Carnegie Mellon

Exceptional Control Flow &
OH for Midterm

18600: Introduction to Computer Systems
Recitation 9: Tuesday, October 25, 2016

Agenda

Exceptional Control Flow
Processes

Signals

OH for Midterm

Carnegie Mellon

Exceptional Control Flow

B Upto now: two mechanisms for changing control flow:
* Jumps and branches
* (Call and return

Both react to changes in program state

B Insufficient for a useful system:
Difficult to react to changes in system state

= data arrives from a disk or a network adapter
* instruction divides by zero
= user hits Ctrl-C at the keyboard

= System timer expires

B System needs mechanisms for “exceptional control flow”

Asynchronous Exceptions (Interrupts)

B Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction
B Examples:
= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk
* Hard reset interrupt
= hitting the reset button
= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

Synchronous Exceptions

B Caused by events that occur as a result of executing an instruction:
= Traps
* |ntentional
» Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction
* Faults
* Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults (unrecoverable), floating point
exceptions

» Either re-executes faulting (“current”) instruction or aborts
* Aborts

* unintentional and unrecoverable

* Examples: parity error, machine check

= Aborts current program

Carnegie Mellon

Processes

B Whatisaprogram?
= A bunch of data and instructions stored in an executable binary file

= Written according to a specification that tells users what it is supposed to
do

= Stateless since binary file is static

Carnegie Mellon

Processes

B Definition: A process is an instance of a running program.
B Process provides each program with two key abstractions:
= Logical control flow
= Each program seems to have exclusive use of the CPU
= Private virtual address space
= Each program seems to have exclusive use of main memory
= Gives the running program a state
B How are these lllusions maintained?
= Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system
= Just know that this exists for now; we’ll talk about it soon

Carnegie Mellon

Processes

B Four basic States
= Running
= Executing instructions on the CPU
= Number bounded by number of CPU cores
= Runnable
= Waiting to be running
= Blocked
= Waiting for an event, maybe input from STDIN
= Not runnable
= Zombie
= Terminated, not yet reaped

Carnegie Mellon

Processes

B Four basic process control function families:
= fork()
= exec()
= And other variants such as execve()
= exit()
= wait()
= And variants like waitpid()
B Standard on all UNIX-based systems
L]

Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CS:APP

Carnegie Mellon

Process Examples

B What are the possible output

assuming fork succeeds) ?
pid_t child pid = fork(); (8)

= Child!
if (child _pid == 0){ Parent!
/* only child comes here */ = Parent!
Child!
printf(“Child!\n”);
exit(0); B How to get the child to always
} print first?

else{

printf(“Parent!\n”);

10

Carnegie Mellon

Process Examples

int status; B Waits till the child has terminated.

pid t child_pid = fork(); Parent can inspect exit status of
- - child using ‘status’
if (child_pid == 0){ = WEXITSTATUS(status)
/* only child comes here */
printf(“Child!\n”); B Output always:
Child!
exit(0); Parent!
}
else{

waitpid(child_pid, &status, 0);
printf(“Parent!\n”);

11

Carnegie Mellon

Process Examples

int status;
pid_t child_pid = fork(); B Anexample of something useful.

char* argv[] = {“/bin/1s”, “-17”, NULL}; B Whyis the first arg “/bin/Is”?
char* env[] = {..., NULL}; T L
[} =A } B Will child reach here?

if (child pid == 0){
/* only child comes here */

execve(“/bin/1s”, argv, env);

/* will child reach here? */

}

else{
waitpid(child_pid, &status, 0);

. parent continue execution...

Carnegie Mellon

Process Examples

m Unix Process Hierarchy: 11 >
init [ID

Login shell

...........
P L.
. L]

child >

Qrandchild

Grandchild

13

Carnegie Mellon

Signals
B Asignalis a small message that notifies a process that an event of some type has
occurred in the system
= akin to exceptions and interrupts (asynchronous)
= sent from the kernel (sometimes at the request of another process) to a process
= signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

14

Carnegie Mellon

Signals

B A destination process receives a signal when it is forced by the kernel to react
in some way to the delivery of the signal

B Blocking signals
= Sometimes code needs to run through a section that can’t be interrupted
= Implemented with sigprocmask()
B Waiting for signals
= Sometimes, we want to pause execution until we get a specific signal
= Implemented with sigsuspend()
B Can’t modify behavior of SIGKILL and SIGSTOP

15

Carnegie Mellon

Signals

B Signal handlers

= Can be installed to run when a signal is received

The formis void handler(int signum){ ... }

Separate flow of control in the same process

Resumes normal flow of control upon returning

Can be called anytime when the appropriate signal is fired

16

Carnegie Mellon

Signal Handling

B Running Process:
= Receipt of a signal triggers a control transfer to a signal handler
= After it finishes processing, the handler returns control to the interrupted
program
B Runnable Process:
= When the process is next scheduled, the control is first transferred to the signal
handler
= After it finishes processing, the handler returns control to the program

(2) Control passes 1)hs ig”?'f‘: process = (2) Control first passes

scheduled to run .)
1) Signal received to signal handler / :Erfégnal handler and it
Byarunningprocess | . (3) Signal

handler runs

(3) The process is
(4) Signal handler returns to scheduled to run
next instruction

Carnegie Mellon

Shell Lab

m Shell Labis out!
m Due Monday, November 7%
m Read the code we’ve given you

= There’s a lot of stuff you don’t need to write yourself; we gave you
quite a few helper functions

" |t's a good example of the code we expect from you!

m Don’t be afraid to write your own helper functions; this is
not a simple assignment

18

Carnegie Mellon

Shell Lab

B Read man pages. You may find the following functions helpful:
= sigemptyset()
= sigaddset()
= sigprocmask()
= sigsuspend()
= waitpid()
= open()
= dup2()
= setpgid()
= kill()
B Please read the man pages thoroughly to understand what each function does

B Please do not use sleep() to solve synchronization issues.
19

Carnegie Mellon

Shell Lab

m Hazards

= Race conditions
- Hard to debug so start early (and think carefully)

= Reaping zombies
= Race conditions
= Handling signals correctly

= Waiting for foreground job
= Think carefully about what the right way to do this is

20

Carnegie Mellon

Shell Lab Testing

m Runyour shell
= This is the fun part!

m tshref

= How should the shell behave?

m runtrace

= Each trace tests one feature.

21

Carnegie Mellon

Midterm Review

22

Carnegie Mellon

Cache

® Types of caches
o Direct Mapped (multiple sets, one cache line per set)
o Set associative (multiple sets, multiple lines per set)
o Fully associative (one set, multiple lines in that set)

® Types of locality
o Spatial locality (Access set of adjacent elements successively)
o Temporal locality (Access same set of elements iteratively)

® Missrate = _7IIISSES
#accesses

® The better the locality, lower the miss rate

23

Carnegie Mellon

Cache - Hit rate and Locality analysis

Example question:

1. Direct mapped 16 byte data cache with two cache lines.

2. Float requires 4 bytes.

3. Cacheisloaded such that X is cache aligned: X[0] is loaded into the beginning
of the first cache line

Float X[8], t = 0:
for(int § = 0; 3 < 2; J++)
for{ifnt 3. = 0 1. € 8F i%+)
t += X[i];

e Miss rate?
® Does this code exhibit locality? What kind of locality?

24

Carnegie Mellon

Cache - Hit rate and Locality analysis

Example question:

1. Direct mapped 16 byte data cache with two cache lines.

2. Float requires 4 bytes.

3. Cacheisloaded such that X is cache aligned: X[0] is loaded into the beginning
of the first cache line

Float X[8], t = 0:
for(int § = 0; 3 < 2; J++)
for{ifnt 3. = 0 1. € 8F i%+)
t += X[i];

® Miss rate? 50%
e Does this code exhibit locality? What kind of locality? Yes, Spatial locality

25

Carnegie Mellon

Cache - Hit rate and Locality analysis

Now try this:

Tloat X[8],; float ©t = U;
for(i = 0; 1 <€ 2; i++)
for(k = 0; k < 2; k++)
For (] = Oy] < 47 7%+
t 4= X[J] + 1 = 4]:

e Miss rate?
® Does this code exhibit locality? What kind of locality?

26

Carnegie Mellon

Cache - Hit rate and Locality analysis

Now try this:

Tloat X[8],; float ©t = U;
for(i = 0; i < 2; i++)
for(k = 0; k < 2; k++)
for(j = 0; j < 4; 7J++)
t 4= X[J] + 1 = 4]:

® Miss rate? 25%

® Does this code exhibit locality? What kind of locality? Yes. Spatial, Temporal
locality

27

Carnegie Mellon

Example of forwarding from Recitation 6

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B Case2:
= Which is the earliest stage at which value of r3 is ready ?

= Which is the latest by which 13 MUST receive updated r3 ?
B Case3:

= Which is the earliest stage at which value of r2 is ready ?
= Which is the latest by which 13 MUST receive updated r2 ?

28

Carnegie Mellon

Example of forwarding from Recitation 6

B Consider the following example
Il: add rl, 2

I2: mrmovqg d(r2), r3
I3: rmmovqg r3, d(r2)
B Case2:
* Which is the earliest stage at which value of r3 is ready ? MEMORY
= Which is the latest by which I3 MUST receive updated r3 ? MEMORY
= Forward from MEMORY stage of 12 to MEMORY stage of I3
B Case3:
= Which is the earliest stage at which value of r2 is ready ? EXECUTE
= Which is the latest by which I3 MUST receive updated r2 ? EXECUTE
* Forward from EXECUTE stage of 11 to EXECUTE stage of I3
= Also not late to forward from MEMORY stage of 11 to EXECUTE stage of I3

29

How the Pipeline looks like after forwarding

I1l: add rl, r2
I2: mrmovg d(r2), r3
I3: rmmovqg r3, d(r2)

Src, Dst 1 2 3 4 5 6 7 8
ADD R1, R2 IF ID EX MEM WB
MRMOVQ d(R2), R3 IF ID EX MEM WB
RMMOVQ R3, d(R2) IF ID EX MEM wWB

e The first forwarding is for value of R2 from EX_, to EX_ ovg
e The second forwarding is for value of R2 from MEMORY _,, to EX
e The third forwarding is for value of R3 from MEM__ v to MEM

rmmovq

moO rmmovq

Carnegie Mellon

Superscalar Processing: Important Concepts

Dynamic branch prediction to reduce control hazards

Avoid false data hazards using register allocation & renaming
Reduce pipeline hazards using load forwarding & bypassing
Dynamic scheduling using reservations stations, reorder buffer

AN

Carnegie Mellon

Exploit lllustration

32

Carnegie Mellon

Strcpy Vulnerability

int main(int argc, char *argv[]){
foo(argv[1]);

}

void foo(char *input){
char buf[32];

strcpy (buf, input);

return;

}

What is the potential issue with this program?

Carnegie Mellon

Buffer Overflows

= EXxploit strcpy
vulnerability to overwrite

important info on stack 0xAABBCCDD
' ' O0XFFFFFFFF
= When this function old Return X

- OxFFFFFFFF

returns, where will it address OXFFFFFFFF

: - OxFFFFFFFF
begin executing? OxEFEEFEEF
0xFFFFFFFF

= Recall 0xFFFFFFFF
ret:pop 5%ri 0xFFFFFFFF

. Pop F). OxFFFFFFFF

« What if we want to inject OxFFFFFFFF

new code to execute? buf == O0xFFFFFFFF

Carnegie Mellon

Buffer Overflows

= EXxploit strcpy
vulnerability to overwrite
important info on stack

. . OxEEFF0000
=« When this function New Return ‘ OxFFFFFFFF Higher address space

i OxFFFFFFFF
returns, wher.e will it address oA 1‘
begin executing? OxFFFFFFFF
OxFFFFFFFF
m Recall OXFFFFFFFF
. o OxFFFFFFFF
ret:pop srip OxFFFFFFFF
. . . OXOSOFOOOO ower adaress space
« What if we want to inject ox0s0F0000 Lower address sp
new code to execute? buf ————3 0x497284BF <= 0XEEFF0000

Higher address space Lower address space

Endianness

m When printing a value, the byte at the
highest memory address is printed
first (high to low bytes) OAOBOCOD Memory

m When exploiting strcpy or other string
operations, you are writing from low _
to high bytes i a'@

m Why we tell you to reverse bytes > q+1:/0C
when writing a value (like an _
address) with a string operation > a+2:|0B

m Does not mean actual value is > a+3:|0A
changed Little-endian ;

32-bit integer

Carnegie Mellon

Few tips for buffer overflow questions

m If we print the value at address OXEEFF0000, what is the output ?

Carnegie Mellon

Few tips for buffer overflow questions

m If we print the value at address OXEEFFO0000, what is the output ? 497284BF

m How does the ‘printf’ statement know what to print and how many values to print ?

Carnegie Mellon

Few tips for buffer overflow questions

m If we print the value at address OXEEFFO0000, what is the output ? 497284BF

m How does the ‘printf’ statement know what to print and how many values to print ?
m Arguments to ‘printf’ statement include:
= The address of the format specifier(Eg: “%x"/"%d”)
= The value to be printed

Carnegie Mellon

Few tips for buffer overflow questions

m If we print the value at address OXEEFFO0000, what is the output ? 497284BF

m How does the ‘printf’ statement know what to print and how many values to print ?
m Arguments to ‘printf’ statement include:
= The address of the format specifier(Eg: “%x"/"%d”)
= The value to be printed

m For buffer overflow attacks, the source string will be passed on the command line:
m ./program mystring «—-- when main starts, mystring address will be located in argv[1]
m Recall: argv address contained in %rsi

Carnegie Mellon

Open Office Hour

41

