
Carnegie Mellon

1

Exceptional Control Flow

18600: Introduction to Computer Systems
Recitation 10: Tuesday, November 1st, 2016

Carnegie Mellon

2

Agenda
⬛ Processes

⬛ Signals: An instance of Exceptional Control Flow

But first….a reminder about cheating… DON’T DO IT

- CMU has much stricter policies than some may be used to
- CMU has much better cheating software than some may be used to
- No second chances given
- Not worth it, trust us

Carnegie Mellon

3

Processes
⬛ Definition: A process is an instance of a running program.

⬛ Process provides each program with two key abstractions:

▪ Logical control flow

▪ Each program seems to have exclusive use of the CPU

▪ Private virtual address space

▪ Each program seems to have exclusive use of main memory

▪ Gives the running program a state

⬛ How are these Illusions maintained?

▪ Process executions interleaved (multitasking) or run on separate cores

▪ Address spaces managed by virtual memory system

▪ Just know that this exists for now; we’ll talk about it soon

Carnegie Mellon

4

Processes
⬛ Four basic States

▪ Running

▪ Executing instructions on the CPU

▪ Number bounded by number of CPU cores

▪ Runnable

▪ Waiting to be running

▪ Blocked

▪ Waiting for an event, maybe input from STDIN

▪ Not runnable

▪ Zombie

▪ Terminated, not yet reaped

Carnegie Mellon

5

Processes
⬛ Four basic process control function families:

▪ fork()

▪ exec()

▪ And other variants such as execve()

▪ exit()

▪ wait()

▪ And variants like waitpid()

⬛ Standard on all UNIX-based systems

⬛ Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CS:APP

Carnegie Mellon

6

Processes
⬛ int fork(void)

▪ creates a new process (child process) that is identical to the calling process
(parent process)

▪ OS creates an exact duplicate of parent’s state:

▪ Virtual address space (memory), including heap and stack

▪ Registers, except for the return value (%eax/%rax)

▪ File descriptors but files are shared

▪ Result → Equal but separate state

▪ Fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

7

Processes
⬛ int fork(void)

▪ returns 0 to the child process

▪ returns child’s pid (process id) to the parent process

▪ Usually used like:pid_t pid = fork();

if (pid == 0) {
 // pid is 0 so we can detect child
 printf("hello from child\n");
}

else {
 // pid = child’s assigned pid
 printf("hello from parent\n");
}

Carnegie Mellon

8

Processes
⬛ int exec()

▪ Replaces the current process’s state and context

▪ But keeps PID, open files, and signal context

▪ Provides a way to load and run another program

▪ Replaces the current running memory image with that of new
program

▪ Set up stack with arguments and environment variables

▪ Start execution at the entry point

▪ Never returns on successful execution

▪ The newly loaded program’s perspective: as if the previous program has
not been run before

▪ More useful variant is int execve()

▪ More information? man 3 exec

Carnegie Mellon

9

Processes
⬛ void exit(int status)

▪ Normally return with status 0 (other numbers indicate an error)

▪ Terminates the current process

▪ OS frees resources such as heap memory and open file descriptors and so
on…

▪ Reduce to a zombie state

▪ Must wait to be reaped by the parent process (or the init process if
the parent died)

▪ Signal is sent to the parent process notifying of death

▪ Reaper can inspect the exit status

Carnegie Mellon

10

⬛ int wait(int *child_status)

▪ suspends current process until one of its children terminates

▪ return value is the pid of the child process that terminated

▪ When wait returns a pid > 0, child process has been reaped

▪ All child resources freed

▪ if child_status != NULL, then the object it points to will be set to a status indicating why the
child process terminated

▪ More useful variant is int waitpid()

▪ For details: man 2 wait

⬛ What happens if wait() is not called ?

Processes

Carnegie Mellon

11

⬛ int wait(int *child_status)

▪ suspends current process until one of its children terminates

▪ return value is the pid of the child process that terminated

▪ When wait returns a pid > 0, child process has been reaped

▪ All child resources freed

▪ if child_status != NULL, then the object it points to will be set to a status indicating why the
child process terminated

▪ More useful variant is int waitpid()

▪ For details: man 2 wait

⬛ What happens if wait() is not called ?

▪ Child becomes a zombie

▪ The memory containing the exit status of the child is not freed

▪ init() process finally reaps the process

▪ If this occurs repeatedly, it will lead to a lot of wasted memory space, each storing exit status of
different child processes

Processes

Carnegie Mellon

12

Process Examples
⬛ What are the possible output (assuming fork

succeeds) ?

▪ Child!
Parent!

▪ Parent!
Child!

▪ Parent! (when does this happen ?)

⬛ How to get the child to always print first?

pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{

 printf(“Parent!\n”);
}

Carnegie Mellon

13

int status;
pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{
 waitpid(child_pid, &status, 0);

 printf(“Parent!\n”);
}

Process Examples
⬛ Waits till the child has terminated.

 Parent can inspect exit status of
 child using ‘status’

▪ WEXITSTATUS(status)

⬛ Output always:
Child!
Parent!

Carnegie Mellon

14

Process Examples
⬛ An example of something useful.

⬛ Why is the first arg “/bin/ls”?

⬛ Will child reach here?

int status;
pid_t child_pid = fork();
char* argv[] = {“/bin/ls”, “-l”, NULL};
char* env[] = {…, NULL};

if (child_pid == 0){
 /* only child comes here */

 execve(“/bin/ls”, argv, env);

 /* will child reach here? */
}
else{
 waitpid(child_pid, &status, 0);

 … parent continue execution…
}

Carnegie Mellon

15

Process Examples
⬛ Unix Process Hierarchy:

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Carnegie Mellon

16

Signals
⬛ A signal is a small message that notifies a process that an event of some type has

occurred in the system

▪ akin to exceptions and interrupts (asynchronous)

▪ sent from the kernel (sometimes at the request of another process) to a process

▪ signal type is identified by small integer ID’s (1-30)

▪ only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

17

Signals
⬛ Kernel sends (delivers) a signal to a destination process by updating some state

in the context of the destination process

⬛ Kernel sends a signal for one of the following reasons:

▪ Kernel has detected a system event such as Ctrl-C (SIGINT), divide-by-zero
(SIGFPE), or the termination of a child process (SIGCHLD)

▪ Another program called the kill() function

▪ The user used a kill utility

Carnegie Mellon

18

Signals
⬛ A destination process receives a signal when it is forced by the kernel to react

in some way to the delivery of the signal

⬛ Receiving a signal is non-queuing

▪ There is only one bit in the context per signal

▪ Receiving 1 or 300 SIGINTs looks the same to the process

⬛ Signals are received at a context switch

⬛ Three possible ways to react:

▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an
asynchronous interrupt

Carnegie Mellon

19

Signals
⬛ A destination process receives a signal when it is forced by the kernel to react

in some way to the delivery of the signal

⬛ Blocking signals

▪ Sometimes code needs to run through a section that can’t be interrupted

▪ Implemented with sigprocmask()

⬛ Waiting for signals

▪ Sometimes, we want to pause execution until we get a specific signal

▪ Implemented with sigsuspend()

⬛ Can’t modify behavior of SIGKILL and SIGSTOP (can’t be caught, blocked, or
ignored)

Carnegie Mellon

20

Blocking and Waiting on Signals
/* Illustrate blocking signals */
sigset_t mask_all, prev_all;
Sigfillset(&mask_all) // Mask to block all signals
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all) // Block all signals, save prev mask
….. // Uninterruptable section
…..
Sigprocmask(SIG_BLOCK, &prev_all, NULL) // Restore prev mask

/* Illustrate waiting for signals
 * Wait till *all* dead child process are reaped (waitpid() returns only one pid per call !)
 */
while ((pid = waitpid(-1, NULL, 0)) > 0) {

….
...

}

Carnegie Mellon

21

Signals
⬛ Signal handlers

▪ Can be installed to run when a signal is received

▪ The form is void handler(int signum){ … }

▪ Separate flow of control in the same process

▪ Resumes normal flow of control upon returning

▪ Can be called anytime when the appropriate signal is fired

▪ Can be interrupted by other signal handlers

Carnegie Mellon

22

Signal Handling
⬛ Running Process:

▪ Receipt of a signal triggers a control transfer to a signal handler
▪ After it finishes processing, the handler returns control to the interrupted

program
⬛ Runnable Process:

▪ When the process is next scheduled, the control is first transferred to the signal
handler

▪ After it finishes processing, the handler returns control to the program

1) Signal received
By a running process

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler returns to
next instruction

1) Signalled process
scheduled to run

(2) Control first passes
to signal handler and it
runs

(3) The process is
scheduled to run

Carnegie Mellon

23

Signals
⬛ int sigsuspend(const sigset_t *mask)

▪ Avoid race conditions between delivery of signal and checking if the signal
is delivered

▪ Temporarily replaces the signal mask of the calling process with the mask
given

▪ Suspends the process until delivery of a signal whose action is to invoke a
signal handler or terminate a process

▪ Returns if the signal is caught

▪ Signal mask restored to the previous state

▪ Use sigaddset(), sigemptyset(), etc. to create the mask

Carnegie Mellon

24

Signals
⬛ int sigsuspend(const sigset_t *mask)

▪ May exit on spurious signals too

▪ Check the exit condition on exit

while(cond_is_not_true(&cond)) {
 sigsuspend(...);
}

Carnegie Mellon

25

Signal Examples
⬛ Every process belongs to exactly one process group

⬛ Process groups can be used to distribute signals easily

⬛ A forked process becomes a member of the parent’s process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process

Assign a group ID different
from the parent shell. Why ?

Carnegie Mellon

26

Signal Examples
⬛ Every process belongs to exactly one process group

⬛ Process groups can be used to distribute signals easily

⬛ A forked process becomes a member of the parent’s process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process

Killing a child should not kill the parent too!
Shell should continue to run

Carnegie Mellon

27

// sigchld handler installed

pid_t child_pid = fork();

if (child_pid == 0){
 /* child comes here */

 execve(……);
}
else{

 add_job(child_pid);

}

Signal Examples

⬛ Does add_job or remove_job() come first?

⬛ Where can we block signals in this code to guarantee correct execution?

void sigchld_handler(int signum)
{
 int status;

 pid_t child_pid =
 waitpid(-1, &status, WNOHANG);

 if (WIFEXITED(status))
 remove_job(child_pid);
}

Carnegie Mellon

28

// sigchld handler installed

pid_t child_pid = fork();

if (child_pid == 0){
 /* child comes here */

 execve(……);
}
else{
 add_job(child_pid);

}

Signal Examples

⬛ Does add_job or remove_job() come first?

⬛ Where can we block signals in this code to guarantee correct execution?

void sigchld_handler(int signum)
{
 int status;

 pid_t child_pid =
 waitpid(-1, &status, WNOHANG);

 if (WIFEXITED(status))
 remove_job(child_pid);
}

Block SIGCHLD

Unblock SIGCHLD

Unblock SIGCHLD

Carnegie Mellon

29

// sigchld handler installed

pid_t child_pid = fork();

if (child_pid == 0){
 /* child comes here */

 execve(……);
}
else{
 add_job(child_pid);

}

Signal Examples

⬛ Don’t forget to block signals in the signal handler too when accessing job list
⬛ Access to any shared data structure should be race free
⬛ Additional question: what happens to the global errno upon return from handler?

void sigchld_handler(int signum)
{
 int status;

 pid_t child_pid =
 waitpid(-1, &status, WNOHANG);

 if (WIFEXITED(status))
 remove_job(child_pid);
}

Block SIGCHLD

Unblock SIGCHLD

Unblock other signals

Block other signals

Unblock SIGCHLD

Carnegie Mellon

30

Signal Examples

⬛ Now, wait for child to be removed
⬛ How to wait ?
⬛ Option 1: while ((getjobpid(job_list, pid) != NULL) ;
⬛ Option 2: while ((getjobpid(job_list, pid) != NULL) { pause; }
⬛ Option 3: while ((getjobpid(job_list, pid) != NULL) { sleep; }

What are the problems with the above options ?

Carnegie Mellon

31

Signal Examples

⬛ Now, wait for child to be removed
⬛ How to wait ?
⬛ Option 1: while ((getjobpid(job_list, pid) != NULL) ; TOO WASTEFUL !

⬛ Option 2: while ((getjobpid(job_list, pid) != NULL) { pause; } RACE !

⬛ Option 3: while ((getjobpid(job_list, pid) != NULL) { sleep(1); } TOO SLOW !

Carnegie Mellon

32

Signal Examples

⬛ Sigsuspend() to the rescue

Sigprocmask(SIG_BLOCK, &mask, &prev); // Block signals as required by shell

…..

while ((getjobpid(job_list, pid) != NULL) {

Sigsuspend(&prev); // Atomically restore previous signal state and wait

// Signals restored to “mask” as required by shell

}

….

Sigprocmask(SIG_SETMASK, &prev, NULL); // Restore previous signal state for good

Carnegie Mellon

33

Shell Lab
⬛ Shell Lab is out!

⬛ Due Monday, November 7th

⬛ Read the code we’ve given you
▪ There’s a lot of stuff you don’t need to write yourself; we gave you

quite a few helper functions

▪ It’s a good example of the code we expect from you!

⬛ Don’t be afraid to write your own helper functions; this is
not a simple assignment

Carnegie Mellon

34

Shell Lab
⬛ Read man pages. You may find the following functions helpful:

▪ sigemptyset()

▪ sigaddset()

▪ sigprocmask()

▪ sigsuspend()

▪ waitpid()

▪ open()

▪ dup2()

▪ setpgid()

▪ kill()

⬛ Please do not use sleep() to solve synchronization issues.

Carnegie Mellon

35

Shell Lab
⬛ Hazards

▪ Race conditions

▪ Hard to debug so start early (and think carefully about what
needs to be protected, i.e. jobs list)

▪ Reaping zombies

▪ Race conditions

▪ Handling signals correctly

▪ Waiting for foreground job

▪ Think carefully about what the right way to do this is

Carnegie Mellon

36

Shell Lab Testing
⬛ Run your shell

▪ This is the fun part!

⬛ tshref
▪ How should the shell behave?

⬛ runtrace
▪ Each trace tests one feature.

▪ NOTE: Not exhaustive by any means. We will check for race

conditions manually and deduct up to 20 percent! Find these
before we do...

Carnegie Mellon

37

Questions ?

