18-600: Recitation #8
Oct 18th, 2016

Linking &
Midterm Review

Carnegie Mellon

Today

m Linking

Example C Program

int sum(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; inti,s =0;
int main() for (i=0;i<n;i++){
{ s += ali];

int val = sum(array, 2); }

return val; main.c return s; sum.c
} }

Carnegie Mellon

Static Linking

m Programs are translated and linked using a compiler driver:

* linux> gcc -0Og -0 prog main.c sum.cC

= linux> ./prog

maln*'c sum '+° Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
main.o s,in. o Separately compiled

relocatable object files

Linker (1d)

pr!g Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum. c)

Why Linkers?

m Reason 1: Modularity

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

Why Linkers? (cont)

m Reason 2: Efficiency

= Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
- Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

Carnegie Mellon

What Do Linkers Do?

m Step 1: Symbol resolution

= Programs define and reference symbols (global variables and functions):
- void swap() {..} /* define symbol swap */
- swap() ; /* reference symbol swap */
- int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
- Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition. ;

Carnegie Mellon

What Do Linkers Do? (cont)

m Step 2: Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more
detail....

Carnegie Mellon

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

- Each . o file is produced from exactly one source (. c) file
m Executable object file (a .. out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

Carnegie Mellon

Executable and Linkable Format (ELF)

m Standard binary format for object files

m One unified format for
= Relocatable object files (. o),
= Executable object files (a.out)

= Shared object files (. so)

m Generic name: ELF binaries

10

Carnegie Mellon

ELF Object File Format

Elf header

* Word size, byte ordering, file type (.0, exec, .so), machine type, etc.
[| Segment header table ELF header 0

= Page size, virtual addresses memory segments (sections), segment Segment header table

SIZES. (required for executables)

B .textsection . text section

= Code .rodata section
B .rodatasection .data section

. ion
* Read only data: constant strings, jump tables, ... bss sectio

. symtab section

[| .data section .
.rel.txt section

= |nitialized global variables -
.rel.data section

.bss section X
- .debug section

= Uninitialized global variables
= “Block Started by Symbol” Section header table

= “Better Save Space”

= Has section header but occupies no space 1"

ELF Object File Format (cont.)

.symtab section
* Symbol table

* Procedure and static variable names 0
= Section names and locations ELF header
B .rel.text section Segment header table
= Relocation info for .text section (required for executables)
= Addresses of instructions that will need to be modified in the . text section
executable
= Instructions for modifying. .rodata section
B .rel.datasection .data section
= Relocation info for .data section .bss section
= Addresses of pointer data that will need to be modified in the merged N
executable .symtab section
B .debugsection .rel.txt section
* |Info for symbolic debugging (gcc -g) _.rel.data section
[| Section header table . debug section
= Offsets and sizes of each section -
Section header table

12

Carnegie Mellon

Linker Symbols

B Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.: non-static C functions and non-static global variables.

B External symbols

= Global symbols that are referenced by module m but defined by some other
module.

B Local symbols
= Symbols that are defined and referenced exclusively by module m.

= E.g.: Cfunctions and global variables defined with the static attribute.
= Local linker symbols are not local program variables

13

Carnegie Mellon

Step 1: Symbol Resolution

..that’s defined here Referencing

a global...
int syMm(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; ilmht i, s = 0;
int main () or (i 0; i < n; i++) {
{ s += :

intfval = sum(array, 2); }

reffurn val return s;
} }

maJ.n C sum.cC

Deflnmg \

a global Referencmg Linker knows
Linker knows a global... nothingof i or s

nothing of val ...that’s defined here y

How Linker Resolves Duplicate Symbol

Definitions

m Program symbols are either strong or weak
= Strong: procedures and initialized globals

= Weak: uninitialized globals

pl.c p2.c
strong — > | int foo=5; int foo; | weak
— 5 <+ stron
strone PL() { p2() { ;
} }

15

Carnegie Mellon

Linker’s Symbol Rules

B Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= QOtherwise: Linker error

B Rule 2: Given a strong symbol and multiple weak symbols, choose the strong
symbol

= References to the weak symbol resolve to the strong symbol

Bl Rule 3: If there are multiple weak symbols, pick an arbitrary one
= Can override this with gcc -fno-common

16

Carnegie Mellon

Linker Puzzles

int x; . .
pl() {} pl() {} Link time error: two strong symbols (p1)
int x; ks 55 References to x will refer to the same
pl() {} p2() {} T . .
uninitialized int. Is this what you really want?
int x; double x;
int y; p2() {} Writes to x in p2 might overwrite y!
p1O) {} Evil!
int x=7; double x; 3 . ’ 3 |
. T Writes to x in p2 will overwrite y!
PL() {} Nasty!
int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {}

variable.

Nightmare scenario: two identical weak structs, compiled by different compilers

with different alignment rules. 17

Carnegie Mellon

Global Variables

m Avoid if you can

m Otherwise
= Use static if youcan
= |nitialize if you define a global variable

= Use extern if you reference an external global variable

18

Step 2: Relocation

Relocatable Object Files

System code

System data

main.o

main ()

int
array[2]={1,2}

sSum.o

sum ()

.text
.data

.text
.data

.text

vy

Headers

System code

main ()

sum ()

More system code

System data

int array[2]={1,2}

.symtab
.debug

Carnegie Mellon

Executable Object File

>_.text

} .data

19

Carnegie Mellon

Relocation Entries

int array[2] = {1, 2};

int main()

{
int val = sum(array, 2);
return wval;

main.c
0000000000000000 <main>:
0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2, %esi
9: bf 00 00 00 00 mov $0x0, %edi # %$edi = &array
a: R X86 64 32 array # Relocation entry
e: e8 00 00 00 OO callg 13 <main+0x13> # sum()
f: R X86 64 PC32 sum-0x4 # Relocation entry
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq
main.o

Source: objdump -r —-d main.o 20

Carnegie Mellon

Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2, %esi

40044d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array
4004de: e8 callqg 4004e8 <sum> # sum()

4004e3: 48 83 c4 08 add $0x8,%rsp

4004e7: c3 retq

00000000004004e8 <sum>:

4004e8: b8 00 00 00 0O mov $0x0, %eax

4004ed: ba 00 00 00 00 mov $0x0, %edx

4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslqg %edx, $rcx

4004f£7: 03 04 8f add ($rdi, %$rcx,4) ,%eax
4004fa: 83 c2 01 add $0x1, %edx

4004fd: 39 f2 cmp %esi, $edx

4004ff: 7c £3 jl 4004f4 <sum+0xc>
400501: £3 c3 repz retq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 +
Source: objdump -dx prog o

Loading Executable Object Files

ELF header

Executable Object File

Program header table
(required for executables)

.init section

.text section

.rodata section

.data section

.bss section

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

0

0x400000
0

Kernel virtual memory

User stack
(created at runtime)

Memory-mapped region for
shared libraries

I

Run-time heap
(created bymalloc)

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Unused

Carnegie Mellon

Memory
invisible to
user code

+—0Q

$rsp
(stack
pointer)

~ brk

Loaded
from

the
executable

file
22

Carnegie Mellon

Packaging Commonly Used Functions

m How to package functions commonly used by programmers?

= Math, I/O, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:

= Option 1: Put all functions into a single source file
- Programmers link big object file into their programs
- Space and time inefficient

= Option 2: Put each function in a separate source file

- Programmers explicitly link appropriate binaries into their
programs

- More efficient, but burdensome on the programmer 2

Carnegie Mellon

Old-fashioned Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

24

Carnegie Mellon

Creating Static Libraries

ato;'. .C printf .C randpm.c
Translator Translator Translator
atoi.o printf .0 ran tm .0
=2 0 /
Arthiver (ar) unix>_ ar rs libc.a \
+ atoi.o printf.o .. random.o
libc.a C standard library

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

25

Carnegie Mellon

Linking with
Static Libraries

libvector.a
A

/ \

{

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main ()

addvec(x, y, z, 2);
printf("z = [%d %d]\n”,
z[0], z[1]);

return O;

main2.c

void addvec (int *x, int *y,
int *z, int n) {
int i;

for (i = 0; i < n; i++)
z[i] = x[i] + y[il:;

} addvec.

void multvec (int *x, int *y,
int *z, int n)

{
int i;
for (1 = 0; i < n; i++)
z[i] = x[i] * y[i]’
} multvec.

26

Carnegie Mellon

Linking with Static Libraries

addvec.o multvec.o

Y Y

main2.c wvector.h Archiver
(ar)
Translators
(cpp, ccl, as) libvector.a libc.a Static libraries
Relocatable main2.o addvec.o printf.o and any other
object files \ modules called by printf.o
Linker (1d)
prog2c Fully linked

executable object file

“c” for “compile-time” ,
7

Carnegie Mellon

Using Static Libraries

B Linker’s algorithm for resolving external references:
= Scan .o files and .a files in the command line order.

= During the scan, keep a list of the current unresolved references.

= As each new .o or .afile, obj, is encountered, try to resolve each unresolved
reference in the list against the symbols defined in obj.

= |f any entries in the unresolved list at end of scan, then error.

BB Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -1lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function "main’':
libtest.o(.text+0x4) : undefined reference to "libfun'

28

Carnegie Mellon

Modern Solution: Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function needs libc)
= Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

m Modern solution: Shared Libraries

= Object files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, . so files

29

Carnegie Mellon

Shared Libraries (cont.)

B Dynamic linking can occur when executable is first loaded and run (load-time linking).
= Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).
= Standard C library (libc.so) usually dynamically linked.

B Dynamic linking can also occur after program has begun
(run-time linking).

= In Linux, this is done by calls to the dlopen() interface.
* Distributing software.
= High-performance web servers.

= Runtime library interpositioning.

Il Shared library routines can be shared by multiple processes.

= More on this when we learn about virtual memory

30

Carnegie Mellon

Dynamic Linking at Load-time

malIIZ -C Vethr'h unix> gcc -shared -o libvector.so \

addvec.c multvec.c

Translators
(cpp, ccl, as) libe.so
l libvector. so
Relocatable main2.o Rel ti d b [t bl .
object file . elocation and symbol table info

|

Linker (1d)

l

Partially linked prog21
executable object file l
Loader (execve) libec.so

libvector. so

Code and data

Fully linked
executable
in memory

A A

Dynamic linker (ld-linux.so)

AN

Dynamic Linking at Run-time

Carnegie Mell

#include <stdio.h>
#include <stdlib.h>
#include <dlfecn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

{
void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY) ;
if ('handle) {
fprintf (stderr, "%s\n", dlerror());
exit(1l);
}

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) != NULL) {
fprintf (stderr, "%s\n", error);
exit(1l);

}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%s\n", dlerror());
exit(1l);

}

return O;

dll.c

32

Carnegie Mellon

Linking Summary

m Linking is a technique that allows programs to be
constructed from multiple object files.

m Linking can happen at different times in a program’s
lifetime:

= Compile time (when a program is compiled)
= Load time (when a program is loaded into memory)

= Run time (while a program is executing)

m Understanding linking can help you avoid nasty errors and
make you a better programmer.

33

Carnegie Mellon

Today

m Midterm Review

34

Carnegie Mellon

Agenda

m Midterm Logistics
m Overview of some topics
m Practice Questions

35

Carnegie Mellon

Midterm
m Wed Oct 26th

= Duration— 110 minutes

= Closed book, paper exam
= Bring your student ID with you

m Note Sheet — ONE double sided 8 2 x 11 paper

= No worked out problems on that sheet

36

Midterm

m What to study?
= Chapters 1-4 and Chapter 6

m How to Study?
= Make sure to understand the contents in the lecture slides and
recitations
= Practice problems in the text book
= Old exam papers: http://www.cs.cmu.edu/~213/exams.html
= Some old practice exams include questions that use the 1A32

architecture (if you see %ebp, this is a good sign is 32 bit). You
will only need to know x86-64 for the midterm.

37

Carnegie Mellon

Bits, Bytes & Integers

m Know how to do basic bit operations by hand
= Shifting, addition, negation, and, or, xor, etc.
m [f you have w bits
= What are the largest/smallest representable sighed numbers?
= What are the largest/smallest representable unsigned numbers?

= What happens to the bits when casting signed to unsigned (and
vice versa)?

m Distinguish between logical and bitwise operators

m What happens in C if you do operations on mixed types
(either different size, or signedness?)

38

Carnegie Mellon

Floating Point (IEEE Format)

m Sign, Exponent, Mantissa

= (-1)*x M x 2F

= s—sign bit

= M — Mantissa/Fraction bits

= E - Determined by (but not equal to) exponent bits
m Bias (2¢"1-1)
m Three main categories of floats

= Normalized: Large values, not near zero

= Denormalized: Small values close to zero

= Special Values: Infinity/NaN

39

Carnegie Mellon

Floating Point (IEEE Format)
. |Normalized | Denormalized | Special Values |

Represents: Most numbers Tiny numbers Infinity, NaN
Exponent bits: Not those = 000...000 111...111

E= exp — bias 1 — bias /- oo if frac =
M = 1.frac frac 000...000;

otherwise NaN

m Floating Point Rounding
= Round-up —if the spilled bits are greater than half
= Round-down —if the spilled bits are less than half

= Round to even — if the spilled bits are exactly equal to half

40

Carnegie Mellon
Floaring point encoding.

In this problem. you will work with floating point numbers based on the TEEE
floating point format. We consider two different 6-bit formats:

Format A:

e There is one sign bit =.

e There are & = 3 exponent bits. The bias is 2! — 1 = 3.
e There are n 2 fraction bits.

Format B:
e There is one sign bit =

e There are & — 2 exponent bits. The biasis 25! — 1 — 1.

s There are n = 3 fraction bits.

For formats A and B, please wrile down the binary representation for the following (use round-to-even).
Recall that for denormalized numbers, E = 1 — bias. For normalized numbers, E' = = — bias.

Walue | Format A Bits | Format B Bits

Fero 0 000 00 o 00 000

One

1

e m Fall 2012

41

floating point format. We consider two different 6-bit formats:

Format A:

e There is one sign bit =.

» There are kK — 3 exponent bits. The bias is 2! —

» There are n

Format B:

— 2 fraction bits.

e There is one sign bit =.

e There are k&

s There are =

= 2 exponent bits. The bias is 281

— 3 fraction bits.

g

— e

In this problem. you will work with floating point numbers based on the TEEE

For formats A and B, please wrile down the binary representation for the following (use round-to-even).
Recall that for denormalized numbers, E = 1 — bias. For normalized numbers, E = « — bias.

Walue | Format A Bits | Format B Bits
fero o oo0c o0 o 00 000
one | 001100 0 01 000
1/2 1 001000 0 00 100
11/2 1 001110 001011

m Fall 2012

Carnegie Mellon

Floaring point encoding.

42

Carnegie Mellon

Assembly

Recognize common assembly instructions

Know the uses of all registers in 64 bit systems

Understand how different control flow is turned into assembly
= For, while, do, if-else, switch, etc

Be very comfortable with pointers and dereferencing
= The use of parens in mov commands.
= %rax vs. (%rax)
= The options for memory addressing modes:
= R(Rb, Ri, S)
= |ea vs. mov

43

Carnegie Mellon

void mystery(int *array, int n)

Assembly Loop :

inti;

00000000004004b6 <mystery>: for(; :)

4004b6: mov $0x0, Seax . -

4004bb: Jmp 4004d3 <mystery+0x1d> ;

4004bd: movslg %eax, srdx : :

4004c0: 1lea (%rdi, $rdx,4),%rcx

4004c4: mov ($rcx) , sedx

4004c6: test S0x1,%dl

4004c9: Jne 4004d0 <mystery+0xla>

4004cb: add S0x1, $edx

4004ce: mov sedx, (3rcx)

4004d0: add $0x1, $eax

4004d3: cmp %esi, seax

4004d5: Jne 4004bd <mystery+0x7>

4004d7: repz retqg

44

Carnegie Mellon

void mystery(int *array, int n)

Assembly Loop :

int i;

00000000004004b6 <mystery>: :orf i=0 5 __i<n;__i++)

4004b6: mov $0x0, %eax ifarray[i] & 1) == o)

4004bb: Jmp 4004d3 <mystery+0xld> array[ij += 1;

4004bd: movslg %eax, srdx } }

4004c0: 1lea (%rdi, $rdx,4),%rcx

4004c4: mov ($rcx) , sedx

4004c6: test S0x1,%dl

4004c9: Jne 4004d0 <mystery+0xla>

4004cb: add S0x1, $edx

4004ce: mov sedx, (3rcx)

4004d0: add $0x1, $eax

4004d3: cmp %esi, seax

4004d5: Jne 4004bd <mystery+0x7>

4004d7: repz retqg

45

Carnegie Mellon

Array Access

m A suggested method for these problems:
= Start with the C code
= Then look at the assembly Work backwards!

= Understand how in assembly, a logical 2D array is implement as a 1D array,
using the width of the array as a multiplier for access

[0][0] = [O] [O][1] = [1] [0][2] = [2] [01[3] = [3]
[1][0] = [4] [1][1] = [5] [1][2] = [6] [11[3] = [7]
[2][0] = [8] [2][1] = [9] [2][2] = [10] [2][3] = [11]

[0][2]=0*4+2=2
[1][3]=1*4+3=7
[2][1]=2*4+1=9

[i1] =i * width of array + j
46

Carnegie Mellon

int arrayl[H][J];
int arrav2[J][H]:

Find H & J

int copy array(int x, int ¥) {
arrayZ2[y][x] = arrayl[x][¥]1:

return 1;

Suppose the above C code generates the following x86-64 assembly code:

On entry:

Fedi = x
fesi = vy
#

copy Aarrays:
movslg %esi,Brsi
movslg %edi,srdi

hiiledrde | Ersi, %rax

salg S4, %rax

subg $rsi, Srax

addg g#rdi, %rax

leaqg (%rdi,%rdi,2), %Brdi

addg gFrsi, %rdi

mowvl arrayl(,%rdi,4), %edx B Fa" 2010;
mowvl tedx, arrayl(,%rax,4)

mowl 51, %eax

ret

47

Carnegie Mellon

int arrayl[H][J];
int arrav2[J][H]:

Find H & J

int copy array(int x, int ¥) {
arrayZ2[y][x] = arrayl[x][¥]1:

return 1;

Suppose the above C code generates the following x86-64 assembly code:

On entry:

tedi = x
Zesi = y J=3
: H=15

copy Aarrays:
movslg %esi,Brsi
movslg %edi,srdi

hiiledrde | Ersi, %rax

salg S4, %rax

subg $rsi, Srax

addg g#rdi, %rax

leaqg (%rdi,%rdi,2), %Brdi

addg gFrsi, %rdi

mowvl arrayl(,%rdi,4), %edx B Fa" 2010;
mowvl tedx, arrayl(,%rax,4)

mowl 51, %eax

ret

48

Carnegie Mellon

(
Stack
. Caller
m Be able to draw a stack diagram Frame
m Recall how arguments are Arguments
. 7+
assed/returned from a function
P / Frame pointer _ |Return Addr
= x86-64 $rbp Old $rbp
. . . (Optional)
m How these instructions modify stack saved
= call Registers
+
" ret Local
Variables
“ pop
o push Argutnent
Stack pointer Build
" movVv $rsp , | (Optional)

49

Carnegie Mellon

Stack

m Review the slides on attack lab!

m Understand the concept of a buffer overflow.
= What causes it?
= What happens to the stack?
= How can hackers exploit this to run arbitrary code?

50

Pipelining

m Pipeline stages
= Fetch:

= Read instruction from instruction cache
» Determine the registers to use

*» Update PC
* Decode:

= Read values from registers
= Execute:

*= Perform arithmetic operations

* Compute effective memory address

* Check condition codes
= Memory:

= Write to stack

* Read from stack

= Write/Read from computed effective memory address
= Write Back:

= Write to registers

» Update stack pointer

51

Carnegie Mellon

Examples of pipeline stages

call Dest
OPq A, 1B icode,ifun |icode:ifun « M,[PC] Read instruction byte

icode,ifun [icode:ifun « M,[PC] Read instruction byte Fetch rArB [Read register byte]
Fetoh rArB rA:rB « M,[PC+1] Read register byte valC valC ¢« M;[PC+1] Read constant word

valC [Read constant word] valP valP « PC+9 Compute next PC

valP valP « PC+2 Compute next PC valA, srcA [Read Dperand A]
Decode [SMmA JES e Read gpemnc A . valB, srcB |valB « R[%rsp] Read operand B

vae sl B Rescopemmia valg valE « valB + -8 Perform ALU operation
Easeirts valE valE « valB OP valA Perform ALU operation Execute re—— [Setjuse cond. code reg]

Cond code |SetCC Setluse cond. code reg i
Memory |vaiM [Memory readiwrite] Me_mury valM M;[valE] ¢ valP Memory read/write
Write dstE R[rB] « valE Write back ALU result Write dstE R[%rsp] «valE Write back ALU result
back dstM [Write back memory result] |back dstM [Write back memory result]
PC update |[PC PC ¢ valP Update PC PC update |PC PC +valC Update PC

e Allinstructions follow same general pattern
e Differ in what gets computed on each step

52

Carnegie Mellon

Forwarding

m Purpose is to prevent stalls/bubbles

m Make results available as soon as possible to the
previous pipeline stages

m Do not wait till write back stage updates the registers

53

Carnegie Mellon

Example of forwarding

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B |dentify the data hazard
= Casel:lland 2 wrtr2
= Case2:12and I3 wrtr3
= Case3:11and I3 wrtr2
B Casel:
= Which is the earliest stage at which value of r2 is ready ?
= Which is the latest by which |2 MUST receive updated r2 ?

54

Carnegie Mellon

Example of forwarding

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B |dentify the data hazard
= Casel:lland 2 wrtr2
= Case2:12and I3 wrtr3
= Case3:11and I3 wrtr2
B Casel:
= Which is the earliest stage at which value of r2 is ready ? EXECUTE
= Which is the latest by which 12 MUST receive updated r2 ?

55

Carnegie Mellon

Example of forwarding

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B |dentify the data hazard
= Casel:lland 2 wrtr2
= Case2:12and I3 wrtr3
= Case3:11and I3 wrtr2
B Casel:
= Which is the earliest stage at which value of r2 is ready ? EXECUTE
= Which is the latest by which 12 MUST receive updated r2 ? EXECUTE

56

Carnegie Mellon

Example of forwarding

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B |dentify the data hazard
= Casel:lland 2 wrtr2
= Case2:12and I3 wrtr3
= Case3:11and I3 wrtr2

B Casel:
= Which is the earliest stage at which value of r2 is ready ? EXECUTE
= Which is the latest by which 12 MUST receive updated r2 ? EXECUTE
= Forward from EXECUTE stage of |1 to EXECUTE stage of 12

57

Carnegie Mellon

Example of forwarding from Recitation 6

B Consider the following example
Il: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovg r3, d(r2)

B Case2:
= Which is the earliest stage at which value of r3 is ready ?

= Which is the latest by which 13 MUST receive updated r3 ?
B Case3:

= Which is the earliest stage at which value of r2 is ready ?
= Which is the latest by which 13 MUST receive updated r2 ?

58

Carnegie Mellon

Example of forwarding from Recitation 6

B Consider the following example
I1l: add rl, r2

I2: mrmovqg d(r2), r3
I3: rmmovqg r3, d(r2)

B Case2:
= Which is the earliest stage at which value of r3 is ready ? MEMORY
= Which is the latest by which 13 MUST receive updated r3 ? MEMORY
= Forward from MEMORY stage of |12 to MEMORY stage of I3
B Case3:
= Which is the earliest stage at which value of r2 is ready ? EXECUTE
= Which is the latest by which 13 MUST receive updated r2 ? EXECUTE
= Forward from EXECUTE stage of 11 to EXECUTE stage of I3
= Also not late to forward from MEMORY stage of |11 to EXECUTE stage of I3

59

Carnegie Mellon

Caching Concepts

I Dimensions:S, E, B

= S: Number of sets

= E: Associativity — number of lines per set

= B: Block size — number of bytes per block (1 block per line)
B Given Values for S,E,B,m

= Find which address maps to which set

= |s it a Hit/Miss? Is there an eviction?

= Hit rate/Miss rate
B Types of misses

= Which types can be avoided?

= What cache parameters affect types/number of misses?

60

Carnegie Mellon

Questions/Advice

Relax!

Work on past exams
Make a great cheat sheet
Post questions on Piazza

Come to office hours

61

