18600 Boot camp: C- Review

— 9/6/2016 -

Today - All About C!

e Longer lecture today
e Ask questions at any time!

Some basic facts about C

e Cwas invented to write an operating system called UNIX

e The UNIX OS was completely written in C

e Today Cis the most widely used and popular System Programming
Language.

e Example use cases of C: Operating Systems, Compilers, Interpreters,
Databases, Assemblers, Text editors, Device Drivers

e Cisacompiledlanguage. The most frequently used and free available
compiler is the GNU C/C++ compiler. Eg: gcc foo.c

Basic C Program Structure

Hello World.c

#include <stdio.h>

int main(void) {
/* my first program in C */
int a = 18600;
printf ("Hello! Welcome to %d \n", a);

return 0;

}

Notice the following components:
e Preprocessor commands
Functions
Variables
Comments
Statements
Parameters, return values
e

Data Types in C

e Basic Types

o Integer: char, int, long, double, float (both signed and unsigned)
e Void Types

o Indicate no value: Eg: void main(void) {....}
e User Defined Data Types / Data Structures

o Arrays, Structures

e Special Data Types

o Enum, Unions

Basic Data Types

Type Storage size (x86-64 Range of values Precision
compiler specific)

char 1 byte 0 - 255 (unsigned), --NA--
-128-127 (signed)

int 4 bytes 0 to 4,294,967,295 (unsigned) -NA--
-2,147,483,648 to 2,147,483,647 (signed)

long long 8 bytes 0 to 18,446,744,073,709,551,615 (unsigned) --NA--
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (signed)

float 4 bytes 1.2E-38 to 3.4E+38 6 decimals

double 8 bytes 2.3E-308 to 1.7E+308 15 decimals

long double 10 bytes 3.4E-4932 to 1.1E+4932 19 decimals

Aggregate Data Types : Arrays/Strings

e Arrays: Fixed sized sequential collection of data of the same type

(@)

(@)
(@)
(@)

Array declaration: type arrayName[size]. Eg: int array[10], char array[10]
Array definition: int array[5] = {0,1,2,3,4};
Accessing an array element: int secElem = array[1]
Multi-dimensional array: 2-dimensional arrays are most common
m 2-dimensional array is a list of 1-dimensional arrays
m Eg: int array[4][4], char array[3][2]

e Strings: Null terminated (\O’) terminated character array

(@)

(@)

Null-character tells us where the string ends
All standard C library functions on strings assume null-termination.

Aggregate Data Types: Struct

e Collection of values placed under one name in a single block of memory

o Can put structs, arrays in other structs
o Can have arrays of structures too

e Given a struct instance, access the fields using the "’ operator
e Given a struct pointer, access the fields using the ‘->" operator

struct foo_s { struct bar s { struct bar_ s biz; // bar_s instance
int a; char ar[10]; biz.ar[0] = ‘a’;
char b; struct foo s baz; biz.baz.a = 1;
}: } struct bar s* boz = &biz; // bar s ptr
boz->baz.b = ‘b’;

Pointers in C

e A pointer is avariable which stores the address of a value in memory
Syntax: type *ptr
o Eg:int *ptr, char *ptr, void *ptr
e Getthe address of a value in memory with the ‘&’ operator
o Egiinta=10; ptr = &a;
e Access the value by dereferencing using the * operator; can be used to
read value or write value to given address
o Eg:intb=*ptr; *ptr = 3;
o Dereferencing NULL causes a runtime error
m Eg:int *ptr = NULL; *p = 0; // Runtime error !!l!

Pointer Arithmetic

e (Can add/subtract from an address to get a new address
o Only perform when absolutely necessary (i.e., malloc)
o Result depends on the pointer type

e Pointer to type ‘a’ references a block of sizeof(a) bytes. Any arithmetic
operations therefore moves in steps of these block sizes

e Examples:
o A+i, where Ais a pointer = 0x100, i is an int (x86-64)
m int* A: A+i = 0x100 + sizeof(int) * i = 0x100 + 4 * |
m char* A: A+i = 0x100 + sizeof(char) * i = 0x100 + i
B int** At A+i=0x100 + sizeof(int*) * i = 0x100 + 8 * |
e Rule of thumb: cast pointer explicitly to avoid confusion. More on this in

later slides
o Prefer (char*)(A) +ivs A+i, even if char* A
S

Pointers: Let’s try some examples...

#include <stdio.h>

int main ()

{

int wvar;

int “*ptr;

int **pptr; // Pointer to a pointer

// Array of pointers

char *names[] = {"Tom", "Dick", "Harry"};

var = 3000;

/* take the address of var */
ptr = &var;

/* take the address of ptr using address of operator & */
pptr = &ptr;

printf ("Value of var = %d\n", var);

printf ("Value available at *ptr = %d\n", *ptr);

printf ("Value available at pointer after increment = %d\n", ++*ptr);
printf ("Value available at **pptr = %d\n", **pptr);

printf ("First student is %s\n", names[0]);

return 0;

Functions in C

e Call-by-value: Changes made to arguments passed to a function aren’t reflected in the calling function
e Call-by-reference: Changes made to arguments passed to a function are reflected in the calling function

#include <stdio.h>

/* function declaration */
void swap(int x, int y);

int main () {
/* local variable definition */
inta =100;
int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values */
swap_by_val(a, b);

printf("After swap, value of a : %d\n", a); // 100
printf("After swap, value of b : %d\n", b); // 200

swap_by_ref(&a, &b);

printf("After swap, value of a : %d\n", a); // 200
printf("After swap, value of b : %d\n", b); // 100

return O;

/* function definition to swap the values */
void swap_by_val(int x, int y) {

int temp;

temp = x; /* save the value of x */
x=y; [*putyintox*/

y = temp; /* put temp into y */

return;

/* function definition to swap the values */
void swap_by_ref(int *x, int *y) {

int temp;

temp =*x; /* save the value at address x */
*x=*y; [*putyintox*/

y =temp; / puttempintoy */

return;

Function calls in C

Ensure that the called function is defined (see func_call1.c) or at least declared
(see func_call2.c) before the calling function. Else, the compiler will complain about an
undefined reference to that function.

#include <stdio.h>
#include <stdio.h>

/I Definition of a function /I Declaration of a function
int sum(int a, int b) int sum(a, b);
{ .
return a+b; main() {
} .
void main() { int a =3, b=4;
int a=3, b=4; printf(“%d”, sum(a, b));
}
printf(“%d”, sum(a, b));
} /I Definition of a function
int sum(int a, int b)
{
return a+b;
}

func_call1l.c func_call2.c

Typedef in C (Not strongly recommended in this course)

e The C programming language provides a keyword called typedef, which you can use to give a type, a new name.
e Typedefs are used to give a more meaningful/readable/shorter name to the data type used.
e Simple Example: typedef unsigned char BYTE; BYTE b1, b2;

struct list_node {
int x;

2

/* You can typedef basic data types */

typedef int pixel;
typedef unsigned char BYTE;

/* You can typedef structures */
typedef struct list_node node;

/* You can typedef function prototypes */
typedef int (*cmp)(int e1, int e2);

pixel x; /I int type

BYTE b1; /I char type

node foo; /[struct list_node type

cmp int_cmp; /l'int (*cmp)(int e1, int e2) type

Variable Scope and Qualifiers

e Everyvariable is associated with a scope and storage duration
e Scope determines where a variable can be accessed and storage duration
determines when a variable is created and destroyed
o Global Variables are defined outside functions. Use ‘extern’ to use global variables in
other files
m Scope: Across all files, Storage: Start and end of a program

o Local variables are defined within functions
m Scope: Within a function, Storage: Entry and exit of a function

e Variable qualifiers
o Const Variables: For variables that won't change

o Static Variables:
m Globals: usable/viewable only from within the current file: More on this next slide

m Locals: For locals, keeps value between invocations
o Volatile Variables: Variable values subject to change

Ilustrating Variable Scope

#include <stdio.h> #include <stdio.h>

int count ; extern int count;
static int local_ref;

extern void write_extern(); void write_extern(void) {

printf("count is %d\n", count);

/[there can be only one main function among the compiled printf(*local_ref is %d\n", local_ref); // Compile time error

/[programs }
mggnu(zlt{ =5 static void local_fn(void) {
local ref,: count: printf(“Scope is restricted to this file\n”);
write:extern(); }
local_fn(); // Compile time error
}
main.c support.c

gcc main.c support.c

Type Casting

e Type casting is a way to convert a variable from one data type to another data type.
e Typically used when dealing with operations between different data types
e When values of different data types are operated on each other, all variables are converted to a
type that is highest among them
e Integer Type Casting:
o signed <-> unsigned: change interpretation of most significant bit
o smaller signed -> larger signed: sign-extend (duplicate the sign bit)
o smaller unsigned -> larger unsigned: zero-extend (duplicate 0)
e (autions:
o Cimplicitly typecasts, which can lead to errors. It is a good practice to explicitly typecast.
o never cast to a smaller type; will truncate (lose) data

o never cast a pointer to a larger type and dereference it, this accesses memory with
undefined contents

Void pointers

e void* type is C's provision for generic types
o Raw pointer to some memory location (unknown type)
o Can't dereference a void* (what is type void?)
o Must cast void* to another type in order to dereference it

e Used by functions which work only with the pointer and not the contents
of the pointer. Eg: push() and pop() routines below
e (Can cast back and forth between void* and other pointer types

_ _ // stack usage:
// stack implementation:

int x = 42; int y = 54;
stack S = stack_new():
push(s, &x);

push(s, &y);

int a = *(int*)pop(S);
int b = *(int*)pop(S);

typedef void* elem;

stack stack_new();
void push(stack s, elem e);
elem pop(stack S);

C Program Memory Layout

high address

lowr address

uninitialized data
{bss)

initialized data

text

command-line arguments
and environmment variables

initialized to
zero by exec

read from
program file
by exec

Stack vs Heap vs Data

e Local variables and function arguments are placed on the stack

o deallocated after the variable leaves scope
o do notreturn a pointer to a stack-allocated variable!
o do not reference the address of a variable outside its scope!

e Memory blocks allocated by calls to malloc/calloc are placed on the heap
e Globals, constants are placed in data section

e Example:
o // ais a pointer on the stack to a memory block on the heap
o int* a = malloc(sizeof(int));

Macros

e Fragment of code given a name; replace occurrence of name with

contents of macro
o No function call overhead, type neutral

e Uses:
o defining constants (INT_MAX, ARRAY_SIZE)
o defining simple operations (MAX(a, b))
o 122-style contracts (REQUIRES, ENSURES)

e Warnings:
o Use parentheses around arguments/expressions, to avoid problems after substitution
o Do not pass expressions with side effects as arguments to macros

#define INT MAX Ox7FFFFFFFF

#define MAX (A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES (COND) assert (COND)

#define WORD SIZE 4

#define NEXT WORD (a) ((char*) (a) + WORD SIZE)

Header Files

e Includes C declarations and macro definitions to be shared across
multiple files
e Onlyinclude function prototypes/macros; no implementation code!

e Usage: #include <header.h>

o #include <lib> for standard libraries (eg #include <string.h>)
o #include “file” for your source files (eg #include “header.h”)

e Never include .c files (bad practice)

/7 11st.h /7 list.c // stacks.h
struct 1list_node { zinclude “list.h” =include “list.h”

int data; struct stack_head {

struct list_node®™ next; node new_list() { node top;
} A/ implementation node hottom;
typedef struct list_node® node; | [} };

typedef struct stack _head® stack
node new_list(); vold add_node(int e, node 1) {
vold add_node(int e, node 1); A/ 1mplementation stack new_stack();
} vold push(int e, stack S);

Header Guards

e Double-inclusion problem: include same header file twice

//grandrather.h //tather.h //child. h
zinclude “grandfather.h” #include “father.h”
2include “grandfather.h”

Error: child.h includes grandfather.h twice

e Solution: header guard ensures single inclusion

//grandrather.h //Tather.h //child.h

#ifndef GRANDFATHER_H #ifndef FATHER_H #include “father.h”
#define GRANDFATHER_H #define FATHER_H #include “grandfather.h”
Zandif Zandif

Okay: child.h only includes grandfather.h once

Preprocessing in C

e A CPreprocessor is just a text substitution tool and it instructs the compiler to do required
pre-processing before the actual compilation
e Handling of header files and macros is done during the preprocessing stage

#define MAX ARRAY LENGTH 20 // For standard values

#include <stdio.h> // include header files

#ifndef HEADER // Used in header files to avoid duplication

#define HEADER

fendif

__FILE , LINE , func // Predefined macros

#define message for(a, b) \ // When continuing macro definitions on multiple lines
printf(#a " and " #b ": We love you!\n")

#define square(x) ((x) * (x)) // Parameterized macros: Simulate functions using macros

C - Command Line Arguments

e |tis possible to pass some values from the command line to your C
programs when they are executed.

e These values are called command line arguments, they allow you to

control your program from outside instead of hard coding those values
inside the code.

#include <stdio.h>

int main(int argc, char *argv[]) {
// argc: Number of command line arguments
// argv: Array of pointers to each argument
if(argc == 2) {
printf ("The argument supplied is %s\n", argv[l]);
}
else 1if(argc > 2) {
printf ("Too many arguments supplied.\n");
}

else {
printf ("One argument expected.\n");

}
}

C Memory Management

e Memory can be statically allocated or dynamically allocated

e Memory is said to be statically allocated when it is reserved at the time of
compilation

e Memory is said to be dynamically allocated when it is reserved at the time
of program execution. Eg: Using c library functions such as malloc(),
calloc(), realloc()

e Statically allocated memory is freed automatically at the end of a function
call or program execution depending on the scope of the variable

e Dynamically allocated memory has to be freed explicitly using the free()
system call

e |IMPORTANT

o Number mallocs = Number frees
o Never free a malloced block twice
o Free only what you malloc and malloc only what you free

Why We Need Malloc

e Something that students new to the language often get confused about
e i.e. Whatis wrong with the following program?

/* Very bad program! Will compile and run though! */
int main(int argc, char *argv][]) {
int N;
if (argc >=2) {
N = atoi(argv[1]);
—char mystrN].___ char *mystr = malloc(N*sizeof(char));
myfunc(mystr);

}

return O;

}
e Whatis the size of mystr? Ans: Undefined

e Malloc allows us to obtain memory during program execution

System calls and error conditions

A System Call is a mechanism in which the user application requests the
service of the kernel (why do we need to do this?)

May be called directly or indirectly through c library functions (e.g. fopen()
calls open())

System calls may not always succeed. It is therefore important to check
the status of the return values from these calls before proceeding

List of commonly used system calls include: open(), read()/write(),
pipe(), fork(), exec(), time(), waitpid()

A system call sets the global variable errno with the error code, which
can be printed using strerror(). The various error codes are defined in
error.h

// Program showing how to read error codes
#include <stdio.h>
#include <errno.h>
#include <string.h>

extern int errno ;

int main () {
FILE * pf;
int errnum;
pf = fopen ("unexist.txt", "rb");
if (pf == NULL) {
errnum = errno;

fprintf (stderr, "Value of errno: %d\n",

perror ("Error printed by perror");
fprintf (stderr, "Error opening file:

}

else {

fclose (pf);

return 0;

// Program demonstrating how to return exit
#include <stdio.h>
#include <stdlib.h>

main () {

int dividend = 20;
int divisor = 5;
int quotient;

if(divisor == 0) {
fprintf (stderr, "Division by zero!
Exiting...\n");
exit (EXIT FAILURE);

quotient = dividend / divisor;

status

fprintf (stderr, "Value of quotient : %d\n",

quotient);

exit (EXIT_SUCCESS) ;

C Standard Library

Many basic housekeeping functions are available to a C program in form of
standard library functions.
e To call these, a program must #include the appropriate .h file.
e You can use ‘man’ commands on these functions to learn about their usage.
e Most commonly used header files:
o stdio.h:
m File I/O: fopen(), fclose(), fscanf(), fprintf()
m Command line argument parsing: getopt()
e string.h string operations
o char * strcpy(char *dst, char *src)
o char * strcat(char *dst, char *src)
o size_t strlen(char *str)
o int strcmp(char *str1, char *str2)
e stdlib.h
o Dynamic memory allocation functions: malloc(), calloc(), free()
o exit(int status): terminate program and return exit status to the parent

Compilation

GCC, Make Files

GCC

Used to compile C/C++ projects

List the files that will be compiled to form an executable
Specify options via flags

Important Flags:

o O O O O

O

-g: produce debug information (important; used by GDB/valgrind)
-Werror: treat all warnings as errors (this is our default)
-Wall/-Wextra: enable all construction warnings

-pedantic: indicate all mandatory diagnostics listed in C-standard
-00/-0O1/-0O2: optimization levels

-0 <filename>: name output binary file filename’

Example:

©)

gcc -g -Werror -Wall -Wextra -pedantic foo.c bar.c -o baz

Make Files

e Command-line compilation becomes
inefficient when compiling many files
together

e Solution: use make-files

e Single operation - ‘make’ to compile files
together

e Only recompiles updated files

Makefile for the malloc lab driver

#

CC=gcc

CFLAGS = -Wall -Wextra -Werror -O2 -g -std=gnu99

OBJS = mdriver.o memlib.o
all: mdriver

mdriver: $(OBJS)
$(CC) $(CFLAGS) -0 mdriver $(OBJS)

mdriver.o: mdriver.c memlib.h

$(CC) $(CFLAGS) mdriver.c
memlib.o: memlib.c memlib.h

$(CC) $(CFLAGS) memlib.c

clean:
rm -f *~ *.o0 mdriver

Makefile Rules

Comments start with a ‘#, Commands start with a TAB.

Common Make File Format:
target: source(s)
TAB: command
TAB: command
Macros: similar to C-macros, find and replace:
CC =gcc
CCOPT = -g -DDEBUG -DPRINT
foo.o: foo.c foo.h
$(CC) $(CCOPT) -c foo.c
See

for more details

foo.c foo.h bar.c bar.h baz.c baz.h

Nfe el K

foo.o

.

myapp

http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html
http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html
http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

Questions?

Appendix

Declaration vs Definition in C

o There can be multiple declarations of an external function or variable

® But there can be only one definition of a function or a variable. I.e. function names/variable names cannot be duplicated

#include <stdio.h> #include <stdio. h> #include <stdio.h>
{é ,:Jcno'ﬂl;te .def|n|t|on of count // Multiple declaration of count # '\tAUItiPI? decI?rations
. . . extern int count; extern int count,
/éxl\tflet:::lsloei c;dsvcrli:agi?:m?;‘_wrlte_extern() extern void write_extern();
_ _ _ void write_extern(void) { 1 ERR(_)R: DupIicgte definitions of write_extern!!!!

Z there can be only one main function among the compiled printf("count is %d\n", count): void yvnte:_extern@_nt a) {

p!‘o(g;r{ams } printf(“input var is %d\n”, a);
main }

count = 5;

write_extern();
} main.c support.c foo.c

gcc main.c support.c foo.c

Recursive Function calls

e Every function call creates a new stack for the called function
e Always remember to have a base case at which the function call returns
e Avoid recursion when you know that the input parameter can be large

void recursive fn(n)
{
recursive fn(n-1);

}

void recursive fn(n)
{
If (n==1)
return;
recursive fn(n-1);

