
Lecture 26:
“Parallel Programming”

John P. Shen & Zhiyi Yu
December 5, 2016

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reference:
“Parallel Computer Organization and Design,” by Michel Dubois, Murali
Annavaram, Per Stenstrom, Chapters 5 and 7, 2012.

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 1

Lecture 26:
“Parallel Programming”

18-600 Foundations of Computer Systems

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 2

A. Parallel Programs for Parallel Architectures
B. Parallel Programming Models
C. Shared Memory Model
D. Message Passing Model
E. Thread Level Parallelism Examples

Parallel Architectures: MCP & MCC
MULTIPROCESSING

Shared Memory Multicore
Processors (MCP) or Chip

Multiprocessors (CMP)

CLUSTER COMPUTING
Shared File System & LAN

Connected Multi-Computer
Clusters (MCC)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 3

A. Parallel Programs for Parallel Architectures

 Why is Parallel Programming so hard?

• Conscious mind is inherently sequential

• (sub-conscious mind is extremely parallel)

 Identifying parallelism in the problem

 Expressing parallelism to the parallel hardware

 Effectively utilizing parallel hardware (MCP or MCC)

• MCP: OpenMP (Shared Memory)

• MCC: Open MPI (Message Passing)

 Debugging parallel algorithms

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 4

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Finding Parallelism

1. Functional parallelism

• Car: {engine, brakes, entertain, nav, …}

• Game: {physics, logic, UI, render, …}

• Signal processing: {transform, filter, scaling, …}

2. Request parallelism

• Web service, shared database, ATM, …

3. Data parallelism

• Vector, matrix, DB table, pixels, …

4. Multi-threaded Parallelism

• Decompose/parallelize sequential programs

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 5

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

1. Functional Parallelism

Functional parallelism
• Car: {engine, brakes, entertain, nav, …}

• Game: {physics, logic, UI, render, …}

• Signal processing: {transform, filter, scaling, …}

 Relatively easy to identify and utilize

 Provides small-scale parallelism
• 3x-10x

 Balancing stages/functions is difficult

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 6

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

2. Request Parallelism

 Multiple users => significant parallelism
 Challenges

• Synchronization, communication, balancing work

Web Browsing Users

Web Server(s) Database Server(s)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 7

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

3. Data Parallelism

Data parallelism
• Vector, matrix, DB table, pixels, …

 Large data => significant parallelism

 Many ways to express parallelism
• Vector/SIMD ISA extensions

• Threads, processes, shared memory

• Message-passing

 Challenges:
• Balancing & coordinating work

• Communication vs. computation at scale

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 8

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

4. Multi-threaded Parallelism

Automatic extraction of parallel threads
• Decompose/Parallelize sequential programs

 Works well for certain application types
• Regular control flow and memory accesses

 Difficult to guarantee correctness in all cases
• Ambiguous memory dependences

• Requires speculation, support for recovery

 Degree of parallelism
• Large (1000x) for easy cases

• Small (3x-10x) for difficult cases

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 9

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Expressing Parallelism

 SIMD – Cray-1 case study

• MMX, SSE/SSE2/SSE3/SSE4, AVX at small scale

 SPMD – GPGPU model

• All processors execute same program on disjoint data

• Loose synchronization vs. rigid lockstep of SIMD

 MIMD – most general (this lecture)

• Each processor executes its own program/thread

 Expressed through standard interfaces

• API, ABI, ISA

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 10

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

B. Parallel Programming Models
 High level paradigms for expressing an algorithm

• Examples:

• Functional programs

• Sequential, procedural programs

• Shared-Memory parallel programs

• Message-Passing parallel programs

 Embodied in high level languages that support concurrent execution
• Incorporated into HLL constructs

• Incorporated as libraries added to existing sequential language

 Top level features:
• For conventional models – shared memory, message passing

• Multiple threads are conceptually visible to programmer

• Communication/synchronization are visible to programmer

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 11

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

MP (Multiprocessing or MIMD) Interfaces

 Levels of abstraction
enable complex
system designs (such
as MP computers)

 Fairly natural
extensions of
uniprocessor model
• Historical evolution H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P IS A

M P A B I

M P A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g M o d e l

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 12

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Application Programming Interface (API)

 Interface where HLL programmer works

 High level language plus libraries
• Individual libraries are sometimes referred to as an “API”

 User level runtime software is often part of API implementation
• Executes procedures

• Manages user-level state

 Examples:
• C and pthreads

• FORTRAN and MPI

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 13

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Application Binary Interface (ABI)

 Program in API is
compiled to ABI

 Consists of:
• OS call interface

• User level instructions
(part of ISA)

H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P IS A

M P A B I

M P A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g M o d e l

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 14

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Instruction Set Architecture (ISA)

 Interface between hardware and software
• What the hardware implements

 Architected state
• Registers

• Memory architecture

 All instructions
• May include parallel (SIMD) operations

• Both non-privileged and privileged

 Exceptions (traps, interrupts)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 15

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Major (MP or MIMD) Abstractions

 For both Shared Memory & Message Passing (programming models)

 Processes and Threads (parallelism expressed)
• Process: A shared address space and one or more threads of control flows

• Thread: A program sequencer and private address space (private stack)

• Task: Less formal term – part of an overall job

• Created, terminated, scheduled, etc.

 Communication
• Passing of data

 Synchronization
• Communicating control information

• To ensure reliable, deterministic communication

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 16

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

 Flat shared memory or
object heap
• Synchronization via

memory variables enables
reliable sharing

 Single process
 Multiple threads per

process
• Private memory per thread

 Typically built on shared
memory hardware system

T h re a d 1

P riv a te

V a ria b le s

T h re a d 1 T h re a d 2 T h re a d N

. . .

w rite re a d

V A R

S h a re d V a ria b le s

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 17

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

C. Shared Memory Model

Threads and Processes

 Creation
• generic -- Fork

• (Unix forks a process, not a thread)

• pthread_create(….*thread_function….)
• creates new thread in current address space

 Termination
• pthread_exit

• or terminates when thread_function terminates

• pthread_kill
• one thread can kill another

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 18

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Example

 Unix process with
two threads

(PC and stack pointer
actually part of ABI/ISA
implementation)

U se r A d d re ss S p a ce

va r1

va r2

va r3

...

va r1

va r2

va r3

...

th re a d 2 s ta ck

th re a d 1 s ta ck

te x t (co d e)

m a in ()

…

th re a d 1 ()

…

th re a d 2 ()

...

d a ta s tru c tu re A

a rra yB

a rra yC

…
h e a p

th re a d 1 s ta ck p o in te r

th re a d 1 P C

th re a d 2 s ta ck p o in te r

th re a d 2 P C

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 19

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Shared Memory Communication

 Reads and writes to
shared variables via
normal language
(assignment) statements
(e.g. assembly
load/store)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 20

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Shared Memory Synchronization

 What really gives shared memory programming its structure

 Usually explicit in shared memory model

• Through language constructs or API

 Three major classes of synchronization

• Mutual exclusion (mutex)

• Point-to-point synchronization

• Rendezvous

 Employed by application design patterns

• A general description or template for the solution to a commonly recurring
software design problem.

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 21

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Mutual Exclusion (mutex)

 Assures that only one thread at a time can access a code or data
region

 Usually done via locks
• One thread acquires the lock

• All other threads excluded until lock is released

 Examples
• pthread_mutex_lock

• pthread_mutex_unlock

 Two main application programming patterns
• Code locking

• Data locking

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 22

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Code Locking

 Protect shared data by
locking the code that
accesses it

 Also called a monitor
pattern

 Example of a critical section

update(args)
mutex code_lock;

...
lock(code_lock);

<read data1>
<modify data>
<write data2>

unlock(code_lock);
…

return;

Data Structure

Thread 1 Thread 2 Thread N. . .

Thread 1 Thread 2 . . . Thread N

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 23

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Data Locking

 Protect shared
data by locking
data structure

lock(struct_lock);
<read data1>
<modify data>
<write data1>

unlock(struct_lock);

Thread 1 Thread 2 Thread N. . .

Thread 1 Thread 2
. . .

Thread N

lock(struct_lock);
<read data2>
<read data1>

unlock(struct_lock);

lock(struct_lock);
<read data12>
<modify data>
<write data2>
<write data1>

unlock(struct_lock);

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 24

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Data Locking

 Preferred when data structures are read/written in combinations

 Example:

<thread 0>
Lock(mutex_struct1)

Lock(mutex_struct2)

<access struct1>

<access struct2>

Unlock(mutex_data1)

Unlock(mutex_data2)

<thread 1>
Lock(mutex_struct1)

Lock(mutex_struct3)

<access struct1>

<access struct3>

Unlock(mutex_data1)

Unlock(mutex_data3)

<thread 2>
Lock(mutex_struct2)

Lock(mutex_struct3)

<access struct2>

<access struct3>

Unlock(mutex_data2)

Unlock(mutex_data3)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 25

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Deadlock

 Data locking is prone to deadlock
• If locks are acquired in an unsafe order

 Example:

 Complexity
• Disciplined locking order must be maintained, else deadlock
• Also, composability problems
• Locking structures in a nest of called procedures

<thread 0>
Lock(mutex_data1)

Lock(mutex_data2)

<access data1>

<access data2>

Unlock(mutex_data1)

Unlock(mutex_data2)

<thread 1>
Lock(mutex_data2)

Lock(mutex_data1)

<access data1>

<access data2>

Unlock(mutex_data1)

Unlock(mutex_data2)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 26

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Efficiency

 Lock Contention
• Causes threads to wait

 Function of lock granularity
• Size of data structure or code that is being locked

 Extreme Case:
• “One big lock” model for multithreaded OSes
• Easy to implement, but very inefficient

 Finer granularity
+ Less contention
- More locks, more locking code
- Perhaps more deadlock opportunities

 Coarser granularity
• Opposite +/- of above

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 27

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Point-to-Point Synchronization

 One thread signals another that a condition holds
• Can be done via API routines

• Can be done via normal load/stores

 Examples
• pthread_cond_signal

• pthread_cond_wait

• suspends thread if condition not true

 Application program pattern
• Producer/Consumer

<Producer> <Consumer>

while (full == 1){}; wait while (full == 0){}; wait

buffer = value; b = buffer;

full = 1; full = 0;

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 28

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Rendezvous

 Two or more cooperating threads must reach a program point before
proceeding

 Examples

• Wait for another thread at a join point before proceeding

• example: pthread_join

• Barrier synchronization

• many (or all) threads wait at a given point

 Application program pattern

• Bulk synchronous programming pattern

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 29

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Bulk Synchronous Program Pattern

Thread 1 Thread 2 Thread N
. . .

Barrier

Compute

Communicate

Barrier

Compute

Communicate

Compute

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 30

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

API Implementation

 Implemented at ABI and
ISA level

• OS calls

• Runtime software

• Special instructions

H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P IS A

M P A B I

M P A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g M o d e l

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 31

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

 Processes and Threads

• OS processes

• OS threads

• User threads

OS Processes

 Processes

 Use OS fork to create processes

 Use OS calls to set up shared address space

 OS manages processes (and threads) via run queue

 Heavyweight thread switches

• OS call followed by:

• Switch address mappings

• Switch process-related tables

• Full register switch

 Advantage

• Processes have protected private memory

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 32

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

OS (Kernel) Threads

 API pthread_create() maps to Linux clone()

• Allows multiple threads sharing same memory address space

 OS manages threads via run queue

 Lighter weight thread switch

• Still requires OS call

• OS switches architected register state and stack pointer

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 33

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

User Threads

 If memory mapping
doesn’t change, why
involve OS at all?

 Runtime creates threads
simply by allocating stack
space

 Runtime switches threads
via user level instructions
• thread switch via jumps

U se r A d d re ss S p a ce

va r1

va r2

va r3

...

va r1

va r2

va r3

...

th re a d 2 s ta ck

th re a d 1 s ta ck

te x t (co d e)

m a in ()

…

th re a d 1 ()

…

th re a d 2 ()

...

d a ta s tru c tu re A

a rra yB

a rra yC

…
h e a p

th re a d 1 s ta ck p o in te r

th re a d 1 P C

th re a d 2 s ta ck p o in te r

th re a d 2 P C

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 34

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Implementing User Threads

User Thread Queue

Processor 1 Processor 2 Processor N

Kernel Threads

User Threads

Runtime Scheduler

Kernel Thread Queue

OS Scheduler

 Multiple kernel
threads needed to get
control of multiple
hardware processors

 Create kernel threads
(OS schedules)

 Create user threads
that runtime
schedules onto kernel
threads

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 35

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Lock Implementation

 Reliable locking can be done with atomic read-modify-write instruction

 Example: test&set
• read lock and write a one

• some ISAs also set CCs (test)

<thread 1> <thread 2>

. .

LAB1: Test&Set R1, Lock LAB2: Test&Set R1, Lock

Branch LAB1 if R1==1 Branch LAB2 if R1==1

. .

<critical section> <critical section>

. .

Reset Lock Reset Lock

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 36

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Atomic Read-Modify-Write

 Many such instructions have been used in ISAs

 More-or-less equivalent
• One can be used to implement the others
• Implement Fetch&Add with Test&Set:

Test&Set(reg,lock) Fetch&Add(reg,value,sum) Swap(reg,opnd)

reg ← mem(lock); reg ← mem(sum); temp ← mem(opnd);

mem(lock) ← 1; mem(sum)← mem(sum)+value; mem(opnd)← reg;

reg ← temp

try: Test&Set(lock);

if lock == 1 go to try;

reg ← mem(sum);

mem(sum) ← reg+value;

reset (lock);

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 37

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Lock Efficiency

 Spin Locks
• tight loop until lock is acquired

LAB1: Test&Set R1, Lock

Branch LAB1 if R1==1

 Inefficiencies:
• Memory/Interconnect resources, spinning on read/writes

• With a cache-based systems,

writes lots of coherence traffic

• Processor resource

• not executing useful instructions

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 38

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Efficient Lock Implementations

 Test&Test&Set
• spin on check for unlock only, then try to lock
• with cache systems, all reads can be local

• no bus or external memory resources used

 Test&Set with Backoff
• Insert delay between test&set operations (not too long)
• Each failed attempt longer delay

(Like Ethernet collision avoidance)

test_it: load reg, mem(lock)

branch test_it if reg==1

lock_it: test&set reg, mem(lock)

branch test_it if reg==1

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 39

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Efficient Lock Implementations

 Solutions just given save memory/interconnect resource
• Still waste processor resource

 Use runtime to suspend waiting process
• Detect lock

• Place on wait queue

• Schedule another thread from run queue

• When lock is released move from wait queue to run queue

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 40

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Point-to-Point Synchronization

 Can use normal variables as flags
while (full ==1){} ;spin while (full == 0){} ;spin

a = value; b = value;

full = 1; full = 0;

 Assumes sequential consistency
• Using normal variables may cause problems with relaxed consistency models

 May be better to use special opcodes for flag set/clear

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 41

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Barrier Synchronization

 Uses a lock, a counter, and a flag
• lock for updating counter

• flag indicates all threads have incremented counter

Barrier (bar_name, n) {

Lock (bar_name.lock);

if (bar_name.counter = 0) bar_name.flag = 0;

mycount = bar_name.counter++;

Unlock (bar_name.lock);

if (mycount == n) {

bar_name.counter = 0;

bar_name.flag = 1;

}

else while(bar_name.flag = 0) {}; /* busy wait */

}

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 42

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

 Multiple processes (or threads)
 Logical data partitioning

• No shared variables

 Message Passing
• Threads of control communicate by sending and receiving messages
• May be implicit in language constructs
• More commonly explicit via API

P ro c e s s 1

V a ria b le s

P ro c e s s 2

V a ria b le s

P ro c e s s 1 P ro c e s s 2 P ro c e s s N

P ro c e s s N

V a ria b le s

. . .
s e n d

re c e iv e

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 43

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

D. Message Passing Model

MPI – Message Passing Interface API (Open MPI)

 A widely used standard
• For a variety of distributed memory systems

• SMP Clusters, workstation clusters, MPPs, heterogeneous systems

 Also works on Shared Memory MPs (OpenMP)
• Easy to emulate distributed memory on shared memory HW

 Can be used with a number of high level languages

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 44

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Processes and Threads

 Lots of flexibility (advantage of message passing)
1) Multiple threads sharing an address space

2) Multiple processes sharing an address space

3) Multiple processes with different address spaces

and different OSes

 1) and 2) are easily implemented on shared memory hardware (with
single OS)
• Process and thread creation/management similar to shared memory

 3) probably more common in practice
• Process creation often external to execution environment; e.g. shell script

• Hard for user process on one system to create process on another OS

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 45

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Process Management

 Organize into groups
• For collective management

and communication

P0

P1

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11

MPI_COMM_WORLD

P0

P1

P2
P3

P4

P5

P6
P7

P8

P9

P10
P11

P0

P1

P2
P3

P4

P5

P6
P7

P8

P9

P10

P11

Form Group

Include in

Communicator

Form Group

Include in

Communicator

P5

P6

P5

P6

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 46

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

 Processes are given identifiers
(PIDs)
• “rank” in MPI

 Process can acquire own PID
 Operations can be conditional

on PID
 Message can be sent/received

via PIDs

Communication and Synchronization

 Combined in the message passing paradigm
• Synchronization of messages part of communication semantics

 Point-to-point communication
• From one process to another

 Collective communication
• Involves groups of processes

• e.g., broadcast

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 47

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Point to Point Communication

 Use sends/receives primitives

 Send(RecProc, SendBuf,…)
• RecProc is destination (wildcards may be used)

• SendBuf names buffer holding message to be sent

 Receive(SendProc, RecBuf,…)
• SendProc names sending process (wildcards may be used)

• RecBuf names buffer where message should be placed

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 48

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

MPI Examples
 MPI_Send(buffer,count,type,dest,tag,comm)

buffer – address of data to be sent
count – number of data items
type – type of data items
dest – rank of the receiving process
tag – arbitrary programmer-defined identifier

tag of send and receive must match
comm – communicator number

 MPI_Recv(buffer,count,type,source,tag,comm,status)
buffer – address of data to be sent
count – number of data items
type – type of data items
source – rank of the sending process; may be a wildcard
tag – arbitrary programmer-defined identifier; may be a wildcard

tag of send and receive must match
comm – communicator number
status – indicates source, tag, and number of bytes transferred

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 49

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Message Synchronization

 After a send or receive is executed…
• Has message actually been sent? or received?

 Asynchronous vs. Synchronous
• Higher level concept

 Blocking vs. non-Blocking
• Lower level – depends on buffer implementation

• but is reflected up into the API

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 50

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Synchronous vs. Asynchronous

 Synchronous Send
• Stall until message has actually been received

• Implies a message acknowledgement from receiver to sender

 Synchronous Receive
• Stall until message has actually been received

 Asynchronous Send and Receive
• Sender and receiver can proceed regardless

• Returns request handle that can be tested for message receipt

• Request handle can be tested to see if message has been sent/received

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 51

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Blocking vs. Non-Blocking

 Blocking send blocks if send buffer is not available for new message

 Blocking receive blocks if no message in its receive buffer

 Non-blocking versions don’t block…

 Operation depends on buffering in implementation

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 52

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Blocking vs. Non-Blocking

 Buffer implementations

a) Message goes directly
from sender to receiver
reduces copying time

b) Message is buffered
by system in between
may free up send buffer
sooner (less blocking)

M e ssa g e in T ra n s it

S e n d in g P ro ce ss

S e n d B u ffe r

R e ce iv in g P ro ce ss

R e ce ive B u ffe r

C o m m u n ica tio n

C h a n n e l

(a)

S e n d in g P ro ce ss

S e n d B u ffe r

R e ce iv in g P ro ce ss

R e ce ive B u ffe r

(b)

S ys te m B u ffe r

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 53

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Collective Communications

 Involve all processes within a communicator

 Blocking

 MPI_Barrier (comm)

• Barrier synchronization

 MPI_Bcast (*buffer,count,datatype,root,comm)

• Broadcasts from process of rank “root” to all other processes

 MPI_Scatter (*sendbuf,sendcnt,sendtype,*recvbuf,
...... recvcnt,recvtype,root,comm)

• Sends different messages to each process in a group

 MPI_Gather (*sendbuf,sendcnt,sendtype,*recvbuf,
...... recvcount,recvtype,root,comm)

• Gathers different messages from each process in a group

 Also reductions

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 54

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Communicators and Groups

 Define collections of
processes that may
communicate

• Often specified in
message argument

• MPI_COMM_WORLD –
predefined
communicator that
contains all processes

P0

P1

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11

MPI_COMM_WORLD

P0

P1

P2
P3

P4

P5

P6
P7

P8

P9

P10
P11

P0

P1

P2
P3

P4

P5

P6
P7

P8

P9

P10

P11

Form Group

Include in

Communicator

Form Group

Include in

Communicator

P5

P6

P5

P6

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 55

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Broadcast Example

98

Process 0

SendBuf

98

Process 0

RcvBuf

98

Process 1

RcvBuf

98

Process 2

RcvBuf

98

Process 3

RcvBuf

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 56

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Scatter Example

55

Process 0

SendBuf

23

Process 0

RcvBuf

37

Process 1

RcvBuf

42

Process 2

RcvBuf

55

Process 3

RcvBuf

42

37

23

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 57

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Gather Example

55

Process 0

RcvBuf

23

Process 0

SendBuf

37

Process 1

SendBuf

42

Process 2

SendBuf

55

Process 3

Sendbuf

42

37

23

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 58

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Message Passing Implementation

 At the ABI and ISA level
• No special support (beyond that needed for shared memory)

• Most of the implementation is in the runtime

• user-level libraries

• Makes message passing relatively portable

 Three implementation models
1) Multiple threads sharing an address space

2) Multiple processes sharing an address space

3) Multiple processes with non-shared address space (and different OSes)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 59

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Multiple Threads Sharing Address Space

 Runtime manages buffering and tracks communication
• Communication via normal loads and stores using shared memory

 Example: Send/Receive
• Send calls runtime, runtime posts availability of message in runtime-managed table

• Receive calls runtime, runtime checks table, finds message

• Runtime copies data from send buffer to store buffer via load/stores

 Fast/Efficient Implementation
• May even be advantageous over shared memory paradigm

• considering portability, software engineering aspects

• Can use runtime thread scheduling

• Problem with protecting private memories and runtime data area

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 60

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Multiple Processes Sharing Address Space

 Similar to multiple threads sharing address space

 Would rely on kernel scheduling

 May offer more memory protection
• With intermediate runtime buffering

• User processes can not access others’ private memory

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 61

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Multiple Processes with Non-Shared Address Space

 Most common implementation

 Communicate via networking hardware

 Send/receive to runtime
• Runtime converts to OS (network) calls

 Relatively high overhead
• Most HPC systems use special low-latency, high-bandwidth networks

• Buffering in receiver’s runtime space may save some overhead for receive
(doesn’t require OS call)

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 62

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

At the ISA Level: Shared Memory Systems

 Multiple processors

 Architected shared virtual
memory

 Architected
Synchronization
instructions

 Architected Cache
Coherence

 Architected Memory
Consistency

PC

Registers

Processor 1

PC

Registers

Processor 2

PC

Registers

Processor N

Shared Real Memory

Cache

Memory

Interconnection Network

Cache

Memory

Cache

Memory

Coherent, Consistent

Memory System

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 63

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

At the ISA Level: Message Passing Systems

 Multiple processors

 Shared or non-shared real
memory (multi-computers)

 Limited ISA support (if any)
• An advantage of distributed

memory systems --Just connect
a bunch of small computers

• Some implementations may
use shared memory managed
by runtime

PC

Registers

Processor 1

PC

Registers

Processor 2

PC

Registers

Processor N

Cache

Memory

Interconnection Network

Cache

Memory

Cache

Memory

Private

Real

Memory

Private

Real

Memory

Private

Real

Memory

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 64

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E. Thread Level Parallelism Examples
 Parallel Computing Hardware

 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism

 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models

 What happens when multiple threads are reading & writing shared state

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 65

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

 e.g., one thread per client to prevent one from delaying another

 Multi-core/Hyperthreaded CPUs offer another opportunity

 Spread work over threads executing in parallel

 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients

 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 66

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Multicore Processor

 Multiple processors operating with coherent view of memory

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core n-1

…

L3 unified cache

(shared by all cores)

Main memory

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream of operations

 Operations mapped onto functional units to execute in parallel

Functional Units

Int

Arith

Int

Arith

FP

Arith

Load /

Store

Instruction Control

Registers

Instruction

Decoder

Op. Queue

Data Cache

Instruction

Cache

PC

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 68

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hyperthreading Implementation

 Replicate enough instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int

Arith

Int

Arith

FP

Arith

Load /

Store

Instruction Control

Reg B

Instruction

Decoder

Op. Queue B

Data Cache

Instruction

CacheReg A Op. Queue A

PC A
PC B

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 69

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines

 Intel Xeon E5520 @ 2.27 GHz

 Nehalem, ca. 2010

 8 Cores

 Each can do 2x hyperthreading

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 70

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 1: Parallel Summation

 Sum numbers 0, …, n-1

 Should add up to ((n-1)*n)/2

 Partition values 1, …, n-1 into t ranges

 n/t values in each range

 Each of t threads processes 1 range

 For simplicity, assume n is a multiple of t

 Let’s consider different ways that multiple threads might work on their
assigned ranges in parallel

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 71

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First attempt: psum-mutex
 Simplest approach: Threads sum into a global variable protected by a

semaphore mutex.
void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0; /* Global sum */

long nelems_per_thread; /* Number of elements to sum */

sem_t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)

{

long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];

pthread_t tid[MAXTHREADS];

/* Get input arguments */

nthreads = atoi(argv[1]);

log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);

nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 72

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex (cont)

/* Create peer threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;

Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]);

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);

/* Check final answer */

if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum);

exit(0);

} psum-mutex.c

 Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 73

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum_mutex(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i;

for (i = start; i < end; i++) {

P(&mutex);

gsum += i;

V(&mutex);

}

return NULL;

} psum-mutex.c

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 74

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Performance

 Shark machine with 8 cores, n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

 Nasty surprise:
 Single thread is very slow

 Gets slower as we use more cores

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 75

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-array

 Peer thread i sums into global array element psum[i]

 Main waits for theads to finish, then sums elements of psum

 Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum_array(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i;

for (i = start; i < end; i++) {

psum[myid] += i;

}

return NULL;

} psum-array.c

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 76

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance
 Orders of magnitude faster than psum-mutex

5.36

4.24

2.54

1.64

0.94

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

 s
e

co
n

d
s

Threads (cores)

Parallel Summation

psum-array

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 77

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-local

 Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum_local(void *vargp)

{

long myid = *((long *)vargp); /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread; /* End element index */

long i, sum = 0;

for (i = start; i < end; i++) {

sum += i;

}

psum[myid] = sum;

return NULL;

} psum-local.c

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 78

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-local Performance

 Significantly faster than psum-array

5.36

4.24

2.54

1.64

0.94

1.98

1.14

0.6
0.32 0.33

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

 s
e

co
n

d
s

Threads (cores)

Parallel Summation

psum-array

psum-local

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 79

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing Parallel Program Performance

 p processor cores, Tk is the running time using k cores

 Def. Speedup: Sp = T1 / Tp

 Sp is relative speedup if T1 is running time of parallel version of the code running on 1 core.

 Sp is absolute speedup if T1 is running time of sequential version of code running on 1 core.

 Absolute speedup is a much truer measure of the benefits of parallelism.

 Def. Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100].

 Measures the overhead due to parallelization

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 80

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance of psum-local
Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time

(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

 Efficiencies OK, not great

 Our example is easily parallelizable

 Real codes are often much harder to parallelize
 e.g., parallel quicksort later in this lecture

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 81

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law

 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.

 Overall problem
 T Total sequential time required

 p Fraction of total that can be sped up (0 p 1)

 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster

 Portion which cannot be sped up stays the same

 Least possible running time:

 k =

 T = (1-p)T

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 82

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X

 Rearrange X into

 L: Values p

 R: Values p

 Recursively sort L to get L

 Recursively sort R to get R

 Return L : p : R

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 83

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized
X

p

L p R

p2L2 R2

p2

L

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 84

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized
X

p R

p3

L3 R3p3

L

R

pL R

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 85

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 86

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort
 Parallel quicksort of set of values X

 If N Nthresh, do sequential quicksort

 Else

 Choose “pivot” p from X

 Rearrange X into

– L: Values p

– R: Values p

 Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

 Return L : p : R

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 87

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Visualized
X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p

L

Rp

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 88

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread Structure: Sorting Tasks

 Task: Sort subrange of data
 Specify as:

 base: Starting address

 nele: Number of elements in subrange

 Run as separate thread

X

Task Threads

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 89

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Small Sort Task Operation

 Sort subrange using serial quicksort

X

Task Threads

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 90

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Large Sort Task Operation
X

pL R

X

pL R

Partition Subrange

Spawn 2 tasks

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 91

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 92

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 93

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 94

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 95

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism

 F too large: Thread overhead + run out of thread memory
12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 96

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lessons Learned

 Must have parallelization strategy
 Partition into K independent parts

 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult

 Set up experimental framework and test multiple strategies

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 97

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 27:
“Future of Computing Systems”

John P. Shen & Zhiyi Yu
December 7, 2016

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 98

18-600 Foundations of Computer Systems

