
Lecture 26:
“Parallel Programming”

John P. Shen & Zhiyi Yu
December 5, 2016

18-600  Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reference:
“Parallel Computer Organization and Design,” by Michel Dubois, Murali 
Annavaram, Per Stenstrom, Chapters 5 and 7, 2012. 
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A. Parallel Programs for Parallel Architectures
B. Parallel Programming  Models
C. Shared Memory Model
D. Message Passing Model
E. Thread Level Parallelism Examples 



Parallel Architectures: MCP & MCC
MULTIPROCESSING

Shared Memory Multicore 
Processors (MCP) or Chip 

Multiprocessors (CMP)

CLUSTER COMPUTING
Shared File System & LAN 

Connected Multi-Computer 
Clusters (MCC)
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A. Parallel Programs for Parallel Architectures

 Why is Parallel Programming so hard?

• Conscious mind is inherently sequential

• (sub-conscious mind is extremely parallel)

 Identifying parallelism in the problem

 Expressing parallelism to the parallel hardware

 Effectively utilizing parallel hardware (MCP or MCC)

• MCP: OpenMP (Shared Memory)

• MCC: Open MPI (Message Passing)

 Debugging parallel algorithms
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Finding Parallelism

1. Functional parallelism

• Car: {engine, brakes, entertain, nav, …}

• Game: {physics, logic, UI, render, …}

• Signal processing: {transform, filter, scaling, …}

2. Request parallelism

• Web service, shared database, ATM, …

3. Data parallelism 

• Vector, matrix, DB table, pixels, …

4. Multi-threaded Parallelism

• Decompose/parallelize sequential programs
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1. Functional Parallelism

Functional parallelism
• Car: {engine, brakes, entertain, nav, …}

• Game: {physics, logic, UI, render, …}

• Signal processing: {transform, filter, scaling, …}

 Relatively easy to identify and utilize

 Provides small-scale parallelism
• 3x-10x

 Balancing stages/functions is difficult
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2. Request Parallelism

 Multiple users => significant parallelism
 Challenges

• Synchronization, communication, balancing work

Web Browsing Users

Web Server(s) Database Server(s)
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3. Data Parallelism

Data parallelism 
• Vector, matrix, DB table, pixels, …

 Large data => significant parallelism

 Many ways to express parallelism
• Vector/SIMD ISA extensions

• Threads, processes, shared memory

• Message-passing

 Challenges:
• Balancing & coordinating work

• Communication vs. computation at scale

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 8

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]



4. Multi-threaded Parallelism

Automatic extraction of parallel threads
• Decompose/Parallelize sequential programs

 Works well for certain application types
• Regular control flow and memory accesses

 Difficult to guarantee correctness in all cases
• Ambiguous memory dependences

• Requires speculation, support for recovery

 Degree of parallelism
• Large (1000x) for easy cases

• Small (3x-10x) for difficult cases
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Expressing Parallelism

 SIMD – Cray-1 case study 

• MMX, SSE/SSE2/SSE3/SSE4, AVX at small scale

 SPMD – GPGPU model 

• All processors execute same program on disjoint data

• Loose synchronization vs. rigid lockstep of SIMD

 MIMD – most general (this lecture)

• Each processor executes its own program/thread

 Expressed through standard interfaces

• API, ABI, ISA
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B. Parallel Programming Models
 High level paradigms for expressing an algorithm

• Examples:

• Functional programs

• Sequential, procedural programs

• Shared-Memory parallel programs

• Message-Passing parallel programs

 Embodied in high level languages that support concurrent execution
• Incorporated into HLL constructs

• Incorporated as libraries added to existing sequential language

 Top level features:
• For conventional models – shared memory, message passing

• Multiple threads are conceptually visible to programmer

• Communication/synchronization are visible to programmer
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MP (Multiprocessing or MIMD) Interfaces

 Levels of abstraction 
enable complex 
system designs (such 
as MP computers)

 Fairly natural 
extensions of 
uniprocessor model
• Historical evolution H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P  IS A

M P  A B I

M P  A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g  M o d e l
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Application Programming Interface (API)

 Interface where HLL programmer works

 High level language plus libraries
• Individual libraries are sometimes referred to as an “API”

 User level runtime software is often part of API implementation
• Executes procedures

• Manages user-level state

 Examples:
• C and pthreads

• FORTRAN and MPI
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Application Binary Interface (ABI)

 Program in API is 
compiled to ABI

 Consists of:
• OS call interface

• User level instructions 
(part of ISA)

H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P  IS A

M P  A B I

M P  A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g  M o d e l

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 14

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]



Instruction Set Architecture (ISA)

 Interface between hardware and software
• What the hardware implements

 Architected state
• Registers

• Memory architecture

 All instructions
• May include parallel (SIMD) operations

• Both non-privileged and privileged

 Exceptions (traps, interrupts)
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Major (MP or MIMD) Abstractions

 For both Shared Memory & Message Passing (programming models)

 Processes and Threads (parallelism expressed)
• Process: A shared address space and one or more threads of control flows

• Thread: A program sequencer and private address space (private stack)

• Task:   Less formal term – part of an overall job 

• Created, terminated, scheduled, etc.

 Communication
• Passing of data

 Synchronization
• Communicating control information

• To ensure reliable, deterministic communication
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 Flat shared memory or 
object heap
• Synchronization via 

memory variables enables 
reliable sharing

 Single process 
 Multiple threads per 

process
• Private memory per thread

 Typically  built on shared 
memory hardware system

T h re a d  1

P riv a te

V a ria b le s

T h re a d  1 T h re a d  2 T h re a d  N

. . .

w rite re a d

V A R

S h a re d  V a ria b le s
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C. Shared Memory Model



Threads and Processes

 Creation
• generic -- Fork   

• (Unix forks a process, not a thread)

• pthread_create(….*thread_function….)
• creates new thread in current address space

 Termination
• pthread_exit

• or terminates when thread_function terminates

• pthread_kill
• one thread can kill another
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Example

 Unix process with 
two threads

(PC and stack pointer 
actually part of ABI/ISA 
implementation)

U se r A d d re ss  S p a ce

va r1

va r2

va r3

...

va r1

va r2

va r3

...

th re a d  2  s ta ck

th re a d  1  s ta ck

te x t (co d e )

m a in ()

…

th re a d 1 ()

…

th re a d 2 ()

...

d a ta s tru c tu re A

a rra yB

a rra yC

…
h e a p

th re a d  1  s ta ck  p o in te r

th re a d  1  P C

th re a d  2  s ta ck  p o in te r

th re a d  2  P C
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Shared Memory Communication

 Reads and writes to 
shared variables via 
normal language 
(assignment) statements 
(e.g. assembly 
load/store)
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Shared Memory Synchronization

 What really gives shared memory programming its structure

 Usually explicit in shared memory model

• Through language constructs or API

 Three major classes of synchronization

• Mutual exclusion (mutex)

• Point-to-point synchronization

• Rendezvous

 Employed by application design patterns

• A general description or template for the solution to a commonly recurring 
software design problem.
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Mutual Exclusion (mutex) 

 Assures that only one thread at a time can access a code or data 
region

 Usually done via locks
• One thread acquires the lock

• All other threads excluded until lock is released

 Examples
• pthread_mutex_lock

• pthread_mutex_unlock

 Two main application programming patterns
• Code locking

• Data locking
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Code Locking 

 Protect shared data by 
locking the code that 
accesses it

 Also called a monitor
pattern

 Example of a critical section

update(args)
mutex code_lock;

...
lock(code_lock);

<read data1>
<modify data>
<write data2>

unlock(code_lock);
…

return;

Data Structure

Thread 1 Thread 2 Thread N. . .

Thread 1 Thread 2 . . . Thread N
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Data Locking 

 Protect shared 
data by locking 
data structure

lock(struct_lock);
<read data1>
<modify data>
<write data1>

unlock(struct_lock);

Thread 1 Thread 2 Thread N. . .

Thread 1 Thread 2
. . .

Thread N

lock(struct_lock);
<read data2>
<read data1>

unlock(struct_lock);

lock(struct_lock);
<read data12>
<modify data>
<write data2>
<write data1>

unlock(struct_lock);
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Data Locking

 Preferred when data structures are read/written in combinations

 Example:

<thread 0>
Lock(mutex_struct1)

Lock(mutex_struct2)

<access struct1>

<access struct2>

Unlock(mutex_data1)

Unlock(mutex_data2)

<thread 1>
Lock(mutex_struct1)

Lock(mutex_struct3)

<access struct1>

<access struct3>

Unlock(mutex_data1)

Unlock(mutex_data3)

<thread 2>
Lock(mutex_struct2)

Lock(mutex_struct3)

<access struct2>

<access struct3>

Unlock(mutex_data2)

Unlock(mutex_data3)
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Deadlock

 Data locking is prone to deadlock
• If locks are acquired in an unsafe order

 Example:

 Complexity
• Disciplined locking order must be maintained, else deadlock
• Also, composability problems
• Locking structures in a nest of called procedures

<thread 0>
Lock(mutex_data1)

Lock(mutex_data2)

<access data1>

<access data2>

Unlock(mutex_data1)

Unlock(mutex_data2)

<thread 1>
Lock(mutex_data2)

Lock(mutex_data1)

<access data1>

<access data2>

Unlock(mutex_data1)

Unlock(mutex_data2)
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Efficiency

 Lock Contention
• Causes threads to wait

 Function of lock granularity
• Size of data structure or code that is being locked

 Extreme Case:
• “One big lock” model for multithreaded OSes
• Easy to implement, but very inefficient

 Finer granularity
+ Less contention
- More locks, more locking code
- Perhaps more deadlock opportunities

 Coarser granularity
• Opposite +/- of above
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Point-to-Point Synchronization 

 One thread signals another that a condition holds
• Can be done via API routines

• Can be done via normal load/stores

 Examples
• pthread_cond_signal

• pthread_cond_wait

• suspends thread if condition not true

 Application program pattern
• Producer/Consumer

<Producer> <Consumer>

while (full == 1){}; wait while (full == 0){}; wait

buffer = value; b = buffer;

full = 1; full = 0;
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Rendezvous 

 Two or more cooperating threads must reach a program point before 
proceeding

 Examples

• Wait for another thread at a join point before proceeding

• example: pthread_join

• Barrier synchronization

• many (or all) threads wait at a given point

 Application program pattern

• Bulk synchronous programming pattern
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Bulk Synchronous Program Pattern

Thread 1 Thread 2 Thread N
. . .

Barrier

Compute

Communicate

Barrier

Compute

Communicate

Compute
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API Implementation

 Implemented at ABI and 
ISA level

• OS calls

• Runtime software

• Special instructions

H a rd w a re

Im p le m e n ta tio n

U s e r A p p lic a tio n s

M P  IS A

M P  A B I

M P  A P I

O p e ra tin g

S y s te m

L a n g u a g e /L ib ra r ie s

R u n tim e

P r o g r a m m i n g  M o d e l

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 31

[Jim Smith, Mikko Lipasti, Mark Hill, et al. , University of Wisconsin, ECE/CS 757, 2007-2013]

 Processes and Threads

• OS processes

• OS threads

• User threads



OS Processes

 Processes

 Use OS fork to create processes

 Use OS calls to set up shared address space

 OS manages processes (and threads) via run queue

 Heavyweight thread switches

• OS call followed by:

• Switch address mappings

• Switch process-related tables

• Full register switch

 Advantage

• Processes have protected private memory
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OS  (Kernel) Threads

 API pthread_create()  maps to Linux clone()

• Allows multiple threads sharing same memory address space

 OS manages threads via run queue

 Lighter weight thread switch

• Still requires OS call

• OS switches architected register state and stack pointer
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User Threads

 If memory mapping 
doesn’t change, why 
involve OS at all?

 Runtime creates threads 
simply by allocating stack 
space

 Runtime switches threads 
via user level instructions
• thread switch via jumps

U se r A d d re ss  S p a ce

va r1

va r2

va r3

...

va r1

va r2

va r3

...

th re a d  2  s ta ck

th re a d  1  s ta ck

te x t (co d e )

m a in ()

…

th re a d 1 ()

…

th re a d 2 ()

...

d a ta s tru c tu re A

a rra yB

a rra yC

…
h e a p

th re a d  1  s ta ck  p o in te r

th re a d  1  P C

th re a d  2  s ta ck  p o in te r

th re a d  2  P C
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Implementing User Threads

User Thread Queue

Processor 1 Processor 2 Processor N

Kernel Threads

User Threads

Runtime Scheduler

Kernel Thread Queue

OS Scheduler

 Multiple kernel 
threads needed to get 
control of multiple 
hardware processors

 Create kernel threads 
(OS schedules)

 Create user threads 
that runtime 
schedules onto kernel 
threads
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Lock Implementation

 Reliable locking can be done with atomic read-modify-write instruction

 Example: test&set
• read lock and write a one

• some ISAs also set CCs (test)

<thread 1> <thread 2>

. .

LAB1: Test&Set R1, Lock LAB2: Test&Set R1, Lock

Branch LAB1 if R1==1 Branch LAB2 if R1==1

. .

<critical section> <critical section>

. .

Reset Lock Reset Lock
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Atomic Read-Modify-Write

 Many such instructions have been used in ISAs

 More-or-less equivalent
• One can be used to implement the others
• Implement Fetch&Add with Test&Set:

Test&Set(reg,lock) Fetch&Add(reg,value,sum) Swap(reg,opnd)

reg ← mem(lock); reg ← mem(sum); temp ← mem(opnd);

mem(lock) ← 1;   mem(sum)← mem(sum)+value; mem(opnd)← reg;

reg ← temp

try: Test&Set(lock);

if lock == 1 go to try;

reg ← mem(sum);

mem(sum) ← reg+value;

reset (lock);
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Lock Efficiency

 Spin Locks
• tight loop until lock is acquired

LAB1: Test&Set R1, Lock

Branch LAB1 if R1==1

 Inefficiencies:
• Memory/Interconnect resources, spinning on read/writes

• With a cache-based systems,

writes  lots of coherence traffic

• Processor resource

• not executing useful instructions
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Efficient Lock Implementations

 Test&Test&Set
• spin on check for unlock only, then try to lock
• with cache systems, all reads can be local

• no bus or external memory resources used

 Test&Set with Backoff
• Insert delay between test&set operations (not too long)
• Each failed attempt  longer delay

(Like Ethernet collision avoidance)

test_it: load reg, mem(lock)

branch test_it if reg==1

lock_it: test&set reg, mem(lock)

branch test_it if reg==1
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Efficient Lock Implementations

 Solutions just given save memory/interconnect resource
• Still waste processor resource

 Use runtime to suspend waiting process
• Detect lock

• Place on wait queue

• Schedule another thread from run queue

• When lock is released move from wait queue to run queue
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Point-to-Point Synchronization

 Can use normal variables as flags
while (full ==1){}  ;spin while (full == 0){} ;spin

a = value; b = value;

full = 1; full = 0;

 Assumes sequential consistency 
• Using normal variables may cause problems with relaxed consistency models

 May be better to use special opcodes for flag set/clear
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Barrier Synchronization 

 Uses a lock, a counter, and a flag
• lock for  updating counter

• flag indicates all threads have incremented counter

Barrier (bar_name, n) {

Lock (bar_name.lock);

if (bar_name.counter = 0)  bar_name.flag = 0;

mycount = bar_name.counter++;

Unlock (bar_name.lock);

if (mycount == n) {

bar_name.counter = 0;

bar_name.flag = 1;

}

else  while(bar_name.flag = 0) {}; /* busy wait */

}
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 Multiple processes (or threads)
 Logical data partitioning

• No shared variables

 Message Passing
• Threads of control communicate by sending and receiving messages
• May be implicit in language constructs
• More commonly explicit via API

P ro c e s s  1

V a ria b le s

P ro c e s s  2

V a ria b le s

P ro c e s s  1 P ro c e s s  2 P ro c e s s  N

P ro c e s s  N

V a ria b le s

. . .
s e n d

re c e iv e
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D. Message Passing Model



MPI – Message Passing Interface  API (Open MPI)

 A widely used standard
• For a variety of distributed memory systems

• SMP Clusters, workstation clusters, MPPs, heterogeneous systems

 Also works on Shared Memory MPs (OpenMP)
• Easy to emulate distributed memory on shared memory HW

 Can be used with a number of high level languages
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Processes and Threads

 Lots of flexibility (advantage of message passing)
1) Multiple threads sharing an address space

2) Multiple processes sharing an address space

3) Multiple processes with different address spaces

and different OSes

 1) and 2) are easily implemented on shared memory hardware (with 
single OS)
• Process and thread creation/management similar to shared memory

 3) probably more common in practice
• Process creation often external to execution environment; e.g. shell script

• Hard for user process on one system to create process on another OS
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Process Management

 Organize into groups
• For collective management 

and communication

P0

P1

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11

MPI_COMM_WORLD

P0

P1
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 Processes are given identifiers 
(PIDs)
• “rank” in MPI

 Process can acquire own PID
 Operations can be conditional 

on PID
 Message can be sent/received 

via PIDs



Communication and Synchronization

 Combined in the message passing paradigm
• Synchronization of messages part of communication semantics

 Point-to-point communication
• From one process to another

 Collective communication
• Involves groups of processes

• e.g., broadcast
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Point to Point Communication

 Use sends/receives primitives

 Send(RecProc, SendBuf,…)
• RecProc is destination (wildcards may be used)

• SendBuf names buffer holding message to be sent

 Receive(SendProc, RecBuf,…)
• SendProc names sending process (wildcards may be used)

• RecBuf names buffer where message should be placed
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MPI Examples
 MPI_Send(buffer,count,type,dest,tag,comm) 

buffer – address of data to be sent
count – number of data items
type – type of data items
dest – rank of the receiving process
tag – arbitrary programmer-defined identifier

tag of send and receive must match
comm – communicator number

 MPI_Recv(buffer,count,type,source,tag,comm,status) 
buffer – address of data to be sent
count – number of data items
type – type of data items
source – rank of the sending process; may be a wildcard
tag – arbitrary programmer-defined identifier; may be a wildcard

tag of send and receive must match
comm – communicator number
status – indicates source, tag, and number of bytes transferred
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Message Synchronization

 After a send or receive is executed…
• Has message actually been sent? or received?

 Asynchronous vs. Synchronous
• Higher level concept

 Blocking vs. non-Blocking
• Lower level – depends on buffer implementation

• but is reflected up into the API
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Synchronous vs. Asynchronous

 Synchronous Send
• Stall until message has actually been received

• Implies a message acknowledgement from receiver to sender

 Synchronous Receive
• Stall until message has actually been received

 Asynchronous Send and Receive
• Sender and receiver can proceed regardless

• Returns request handle that can be tested for message receipt

• Request handle can be tested to see if message has been sent/received
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Blocking vs. Non-Blocking

 Blocking send blocks if send buffer is not available for new message

 Blocking receive blocks if no message in its receive buffer

 Non-blocking versions don’t block…

 Operation depends on buffering in implementation
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Blocking vs. Non-Blocking

 Buffer implementations

a) Message goes directly 
from sender to receiver
reduces copying time

b) Message is buffered     
by system in between
may free up send buffer 
sooner (less blocking)
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Collective Communications

 Involve all processes within a communicator

 Blocking

 MPI_Barrier (comm) 

• Barrier synchronization

 MPI_Bcast (*buffer,count,datatype,root,comm) 

• Broadcasts from process of rank “root” to all other processes

 MPI_Scatter (*sendbuf,sendcnt,sendtype,*recvbuf, 
...... recvcnt,recvtype,root,comm) 

• Sends different messages to each process in a group

 MPI_Gather (*sendbuf,sendcnt,sendtype,*recvbuf, 
...... recvcount,recvtype,root,comm) 

• Gathers different messages from each process in a group

 Also reductions
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Communicators and Groups

 Define collections of 
processes that may 
communicate

• Often specified in 
message argument

• MPI_COMM_WORLD –
predefined 
communicator that 
contains all processes
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Broadcast Example
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Scatter Example
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Gather Example
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Message Passing Implementation 

 At the ABI and ISA level
• No special support (beyond that needed for shared memory)

• Most of the implementation is in the runtime

• user-level libraries

• Makes message passing relatively portable

 Three implementation models 
1) Multiple threads sharing an address space

2) Multiple processes sharing an address space

3) Multiple processes with non-shared address space (and different OSes)
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Multiple Threads Sharing Address Space

 Runtime manages buffering and tracks communication
• Communication via normal loads and stores using shared memory

 Example:  Send/Receive
• Send calls runtime, runtime posts availability of message in runtime-managed table

• Receive calls runtime, runtime checks table, finds message

• Runtime copies data from send buffer to store buffer via load/stores

 Fast/Efficient Implementation
• May even be advantageous over shared memory paradigm

• considering portability, software engineering aspects

• Can use runtime thread scheduling

• Problem with protecting private memories and runtime data area
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Multiple Processes Sharing Address Space

 Similar to multiple threads sharing address space

 Would rely on kernel scheduling

 May offer more memory protection
• With intermediate runtime buffering

• User processes can not access others’ private memory
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Multiple Processes with Non-Shared Address Space

 Most common implementation

 Communicate via networking hardware

 Send/receive to runtime
• Runtime converts to OS (network) calls

 Relatively high overhead
• Most HPC systems use special low-latency, high-bandwidth networks

• Buffering in receiver’s runtime space may save some overhead for receive 
(doesn’t require OS call)
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At the ISA Level:  Shared Memory Systems

 Multiple processors

 Architected shared virtual 
memory

 Architected 
Synchronization 
instructions

 Architected Cache 
Coherence

 Architected Memory 
Consistency
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At the ISA Level: Message Passing Systems

 Multiple processors

 Shared or non-shared real 
memory (multi-computers)

 Limited ISA support   (if any)
• An advantage of distributed 

memory systems --Just connect  
a bunch of small computers

• Some implementations may 
use shared memory managed 
by runtime
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E. Thread Level Parallelism Examples
 Parallel  Computing Hardware

 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism

 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models

 What happens when multiple threads are reading & writing shared state
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Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

 e.g., one thread per client to prevent one from delaying another

 Multi-core/Hyperthreaded CPUs offer another opportunity

 Spread work over threads executing in parallel

 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients

 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks
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Typical Multicore Processor

 Multiple processors operating with coherent view of memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream of operations

 Operations mapped onto functional units to execute in parallel

Functional Units
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Hyperthreading Implementation

 Replicate enough instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units
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Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines

 Intel Xeon E5520 @ 2.27 GHz

 Nehalem, ca. 2010

 8 Cores

 Each can do 2x hyperthreading
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Example 1: Parallel Summation

 Sum numbers 0, …, n-1

 Should add up to ((n-1)*n)/2

 Partition values 1, …, n-1 into t ranges

 n/t values in each range

 Each of t threads processes 1 range 

 For simplicity, assume n is a multiple of t

 Let’s consider different ways that multiple threads might work on their 
assigned ranges in parallel
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First attempt: psum-mutex
 Simplest approach: Threads sum into a global variable protected by a 

semaphore mutex.
void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0;           /* Global sum */

long nelems_per_thread;  /* Number of elements to sum */

sem_t mutex;             /* Mutex to protect global sum */

int main(int argc, char **argv)

{

long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];

pthread_t tid[MAXTHREADS];

/* Get input arguments */

nthreads = atoi(argv[1]);

log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);

nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c
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psum-mutex (cont)

/* Create peer threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;                                  

Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]); 

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);                   

/* Check final answer */

if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum); 

exit(0);

} psum-mutex.c

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.
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psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum_mutex(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;

for (i = start; i < end; i++) {        

P(&mutex);                     

gsum += i;                     

V(&mutex);                     

}

return NULL;

} psum-mutex.c
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psum-mutex Performance

 Shark machine with 8 cores,  n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

 Nasty surprise:
 Single thread is very slow

 Gets slower as we use more cores
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Next Attempt: psum-array

 Peer thread i sums into global array element psum[i]

 Main waits for theads to finish, then sums elements of psum

 Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum_array(void *vargp)                                                                                               

{                                                                                                                          

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;                                                                                                                

for (i = start; i < end; i++) {        

psum[myid] += i;                   

}

return NULL;                                                                                                           

} psum-array.c
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psum-array Performance
 Orders of magnitude faster than psum-mutex
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Next Attempt: psum-local

 Reduce memory references by having peer thread i sum 
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum_local(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i, sum = 0;

for (i = start; i < end; i++) {        

sum += i;                          

}

psum[myid] = sum;

return NULL;

} psum-local.c
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psum-local Performance

 Significantly faster than psum-array
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Characterizing Parallel Program Performance

 p processor cores, Tk is the running time using k cores

 Def. Speedup:  Sp = T1 / Tp

 Sp is  relative speedup if T1 is running time of parallel version of the code running on 1 core.

 Sp is absolute speedup if T1 is running time of sequential version of code running on 1 core. 

 Absolute speedup is a much truer measure of the benefits of parallelism. 

 Def.  Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100].

 Measures the overhead due to parallelization
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Performance of psum-local
Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time 

(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

 Efficiencies OK, not great

 Our example is easily parallelizable

 Real codes are often much harder to parallelize
 e.g., parallel quicksort later in this lecture
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Amdahl’s Law

 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.

 Overall problem
 T Total sequential time required

 p Fraction of total that can be sped up (0  p   1)

 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster

 Portion which cannot be sped up stays the same

 Least possible running time:

 k = 

 T = (1-p)T

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 82



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X

 Rearrange X into

 L: Values  p

 R: Values  p

 Recursively sort L to get L

 Recursively sort R to get R

 Return L : p : R
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Sequential Quicksort Visualized
X

p

L p R

p2L2 R2
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Sequential Quicksort Visualized
X

p R
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L3 R3p3
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pL R

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 85



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}
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Parallel Quicksort
 Parallel quicksort of set of values X

 If N  Nthresh, do sequential quicksort

 Else

 Choose “pivot” p from X

 Rearrange X into

– L: Values  p

– R: Values  p

 Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

 Return L : p : R

12/05/2016  (©J.P. Shen & Zhiyi Yu) 18-600   Lecture #26 87



Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Visualized
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Thread Structure: Sorting Tasks

 Task: Sort subrange of data
 Specify as:

 base: Starting address

 nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads
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Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads
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Large Sort Task Operation
X

  

pL R

X

  

pL R

Partition Subrange

Spawn 2 tasks
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Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}
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Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}
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Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism

 F too large: Thread overhead + run out of thread memory
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Lessons Learned

 Must have parallelization strategy
 Partition into K independent parts

 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult

 Set up experimental framework and test multiple strategies
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