lines relries
Larr s & N, from memaony
i L/ Main memory \
ﬁ‘:l':?wr l,/’r (DRARY \] Wan memory ho'ds cisk blo
B ot N raticved fram leeal daks
'iﬁ:::r LA: ,:’ Local secomdary slerage p:
dwvices feemlehy N7 Laeal disks hold files
4 / ¢ Fromdisks on remote
L5 ,-’I Hemois secondary slorage \".,), PEVERL
;’ (distrbuted file systeme, Web sarvers) ‘.\
Efast R] hien| B-500 Lecture #1 Canrnsgine Yhellon L v

35

Carnegie Mellon

Question 1e. RISC vs CISC (Lec. 2 Slides 9/10)

(e) (1 point) Indicate which of the following is CORRECT.

A. RISC aims to reduce the number of instructions in a program.

B. CISC aims to reduce the number of instructions in the ISA.
@RISC aims to reduce the number of cycles per instruction. (correct)

D. CISC aims to reduce the number of memory references.

What is RISC?
Reduced Instruction Set Computing
Reduces the cycles per instruction

36

Carnegie Mellon

Question 1f...

(f) (1 point) Which of the following actions constitute as cheating?
A. Looking at someone’s code but not copying it.
B. Copying code from StackOverflow or open source projects.

C. Reusing solutions from previous semesters.

All of the above. (correct)

37

Question 2 Bits and Bytes

1. An 8-bit machine using two’s complement arithmetic for signed integers.
2. Right shifts on signed integers are arithmetic.

3. Right shifts on unsigned integers are logical.
4

. x and y are signed integers, unless otherwise specified.

Expression Decimal Binary
—Tonin -128 0b10000000
X -104 10011000
y 63 Ob00111111
(unsigned)x 152 0b10011000
x || Oxdeadbeef 1 0b00000001
. 104 0b01101000
x ¥ 2 -26 Ob11100110
0x18 & y 24 0b00011000
X >y 0 0b00000000
((unsigned) x) >> 2 38 0b00100110

38

Q3 Floating POint 3. (10 points) Floating Point

Consider the following 5-bit floating point representations based on the IEEE floating
point format. This format does not have a sign bit - it can only represent positive floating

. hoint numbers,
Grading scheme: :

o There are k = 3 exponent bits. Bias = 2311 =3
e 1 point for every correct entry. No e There are n = 2 fraction hits.
partial credits.

. . Below, von are given some decimal values, and vour task is to encode them in floating
e Entry regarded incorrect if Rounded = 5 - J

point format. If rounding is necessary, vou should use round-to-even, as von did in

Value is simply worded and the value Data Lab. In addition, von should give the rounded value of the encoded floating point
is not written. e.g: largest denorm number. Give these as whole numbers {e.g., 17) or as fractions in reduced form (e.g.,
(except infinity) 3/4).
Value | Floating Point Bits | Rounded Value
9/32 (01 00 1/4
3/16
1
)
20
152

Q3. Floating Point

Value | Floating Point Bits | Rounded Value
9/32 001 00 1/4
3/16 000 11 3/16

1 011 00 1

9 110 00 8

20 | < 11100 infinity >
15/2 110 00 8

When a value requires
E= 273-1=7 or above,
the value becomes
infinity and the fractional
part must be cleared.
NaN is only for values
that actually aren’t
numbers

Q4 Assembly

(a) (12 points) Jump Table

The next problem concerns code generated by GCC for a function involving a switch
statement. The code uses a jump to index into the jump table:

400519:
Using GDB, we

0x400640:
0x400648 :
0x400650 :
0x400658 :
0x400660 :
0x400668 :
0x400670 :
Ox400678:

jmpq *=0x400640(.%rdi . 8)

extract the 8-entry jump table as:

0x40052a
0x400529
0x400530
0x400529
0x400530
0x400520
0x400529
0x400535

The following block of disassembled code implements the branches of the switch

statement:

on entry: %rdi = a, %rsi = b, %rdx = ¢

400510
400513
400517
400519:
400520:
400523
400526
400529
40052a:
40052d:
400530:
400534
400535
400538

movq S0x2.%rax

cmp $0x7.%rdi

ja 400529

jmpq *0x400640(,%rdi ,8)
movq %rdx, %rax

addq %rsi Yrax

salq S0x1.%rax

retq

movq %rsi %rdx

xorq SOxa,%rdx

leaq Oxa(%rdx),%rax
retq

movqg S0x8 % rax

retq

(a) (12 points) Jump Table

The next problem concerns code generated by GCC for a function involving a switch

statement. The code uses a jump to index into the jump table: long test(long a, long b, long c)
400519: jmpq *0x400640(% rdi ,8) {
Using GDB, we extract the 8-entry jump table as: Ion.g answer=__ 2 |
0x400640: 0x40052a O switch(a)
0x400648: 0x400529 1 {
0x400650: 0x400530 2 case 0 -
0x400658 : (}x..iil{l;:,gfr 3 c= bA10
0x400660: 0x400530 4 - —
0x400668 : 0x400520 5 /* Fall through */
0x400670: 0x400529 6 case 2 (4)_:
0x400678 : 0x400535
\.“] {J(\i [Ji) 7 Case_4_(2)_:
The following block of disassembled code implements the branches of the switch answer= 10 +c¢ :
statement: | | - break; -
on vnt-r_\‘: Vordi = a, f,“ﬁl :_h:_m-_dx =c case 5
100510:] movq $0x2.%rax | initialization -
400513: cmp $0x7,%rdi answer =_(b +c)<<1_;
400517: ja 400529 break;
e) Ly
100519: jmpq ?t(I.\ 1{1.()() 10(,%rdi ,8) case 7
5 400520:) movq Y%rdx %rax -
400523: addq %rsi Y%rax answer=__8__;
100526: salq $0x1.%rax break; (case 5 and 7 are interchangeable)

100529: retq
0 40052a:] movq %rsi Y%rdx
10052d: xorq SOxa,%rdx ’

leaq Oxa(%rdx),%rax }

400534: retq) . return answer:
7 400535 movq S0x8.%rax

100538 retq }

default:

Q4 Assembly (b) (8 points) Array

Consider the C code below, where H and J are constants declared with #define.

int arrayl [H][J]:

int array2[J][H];

int copy_array(int x, int y) {
array2[y][x] = arrayl|[x][¥];
return 1:

}

Suppose the above C code generates the following x86-64 assembly code:

On entry:

%rdi = x

%orsi = y

#

copy_array :
movq Y%rdi , Yirax
leaq (%rsi %rsi 8), %rdx
addq %rdi, Vrdx
salq 85, %rax
subq %rdi, %rax
leaq (%rsi %rax.2), %rax
movl arrayl(.%rax 4), Yeax
movl %eax, array2(,%rdx.4)
movl $1, %eax
ret

What are the values of H and J?
H=
J= 62

Q5 Smashing the Stack

5. (16 points) Smashing the Stack

After diffusing Dr. Evil’s nefarious bombs, you've decided to take it a step farther and
take his evil operations down by exploiting security flaws in his codebase. You have
located a particular program, evil-prog, and decided to disassemble it and check out the

assembly code:

e Main idea testing here is knowledge of the stack layout in 64 bit
systems & assembly
e Many students got this question wrong, please refer to the slides,
do attack lab & read the book to improve understanding
o Some confusion between 32 bit & 64 bit systems

Assembly Code

00000000004005b0 <nonsense >:
4005b0:
4005b1:
4005b4 :
4005b9:
4005bd :
4005¢0:
4005c¢h:
4005ca:
4005 cf:
4005d0:

53
48
e8
48
48
bf
b8
e8
5b
c3

89
71
8b
8b
fc
00
49

d3
fe
53
33
06
00
fe

00000000004005d1 <main>:

4005d1:
4005d5:
4005dc:
4005de:
4005e5:
4005eT:
4005eb:
4005 £0 :
4005£3 :
400518 :
4005 fd :
400601:

48
48
00
48
00
48
48
48
e8
b8
48
c3

23
c7
00
c7
00
8b
&d
89
b8
00
83

ec

44

44

76
54
e’
ff
00
c4d

tf
08

40
00
ff

28
24

24

08
24

ff
00
28

ff

00
00
ff

10

18

10

13§
00

05 00

07 00

This program expects a single argument on the command-line.

Assume that when main begins executing,

%rsp = 0x100,] %rbx = 0xA

Assume that the memory address 0x4006fc contains the format string

push %rbx
mov Yordx % rbx
callg 400438 <Strcpy@plt>|
mov 0x8(%rbx),%rdx
mov (%rbx) % rsi
| mov $0x4006fc ,%edi |
100V $0x0 %eax
callg 400418 <printf@plt>|
POP Yorbx "Oxhx Ox¥x"
retq
sub $0x28 . %rsp
movq $0x5,0x10(%rsp)
movg $0x7,0x18(%rsp)
mov 0x8(%rsi),%rsi
lea 0x10(%rsp), rdx
mov Y%rsp,%rdi
callg 4005b0 <nonsense>
mov $0x0,%eax
add $0x28,%rsp

retqg

Some helpful function definitions are

char *strcpy(char *dest, comnst char *src);
int printf(const char *format, ...);

First, lets begin our investigation by running the following command
./evil-prog deadbeef

Where the hexadecimal byte conversion for ”deadbeef” is 64 65 61 64 62 65 65 66

(6 points) Please fill out the following stack diagram for this program execution, rep-
resenting the layout of the stack right before strcpy is called, address 0x4005b4. Each
address represents an 8-byte section of the stack. Please put all answers in hexadecimal
format and for any areas of the stack which are unkown, please leave the box blank.

Address | Memory Value
0x100
OxF8
OxFO
OxE8
O0xEO
0xD8
0xDO
0xC8
0xCO
0xB8

Asse m bly COd e This program expects a single argument on the command-line.

Assume that when main begins executing,

00000000004005b0 <nonsense >: »rsp = 0x100, %rbx = OxA
4005b0 53 L_push _ %rbx
4005b1 : 48 89 d3 mov %rdx,%rbx Assume that the memory address 0x4006fc contains the format string
4005b4 : e 7f fe ff ff callg 400438 <strcpy@plt> "Oxlx OxYx"
4005b9: 48 8b 53 08 mov 0x8(%rbx),%rdx
4005bd : 48 8b 33 mov (%rbx),%rsi Some helpful function definitions are
4005¢0: bf fc 06 40 00 mov $0x4006fc,%edi . tiionee i " ;
3 char *Strcpy char *dest, const char *src);
4005¢5 b8 00 00 00 00 mov $0x0,%eax S VTR o ol SRR o5
4005ca: e® 49 fe ff ff callq 400418 <printf@plt>
4005 cf : 5b pop Y%erbx
400540z ud ket Address | Memory Value
00000000004005d1 <main>: 0x100
4005d1: 48 83 ec 28 sub $0x28 . %rsp OxF8
388235 48 ¢7 44 24 10 05 00 movq $0x5,0x10(%rsp) 0xFO Ox7
cx 00 Q0
4005de: 48 ¢7 44 24 18 07 00 movqg $0x7,0x18(%rsp) OxES 0x5
4005¢5 : 00 00 OxEOQ
4005e7: 48 8b 76 08 mov 0x8(%rsi),%rsi 0xD8
4005eb: 48 8d 54 24 10 lea OxlO(%rsP),%rdx 0xDO 0x4005f8
4005 £0 : 48 89 e7 mov Y%rsp % rdi 0xC8
40053 : ¢8 b8 ff ff ff [callq 4005b0 <nonsense> | OxA
400518 : b8 00 00 00 00 mov___ S0x0, Vheax 0xCO
40051d : 48 83 c4 28 add $0x28 ,%rsp 0xBS8

400601: c3 retq

(1 point) What is the security issue with this program called?

Buffer Overflow

(3 points) What would be printed to the console?

0x5 Ox7

Some notes:
e Buffer Overflow != Stack Overflow! No partial credit given here
e For the first example, buffer does not overflow! So regular output is printed

Next, we run the following command
./evil-prog deadbeefdeadbeefdeadbeef

(3 points) What would be printed to the console now?

‘0x6665656264616564 0x0° OR ‘0x6665656264616564 Ox7’
(First is correct, both get full credit (null terminator on string))

(3 points) We discover a useful function elsewhere in the program, disable-launch, located
at address 0x4142434441424344 ABCDABCD’ in ascii). What command could we give
in order to exploit evil-prog to run the disable-launch code?

Jevil-prog deadbeefdeadbeefdeadbeefdeadbeefdeadbeefDCBADCBA
(40 bytes of junk, address bytes in little-endian order)

Some notes:
e Remember little endian format! Review recitation slides, this concept is key
e \Were generous when giving points on these, decent efforts were awarded points

G. (10 points) Pipelined Processor Architecture

i(a) (5 points) Each table below illistrates the pipeline stages of different Y86 instrue-
tions. Match cach table to the instructions: o, call, ret, LN IOV, iu]i]q. Write

vour amswer in the first row of each table.

Instrmction

[rstruction

I I I Fetch icode:ifun = M[PC] Fetch icode:ifun = M[PC]
Q6. Pipelined Processor Architecture T A oL WP
valC = M[PC+2] valP = PO+2
valP = PC+10 Decode valh = R[rA]
Decode vald = A[ra] valB = R[rE]
valE = A[rE] Execute | valE = valE OF vald

Grading scheme:

Execcute

valE = valB + valC

Set CC

:".I1'|.IIH|._‘\'

M[valE] = valA

:".I1'|.Jliil|.'_'\

Write back

Write back

R[rE] = walE

e Part A PC update PC = walP PC update BC = valP
o 1 point for each correct answer. No partial credits Tnstruction
° Part B Fetch icede:ifun = M[PC] Tetrictom
. . . ¥all = NIPG+] Fetch ieode:ifun = M[PC]
o 2 points for the correct answer. No partial credits valP = PC+2 Senis | etk Rideme
Decode vald = R[¥rspl B i
[] Part C valB = H[?ISP] valB = H[‘}.‘-‘,:sp]
. = Execute valE = valB + B
o 1 point for each sub question. No partial credits Execute | valE = valb + 8 N amnry vall = Mivalil
hemaory valM = M[valAl — 2
i Write back R[%rzp]l = valE
Write bacl Rl%r=p]l = valE P e P = valll
A[rA] = valM upriate = va
PC update PC = valP

[nstretion

Feteh icede:ifun = M[PC]
valC = M[PC+1]
valP = PC+5
Do de valB = R[Wrap]

Execute

valE = valB - B

Memaory

M[valE] = valP

Write bacl

R%rzp] = valE

PC update

PC = valC

Q6. Pipelined Processor Architecture

Part A

o Condition codes are set only for
arithmetic instructions

o popqg and ret both increment the stack pointer in
the execute stage

o call is the only operation that has to decrement the
stack pointer in the execute stage

o The execute() stage contains an OP code for
arithmetic operations

o The execute stage calculates effective memory
address (offset + displacement) for rmmovq or
mrmovq instructions

G. (10 points) Pipelined Processor Architecture

i(a) (5 points) Each table below illistrates the pipeline

rmmovq
/

Popq

call

atages of difforont Y86 instroc-

tions. Match cach table to the instructions: o, call, ret, LN IOV, iuii]q. Write
vour amswer in the first row of each table.
Instrmction [rstruction
Fetch icode:ifun = M[PC] Fetch icode:ifun = M[PC]
rh:rE = M[PC+1] ri:rBE = M[PC+1]
valC = M[PC+2] valP = PC42
valP = PC+10 Decode valh = R[rA]
Decode vald = A[ra] valB = R[rE]
valE = R[rE] Execute | wvalE = valB OF vald
Execute | valE = valBE + walC Set OC
Memory M[valE] = valA M emaory
Write back Write back R[rE] = walE
PC update PC = walP PC update BC = valP
Instrction
Feteh ieode: ifun = M[PC] e
VAIG = NIPGHi] Feich icode:ifun = M[PC]
VAIE-E. Tyed Decode valh = R[{rap]
Decode vald = R[%rep] o = CAE
valB = R[frepl
valB = R[¥rap] -
- Execute valE = valB + B
Execute valE = valB + B
Memory valM = M[valal
hemaory valM = M[valAl —
- Write back R[%rzp]l = valE
Write back Rlir=p] = valE P B i
R[rA]l = valM Bl zech
PC update PC = valP
[nstretion add
Feteh icede:ifun = M[PC]
valC = M[PC+1]
valP = PC+5
Do de valB = R[Wrap]
Execcute valE = valE - B ret
Memory M[valE] = valP
Write back R%rzp] = valE
PC update BC = valC

Q6. Pipelined Processor Architecture

e PartB
o Jstalls
m Wait till the write back stage of popq passes
back the results to the decode stage of add
e PartC
o Memory
m Pop loads from the memory into a register
m Allloads and stores happen during memory
stage
o Execute
m Arithmetic operations happen in the execute
stage
o Yes,1
m Memory and Execute are adjacent stages
m Forwarding between adjacent stages
requires 1 stall

(b} (2 points) Assume the following sequence of instructions in the pipeline:
1. pop r2
2. add rl, 12

How many stalls ave vequired to be inserted after the pop instmction to aveid a
data hazard ?

3 stalls

fe) (3 points) We can avoid some of the stalls above by forwarding. Let us see how we

can do this. Assame the stages of a pipeline are represented by [F, ID, EX, MEM,

WE. The answer to each of the fitst 2 questions below should be one of these stages,

o Which is the earliest stage of the pop instruction when the result becomes
aviilable in 127

Memory

Which is the latest stage by which the value of ¥2 is needed bv add?

Execute

If we forward between the stages that vou mention above, do we still need stalls
between pop and add to aveid a data hazaed? If so. how many?

Yes, 1

Problem 7a: Branch Target Buffer & Branch History
Table

Branch instruction Branch target Branch

Compare: Both used in dynamic branch e sidessfickl. adfmssfickl, history
prediction. ’& — BTA
Contrast: BHT stores direction history, PC

and used to predict the direction of branch ¥
instruction. BTB stores history of branch éﬁiﬁﬁiﬁj
targets, and is used to predict the target of Pecdicttiken

a branch instruction.

Problem 7b: Register Allocation & Register Renaming

Compare: Both deal with mapping of registers.

Register Renaming Resolves:
Anti- Dependences

Contrast: Register allocation maps virtual to Output Dependences
architecture registers; done by compiler at compile Avchitectsd Physical
. Registers Registers
time. Register renaming maps architecture registers to

physical registers; done by hardware at run time.

Problem 7c: Reservation Station & Reorder Buffer

CT T T T T T] Instruction/Decode Buffer

Compare: Both form the boundaries (front

and back) of Out-of-order Execution core.

In Order

Tt

Dispatch Buffer
Dispatch

Contrast: Reservation Station receives R N T N .

gl i s o o

in-order instructions and outputs - [E= =
. . H% Ex t
out-of-order instructions. Reorder Buffer 56\

Qut-of-prder xecutilon Coye

. . . Finish
receives out-of-order instructions and N -1 Iémlnpl.et'e' LT ompletion Bufer
outputs in-order instructions. § _._._.. o
J

Problem 7d: Load Bypassing and Load Forwarding

Compare: Both try to accelerate the

exeCUtion Of |Oad inStrUCtionS Dynamic instruction sequence: Dynamic instruction sequence:
) Sl(-)rc X Sl(;rc X Forward the
. ; ; Execute load . -
Contrast: LB allows load instructions to ki (Sore Y Store Y)m_l?;ll;.o
execute earlier than a store instruction that OSSN Load Z Load X< theload
precedes the load, if determined that the & 6
Load Bypassing Load Forwarding

load will not alias with store.

LF allows a load to get the data directly
from the preceding store if aliasing exists.

4 doubles (32 bytes in

each line) :
PrOblem 8 Each block
contains one

e 128 byte data cache double: 8 bytes
e 2-way associative) -
e 4 doubles in each line
e Each double is 8 bytes °~°
e A s cache aligned !

S=1

e Problem 8a:

o Since there are 4 cache lines and each can hold 4 doubles, in total the cache can hold 16
doubles

e Problem 8b;:

o There are 4 cache lines and it’s a 2-way associative cache, so there are 2 sets.

Problem 8c (m =1)

double A[32], t = 0; A[0] A[1] Al2] Al3]
for(int i 0; i <m; i++4)

for(int J: 0; j < n; j++)
t 4= Alj *m+ i]; A[8] A[9] A[10] A[11]
Since m =1 and m*n = 32 Al4] Al3] Al6] Al7]
for(int i = 0;: i < 1: i++)
forlint d: 3.« 39 i44) Al12] A[13] A[14] A[15]
t 4= A|lj + i
see that we're loading AJ4] - cold miss, hits for A[5] to A[7]in S =1
A[0] to A[31] in that A[8] - cold miss, hits for A[8] to A[11]in S =0 and so on
order e For every miss there are 3 hits.

e And there are no conflict misses, only cold misses

Answers for problem 8c

A. Missrate =4
B. Kinds of misses = Cold or compulsory misses. And optionally capacity

misses.
C. Kind of locality? Spatial locality as it's a stride-1 access of the

elements from A[0] to A[31]

Problem 8d (m = 2)

double A[32], t = 0;
for(int i = 0; i <m; i++)
for(int j = 0; j < n; j++)
t +=A[j * m+ i];

Since m =2 and m*n = 32

for(int i = 0: i < 2: i4+4)
for(int j 0;: j < 16; j++)
t 4= Af2«) + i;

e From the code, you see that we're
loading A[0], A[2], A[4]... A[30]
followed by A[1], A[3], A[5]... A[31]

A[0] A[1] A2] A3]
A[8] A[9] A[10] A[11]
A4] A[5] A[6] Al7]

A[12] A[13] A[14] A[15]

A[0] - cold miss, hit for A[2]in S =0
A[4] - cold miss, hit for A[6]in S =1
A[8] - cold miss, hit for A[10]in S =0
A[12] - cold miss, hit for A[14] in S =1

Problem 8d (m = 2)

A[16] A[17] A[18] A[19] 2. After A[28], we need to load A[1] and this
maps to the first line of the cache at S=0 and

A[24] A[25] A[26] A[27] is a conflict miss.

A[20] A[21] A[22] A[23] A[1] - conflict miss, hit for A[3] in S =0
A[5] - conflict miss, hit for A[7]in S = 1

A[28] A[29] A[30] A[31] A[9] - conflict miss, hit for A[11]inS =0
A[13] - conflict miss, hit for A[15]in S =1 and
SO on

A[16] - miss & eviction, hit for A[18]in S =0 _ _ .
A[20] - miss & eviction, hit for A[22]in S = 1 3. Therefore, for every hit there is a miss.
A[24] - miss & eviction, hit for A[26]in S=0 And there are both cold and conflict misses.

A[28] - miss & eviction, hit for A[30] in S =1

Answers for problem 8d

A. Miss rate = 1/2
B. Kinds of misses = Cold or compulsory misses and conflict misses

Problem 8e (m = 16)

double A[32], t = 0;
for(int i = 0; i <m; i++) S=0
for (int j 0; j <mn; j++)

t +=A[j] * m+ i];

=

Since m =16 and m*n = 32

for(int l -H. 1 < 16: i44)
for(int j = 0; j < 2;: j++)
t 4 ."L;il:u-j } l

1. From the code, you see that we're
loading A[0], A[16], A[1], A[17],
A[2], A[18], A[3], A[19]...

A[0] A[1] A2] A[3]
A[16] A[17] A[18] A[19]
A[4] A[5] A[6] A[7]
A[20] A[21] A[22] A[23]

2. A[0] is a cold miss and A[1], A[2] and A[3]
are hits.

3. Since it's two way set associative, A[16]
gets mapped to the second line of the first
set (S = 1) and A[20] gets mapped to the
second line of the second set (S = 2)

Answers to problem 8e
Therefore, for every miss in the cache, there are three hits

A. Miss rate = Y4
B. Kinds of misses = Cold or compulsory misses.

IMPORTANT: There was a mistake in the rubric where the correct answer
was
A. Miss rate = 1
B. Kinds of misses = Cold or compulsory misses and conflict misses.
This is wrong.
e If you've answered A with V4, you get 2 points
e And if you've answered B with only cold miss you get .5 points more
(should have been awarded .5 points already)

