
Carnegie Mellon

1

Exceptional Control Flow &
OH for Midterm

18600: Introduction to Computer Systems
Recitation 9: Tuesday, October 25th, 2016

Carnegie Mellon

2

Agenda
⬛ Exceptional Control Flow

⬛ Processes

⬛ Signals

⬛ OH for Midterm

Carnegie Mellon

3

Exceptional Control Flow
⬛ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

Both react to changes in program state

⬛ Insufficient for a useful system:
Difficult to react to changes in system state

▪ data arrives from a disk or a network adapter

▪ instruction divides by zero

▪ user hits Ctrl-C at the keyboard

▪ System timer expires

⬛ System needs mechanisms for “exceptional control flow”

Carnegie Mellon

4

Asynchronous Exceptions (Interrupts)
⬛ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

⬛ Examples:

▪ I/O interrupts

▪ hitting Ctrl-C at the keyboard

▪ arrival of a packet from a network

▪ arrival of data from a disk

▪ Hard reset interrupt

▪ hitting the reset button

▪ Soft reset interrupt

▪ hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

5

Synchronous Exceptions
⬛ Caused by events that occur as a result of executing an instruction:

▪ Traps

▪ Intentional

▪ Examples: system calls, breakpoint traps, special instructions

▪ Returns control to “next” instruction

▪ Faults

▪ Unintentional but possibly recoverable

▪ Examples: page faults (recoverable), protection faults (unrecoverable), floating point
exceptions

▪ Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

▪ unintentional and unrecoverable

▪ Examples: parity error, machine check

▪ Aborts current program

Carnegie Mellon

6

Processes
⬛ What is a program?

▪ A bunch of data and instructions stored in an executable binary file

▪ Written according to a specification that tells users what it is supposed to
do

▪ Stateless since binary file is static

Carnegie Mellon

7

Processes
⬛ Definition: A process is an instance of a running program.

⬛ Process provides each program with two key abstractions:

▪ Logical control flow

▪ Each program seems to have exclusive use of the CPU

▪ Private virtual address space

▪ Each program seems to have exclusive use of main memory

▪ Gives the running program a state

⬛ How are these Illusions maintained?

▪ Process executions interleaved (multitasking) or run on separate cores

▪ Address spaces managed by virtual memory system

▪ Just know that this exists for now; we’ll talk about it soon

Carnegie Mellon

8

Processes
⬛ Four basic States

▪ Running

▪ Executing instructions on the CPU

▪ Number bounded by number of CPU cores

▪ Runnable

▪ Waiting to be running

▪ Blocked

▪ Waiting for an event, maybe input from STDIN

▪ Not runnable

▪ Zombie

▪ Terminated, not yet reaped

Carnegie Mellon

9

Processes
⬛ Four basic process control function families:

▪ fork()

▪ exec()

▪ And other variants such as execve()

▪ exit()

▪ wait()

▪ And variants like waitpid()

⬛ Standard on all UNIX-based systems

⬛ Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CS:APP

Carnegie Mellon

10

Process Examples
⬛ What are the possible output

(assuming fork succeeds) ?

▪ Child!
Parent!

▪ Parent!
Child!

⬛ How to get the child to always
print first?

pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{

 printf(“Parent!\n”);
}

Carnegie Mellon

11

int status;
pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{
 waitpid(child_pid, &status, 0);

 printf(“Parent!\n”);
}

Process Examples
⬛ Waits till the child has terminated.

 Parent can inspect exit status of
 child using ‘status’

▪ WEXITSTATUS(status)

⬛ Output always:
Child!
Parent!

Carnegie Mellon

12

Process Examples
⬛ An example of something useful.

⬛ Why is the first arg “/bin/ls”?

⬛ Will child reach here?

int status;
pid_t child_pid = fork();
char* argv[] = {“/bin/ls”, “-l”, NULL};
char* env[] = {…, NULL};

if (child_pid == 0){
 /* only child comes here */

 execve(“/bin/ls”, argv, env);

 /* will child reach here? */
}
else{
 waitpid(child_pid, &status, 0);

 … parent continue execution…
}

Carnegie Mellon

13

Process Examples
⬛ Unix Process Hierarchy:

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Carnegie Mellon

14

Signals
⬛ A signal is a small message that notifies a process that an event of some type has

occurred in the system

▪ akin to exceptions and interrupts (asynchronous)

▪ sent from the kernel (sometimes at the request of another process) to a process

▪ signal type is identified by small integer ID’s (1-30)

▪ only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

15

Signals
⬛ A destination process receives a signal when it is forced by the kernel to react

in some way to the delivery of the signal

⬛ Blocking signals

▪ Sometimes code needs to run through a section that can’t be interrupted

▪ Implemented with sigprocmask()

⬛ Waiting for signals

▪ Sometimes, we want to pause execution until we get a specific signal

▪ Implemented with sigsuspend()

⬛ Can’t modify behavior of SIGKILL and SIGSTOP

Carnegie Mellon

16

Signals
⬛ Signal handlers

▪ Can be installed to run when a signal is received

▪ The form is void handler(int signum){ … }

▪ Separate flow of control in the same process

▪ Resumes normal flow of control upon returning

▪ Can be called anytime when the appropriate signal is fired

Carnegie Mellon

17

Signal Handling
⬛ Running Process:

▪ Receipt of a signal triggers a control transfer to a signal handler
▪ After it finishes processing, the handler returns control to the interrupted

program
⬛ Runnable Process:

▪ When the process is next scheduled, the control is first transferred to the signal
handler

▪ After it finishes processing, the handler returns control to the program

1) Signal received
By a running process

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler returns to
next instruction

1) Signalled process
scheduled to run

(2) Control first passes
to signal handler and it
runs

(3) The process is
scheduled to run

Carnegie Mellon

18

Shell Lab
⬛ Shell Lab is out!

⬛ Due Monday, November 7th

⬛ Read the code we’ve given you
▪ There’s a lot of stuff you don’t need to write yourself; we gave you

quite a few helper functions

▪ It’s a good example of the code we expect from you!

⬛ Don’t be afraid to write your own helper functions; this is
not a simple assignment

Carnegie Mellon

19

Shell Lab
⬛ Read man pages. You may find the following functions helpful:

▪ sigemptyset()

▪ sigaddset()

▪ sigprocmask()

▪ sigsuspend()

▪ waitpid()

▪ open()

▪ dup2()

▪ setpgid()

▪ kill()

⬛ Please read the man pages thoroughly to understand what each function does

⬛ Please do not use sleep() to solve synchronization issues.

Carnegie Mellon

20

Shell Lab
⬛ Hazards

▪ Race conditions

▪ Hard to debug so start early (and think carefully)

▪ Reaping zombies

▪ Race conditions

▪ Handling signals correctly

▪ Waiting for foreground job

▪ Think carefully about what the right way to do this is

Carnegie Mellon

21

Shell Lab Testing
⬛ Run your shell

▪ This is the fun part!

⬛ tshref
▪ How should the shell behave?

⬛ runtrace
▪ Each trace tests one feature.

Carnegie Mellon

22

Midterm Review

Carnegie Mellon

23

Cache
● Types of caches

○ Direct Mapped (multiple sets, one cache line per set)
○ Set associative (multiple sets, multiple lines per set)
○ Fully associative (one set, multiple lines in that set)

● Types of locality
○ Spatial locality (Access set of adjacent elements successively)
○ Temporal locality (Access same set of elements iteratively)

● Miss rate =

● The better the locality, lower the miss rate

Carnegie Mellon

24

Cache - Hit rate and Locality analysis
Example question:

1. Direct mapped 16 byte data cache with two cache lines.
2. Float requires 4 bytes.
3. Cache is loaded such that X is cache aligned: X[0] is loaded into the beginning

of the first cache line

● Miss rate?
● Does this code exhibit locality? What kind of locality?

Carnegie Mellon

25

Cache - Hit rate and Locality analysis
Example question:

1. Direct mapped 16 byte data cache with two cache lines.
2. Float requires 4 bytes.
3. Cache is loaded such that X is cache aligned: X[0] is loaded into the beginning

of the first cache line

● Miss rate? 50%
● Does this code exhibit locality? What kind of locality? Yes, Spatial locality

Carnegie Mellon

26

Cache - Hit rate and Locality analysis
Now try this:

● Miss rate?
● Does this code exhibit locality? What kind of locality?

Carnegie Mellon

27

Cache - Hit rate and Locality analysis
Now try this:

● Miss rate? 25%
● Does this code exhibit locality? What kind of locality? Yes. Spatial, Temporal

locality

Carnegie Mellon

28

⬛ Consider the following example
I1: add r1, r2

I2: mrmovq d(r2), r3

I3: rmmovq r3, d(r2)

⬛ Case 2:

▪ Which is the earliest stage at which value of r3 is ready ?

▪ Which is the latest by which I3 MUST receive updated r3 ?

⬛ Case 3:

▪ Which is the earliest stage at which value of r2 is ready ?

▪ Which is the latest by which I3 MUST receive updated r2 ?

Example of forwarding from Recitation 6

Carnegie Mellon

29

⬛ Consider the following example
I1: add r1, r2

I2: mrmovq d(r2), r3

I3: rmmovq r3, d(r2)

⬛ Case 2:

▪ Which is the earliest stage at which value of r3 is ready ? MEMORY

▪ Which is the latest by which I3 MUST receive updated r3 ? MEMORY

▪ Forward from MEMORY stage of I2 to MEMORY stage of I3

⬛ Case 3:

▪ Which is the earliest stage at which value of r2 is ready ? EXECUTE

▪ Which is the latest by which I3 MUST receive updated r2 ? EXECUTE

▪ Forward from EXECUTE stage of I1 to EXECUTE stage of I3

▪ Also not late to forward from MEMORY stage of I1 to EXECUTE stage of I3

Example of forwarding from Recitation 6

How the Pipeline looks like after forwarding

Src, Dst 1 2 3 4 5 6 7 8 9

ADD R1, R2 IF ID EX MEM WB

MRMOVQ d(R2), R3 IF ID EX MEM WB

RMMOVQ R3, d(R2) IF ID EX MEM WB

I1: add r1, r2
I2: mrmovq d(r2), r3
I3: rmmovq r3, d(r2)

● The first forwarding is for value of R2 from EXadd to EXmrmovq
● The second forwarding is for value of R2 from MEMORYadd to EXrmmovq
● The third forwarding is for value of R3 from MEMmrmovq to MEMrmmovq

Carnegie Mellon

31

⬛ Dynamic branch prediction to reduce control hazards
⬛ Avoid false data hazards using register allocation & renaming
⬛ Reduce pipeline hazards using load forwarding & bypassing
⬛ Dynamic scheduling using reservations stations, reorder buffer

Superscalar Processing: Important Concepts

Carnegie Mellon

32

Exploit Illustration

Carnegie Mellon

Strcpy Vulnerability
int main(int argc, char *argv[]){

foo(argv[1]);
...

}

void foo(char *input){
char buf[32];
...
strcpy (buf, input);
return;

}

What is the potential issue with this program?

Carnegie Mellon

Buffer Overflows

■ Exploit strcpy
vulnerability to overwrite
important info on stack

■ When this function
returns, where will it
begin executing?

■ Recall
ret:pop %rip

■ What if we want to inject
new code to execute?

0xAABBCCDD

0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFFbuf

Old Return
address

Carnegie Mellon

Buffer Overflows

■ Exploit strcpy
vulnerability to overwrite
important info on stack

■ When this function
returns, where will it
begin executing?

■ Recall
ret:pop %rip

■ What if we want to inject
new code to execute?

0xEEFF0000
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0xFFFFFFFF
0x050F0000
0x003BB800
0x497284BFbuf

New Return
address

0xEEFF0000
<- - - - - - - - - - -

Higher address space Lower address space

Higher address space

Lower address space

Carnegie Mellon

Endianness
■ When printing a value, the byte at the

highest memory address is printed
first (high to low bytes)

■ When exploiting strcpy or other string
operations, you are writing from low
to high bytes
■ Why we tell you to reverse bytes

when writing a value (like an
address) with a string operation

■ Does not mean actual value is
changed

Carnegie Mellon

Few tips for buffer overflow questions
■ If we print the value at address 0xEEFF0000, what is the output ?

Carnegie Mellon

Few tips for buffer overflow questions
■ If we print the value at address 0xEEFF0000, what is the output ? 497284BF

■ How does the ‘printf’ statement know what to print and how many values to print ?

Carnegie Mellon

Few tips for buffer overflow questions
■ If we print the value at address 0xEEFF0000, what is the output ? 497284BF

■ How does the ‘printf’ statement know what to print and how many values to print ?
■ Arguments to ‘printf’ statement include:

▪ The address of the format specifier(Eg: “%x”/”%d”)
▪ The value to be printed

Carnegie Mellon

Few tips for buffer overflow questions
■ If we print the value at address 0xEEFF0000, what is the output ? 497284BF

■ How does the ‘printf’ statement know what to print and how many values to print ?
■ Arguments to ‘printf’ statement include:

▪ The address of the format specifier(Eg: “%x”/”%d”)
▪ The value to be printed

■ For buffer overflow attacks, the source string will be passed on the command line:
■ ./program mystring ←-- when main starts, mystring address will be located in argv[1]
■ Recall: argv address contained in %rsi

Carnegie Mellon

41

Open Office Hour

