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Parallel Architectures: MCP & MCC
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A. Parallel Programs for Parallel Architectures

=  Why is Parallel Programming so hard?
* Conscious mind is inherently sequential
 (sub-conscious mind is extremely parallel)

= |dentifying parallelism in the problem

=  Expressing parallelism to the parallel hardware

= Effectively utilizing parallel hardware (MCP or MCC)
e MCP: OpenMP (Shared Memory)
e MCC: Open MPI (Message Passing)

= Debugging parallel algorithms
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Finding Parallelism

1. Functional parallelism
 (Car:{engine, brakes, entertain, nav, ...}
 Game: {physics, logic, Ul, render, ...}

* Signal processing: {transform, filter, scaling, ...

2. Request parallelism
e Web service, shared database, ATM, ...

3. Data parallelism
 \Vector, matrix, DB table, pixels, ...

4. Multi-threaded Parallelism
 Decompose/parallelize sequential programs

}
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1. Functional Parallelism

Functional parallelism

 Car:{engine, brakes, entertain, nay, ...}
 Game: {physics, logic, Ul, render, ...}
 Signal processing: {transform, filter, scaling, ...}

= Relatively easy to identify and utilize

= Provides small-scale parallelism
e 3x-10x

= Balancing stages/functions is difficult
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2. Request Parallelism

Web Browsing Users

Web Server(s) Database Server(s)

= Multiple users => significant parallelism

= Challenges
* Synchronization, communication, balancing work
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3. Data Parallelism

Data parallelism
 \Vector, matrix, DB table, pixels, ...

= Large data => significant parallelism

=  Many ways to express parallelism
 Vector/SIMD ISA extensions
* Threads, processes, shared memory
* Message-passing

= Challenges:
 Balancing & coordinating work
e Communication vs. computation at scale
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4. Multi-threaded Parallelism

Automatic extraction of parallel threads
 Decompose/Parallelize sequential programs

=  Works well for certain application types
 Regular control flow and memory accesses

= Difficult to guarantee correctness in all cases
e Ambiguous memory dependences
* Requires speculation, support for recovery

= Degree of parallelism

 Large (1000x) for easy cases
 Small (3x-10x) for difficult cases
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Expressing Parallelism

= SIMD - Cray-1 case study
* MMX, SSE/SSE2/SSE3/SSE4, AVX at small scale
= SPMD — GPGPU model
* All processors execute same program on disjoint data
* Loose synchronization vs. rigid lockstep of SIMD
= MIMD — most general (this lecture)
* Each processor executes its own program/thread

= Expressed through standard interfaces
* API, ABI, ISA
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B. Parallel Programming Models

= High level paradigms for expressing an algorithm
* Examples:
* Functional programs
* Sequential, procedural programs
e Shared-Memory parallel programs
* Message-Passing parallel programs

= Embodied in high level languages that support concurrent execution

* Incorporated into HLL constructs
* Incorporated as libraries added to existing sequential language

= Top level features:
* For conventional models — shared memory, message passing
 Multiple threads are conceptually visible to programmer
 Communication/synchronization are visible to programmer
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% MP (Multiprocessing or MIMD) Intertaces

= [evels of abstraction Programming Model
enable complex
system designs (such

User Applications

MP API

as MP computers) Language/Libraries

= Fairly natural " Runtime

_ MP ABI |

extensions of Operating |

. |

uniprocessor model System |
MP ISA

e Historical evolution Hardware
Implementation
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Application Programming Interface (API)

" |Interface where HLL programmer works

= High level language plus libraries
* Individual libraries are sometimes referred to as an “API”

= User level runtime software is often part of APl implementation
e Executes procedures
* Manages user-level state

= Examples:

e Cand pthreads
e FORTRAN and MPI
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Application Binary Intertace (ABI)

'PrograminAPIis Programming M odel
compiled to ABI

User Applications

® Consists of:
MP API

e OS call interface Language/Libraries
* User level instructions " Runtime
(part of ISA) MP ABI _ |
Operating |
System |

MP ISA

Hardware
Implementation

12/05/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #26 Carnegie Mellon University 14




Instruction Set Architecture (ISA)

" Interface between hardware and software
 What the hardware implements

= Architected state

* Registers
* Memory architecture

= All instructions
* May include parallel (SIMD) operations
* Both non-privileged and privileged

= Exceptions (traps, interrupts)
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% Major (MP or MIMD) Abstractions

= For both Shared Memory & Message Passing (programming models)

= Processes and Threads (parallelism expressed)
* Process: A shared address space and one or more threads of control flows
 Thread: A program sequencer and private address space (private stack)
e Task: Less formal term — part of an overall job
* Created, terminated, scheduled, etc.
= Communication
* Passing of data
= Synchronization

 Communicating control information
* To ensure reliable, deterministic communication
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C. Shared Memory Model

= Flat shared memory or

object heap
* Synchronization via
memory variables enables
reliable sharing

= Single process
= Multiple threads per

process
* Private memory per thread

= Typically built on shared
memory hardware system

Shared Variables

VAR |

Thread 1
Private
Variables
write read X
Thread 1 Thread 2 Thread N
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Threads and Processes

" Creation
e generic -- Fork
e (Unix forks a process, not a thread)

e pthread create(....*thread function....)
e creates new thread in current address space

" Termination

e pthread_exit
e or terminates when thread_function terminates

* pthread_kill

e one thread can kill another
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Example

= Unix process with
two threads

(PC and stack pointer
actually part of ABI/ISA
implementation)

User Address Space

varl
var2

thread 2 stack var3

varl
var2

thread 1 stack var3

thread 2 PC

thread 2 stack pointer

main()

text (code) thread1()

thread?2

thread 1 PC

thread 1 stack pointer

data structureA
arrayB
arrayC

heap
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Shared Memory Communication

Thread O Thread 1 Thread O Thread 1
= Reads and writes to load r1, A load rl, A
. . addirl, rl,3 addirl,rl, 1
shared variables via store 1. A
loadrl, A loadrl, A
nOrmaI language addirl,rl, 1 addirl, rl, 3
(assighment) statements store 11, A store r1, A
storerl, A
(e.g. assembly @ ®)
|Oad/St0re) Thread 0 Thread 1 Thread O Thread 1
loadrl, A loadrl, A
addirl, rl, 3 addirl,rl, 1
storerl, A
loadrl, A loadrl, A
addirl, rl, 1 addirl, rl, 3
store r1, A store rl, A
store r1, A
(©) (d)
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Shared Memory Synchronization

= What really gives shared memory programming its structure

= Usually explicit in shared memory model
* Through language constructs or API

= Three major classes of synchronization
* Mutual exclusion (mutex)
* Point-to-point synchronization
* Rendezvous

= Employed by application design patterns

* A general description or template for the solution to a commonly recurring
software design problem.
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Mutual Exclusion (mutex)

= Assures that only one thread at a time can access a code or data
region
= Usually done via locks
* One thread acquires the lock
* All other threads excluded until lock is released
= Examples
e pthread _mutex_lock
e pthread _mutex_unlock
= Two main application programming patterns

* Code locking
* Data locking
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Code Locking

Thread 1 Thread 2 .. Thread N
= Protect shared data by
locking the code that
accesses it
. update (args)
" Also called a monitor mutex code_lock;

lock(cé&é_lock);
<read datal> < > Data Structure
patte rn <modify data>

<write data2>
unlock (code lock) ;

= Example of a critical section

return;

Thread 1 Thread 2 L. Thread N
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Data Locking

" Protect shared
data by locking
data structure

lock (struct lock);
<read datal>
<modify data>
<write datal> lock (struct lock) ;

unlock (struct_ lock) ;

unlock (struct_ lock) ;

Thread 1

<read data2>
<read datal>

Thread 2

Thread N

lock (struct lock);
<read datal2>
<modify data>
<write dataz2>
<write datal>

unlock (struct_ lock);

Thread N
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Data Locking

= Preferred when data structures are read/written in combinations

= Example:

<thread 0>

Lock (mutex structl)

Lock (mutex struct2)
<access structl>
<access struct2>

Unlock (mutex datal)

Unlock (mutex data2)

<thread 1>

Lock (mutex structl)

Lock (mutex struct3)
<access structl>
<access struct3>

Unlock (mutex datal)

Unlock (mutex data3)

<thread 2>

Lock (mutex struct2)

Lock (mutex struct3)
<access struct2>
<access struct3>

Unlock (mutex data2)

Unlock (mutex data3)
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Deadlock

= Data locking is prone to deadlock
* If locks are acquired in an unsafe order

= Example:

<thread 0> <thread 1>

Lock (mutex datal) Lock (mutex data2)

Lock (mutex data2) Lock (mutex datal)
<access datal> <access datal>
<access data2> <access data2>

Unlock (mutex datal) Unlock (mutex datal)

Unlock (mutex data2) Unlock (mutex data2)

= Complexity
* Disciplined locking order must be maintained, else deadlock
* Also, composability problems
* Locking structures in a nest of called procedures
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Efficiency

= Lock Contention
e Causes threads to wait
= Function of lock granularity
 Size of data structure or code that is being locked
= Extreme Case:
* “One big lock” model for multithreaded OSes
e Easy to implement, but very inefficient
= Finer granularity
+ Less contention
- More locks, more locking code
- Perhaps more deadlock opportunities
= Coarser granularity
* Opposite +/- of above
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Point-to-Point Synchronization

= One thread sighals another that a condition holds

e Can be done via API routines
e Can be done via normal load/stores

= Examples
e pthread cond_signal
* pthread cond wait
* suspends thread if condition not true

= Application program pattern
e Producer/Consumer
<Producer>
while (full == 1){};, wait

buffer = wvalue;
full = 1;

<Consumer>

while (full == 0){}, wait
b = buffer;

full = 0;
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Rendezvous

= Two or more cooperating threads must reach a program point before
proceeding
= Examples
e Wait for another thread at a join point before proceeding
e example: pthread _join
* Barrier synchronization
* many (or all) threads wait at a given point
= Application program pattern
* Bulk synchronous programming pattern
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Bulk Synchronous Program Pattern

Thread 1 Thread 2 Thread N

Compute

arrier

Communicate

Barrier

Communicate
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APl Implementation

" Implemented at ABI and
ISA level

* OS calls
* Runtime software
 Special instructions

=" Processes and Threads
* OS processes

 OS threads
e User threads

MP API

MP ABI

MP ISA

Programming M odel

User Applications

Language/Libraries

Runtime

Operating
System

Hardware
Implementation
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OS Processes

"= Processes
= Use OS fork to create processes
= Use OS calls to set up shared address space
= OS manages processes (and threads) via run queue
= Heavyweight thread switches
* OS call followed by:
e Switch address mappings
* Switch process-related tables
* Full register switch
= Advantage
* Processes have protected private memory
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OS (Kernel) Threads

= AP| pthread create() maps to Linux clone()
* Allows multiple threads sharing same memory address space

= OS manages threads via run queue

= Lighter weight thread switch
e Still requires OS call
e OS switches architected register state and stack pointer
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User Threads

" |f memory mapping User Address Space
doesn’t change, why . var2
involve OS at all?
= Runtime creates threads ... Var ::Pck
simply by allocating stack - :
Space text (code) thread1() fread 1PE
" Runtime switches threads thread 1 stack pointer
via user level instructions e
* thread switch via jumps e structures
heap e
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Implementing User Threads

= Multiple kernel

threads needed to get _\ “\ /-;
L — User Threads ™

control of multiple ’
hardwa re processors / _‘ L Runtime Scheduler )

" Create kernel threads / T e vead quee
(OS schedules) q =

" Create user threads

— > /

t h d t Fu nt i me ?rnel Threads 4 ™

schedules onto kernel )
G — = L

t h re a d S Kernel Thread Queue
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Lock Implementation

= Reliable locking can be done with atomic read-modify-write instruction

= Example: test&set
* read lock and write a one
e some ISAs also set CCs (test)

<thread 1>

LABl: Testé&Set R1l, Lock

Branch LABl1 if Rl==

<critical section>

Reset Lock

<thread 2>

LAB2: Test&Set Rl, Lock
Branch LAB2 if Rl==

<critical section>

Reset Lock
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Atomic Read-Modify-Write

= Many such instructions have been used in ISAs

Test&Set (reg, lock) Fetché&Add (reg,value, sum)
reg — mem(lock) ; reg — mem(sum) ;
mem(lock) ~ 1; mem (sum) — mem (sum) +value;

= More-or-less equivalent

* One can be used to implement the others
* Implement Fetch&Add with Test&Set:

try: Testé&Set(lock):;
if lock == 1 go to try;
reg — mem(sum) ;
mem (sum) — reg+value;
reset (lock);

Swap (reg,opnd)
temp — mem(opnd) ;
mem (opnd) — reg;
reg — temp
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Lock Efficiency

= Spin Locks
* tight loop until lock is acquired

LABl: Testé&Set R1l, Lock
Branch LABl1 if Rl==

= |nefficiencies:
* Memory/Interconnect resources, spinning on read/writes
e With a cache-based systems,
writes = lots of coherence traffic
* Processor resource
* not executing useful instructions
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Efficient Lock Implementations

" Test&Test&Set
* spin on check for unlock only, then try to lock
e with cache systems, all reads can be local
* no bus or external memory resources used

test it: load reg, mem(lock)
branch test it if reg==

lock it: testé&set reg, mem(lock)
branch test it if reg==

= Test&Set with Backoff
* Insert delay between test&set operations (not too long)
e Each failed attempt = longer delay
(Like Ethernet collision avoidance)
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Efficient Lock Implementations

= Solutions just given save memory/interconnect resource
e Still waste processor resource

= Use runtime to suspend waiting process
* Detect lock
* Place on wait queue
* Schedule another thread from run queue
* When lock is released move from wait queue to run queue
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Point-to-Point Synchronization

= Can use normal variables as flags

while (full ==1){} ;spin while (full == 0){} ,;spin
a = value; b = value;
full = 1; full = 0;

= Assumes sequential consistency
e Using normal variables may cause problems with relaxed consistency models

" May be better to use special opcodes for flag set/clear
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Barrier Synchronization

= Uses a lock, a counter, and a flag
* lock for updating counter
* flag indicates all threads have incremented counter

Barrier (bar name, n) {
Lock (bar name.lock) ;
if (bar name.counter = 0)
mycount = bar name.counter++;
Unlock (bar name.lock);
if (mycount n) {
bar name.counter =
bar name.flag = 1;

0;

}

else while(bar name.flag = 0) {};

bar name.flag =

0;

/* busy wait */
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D. Message Passing Model

= Multiple processes (or threads)

= |Logical data partitioning
* No shared variables

= Message Passing
* Threads of control communicate by sending and receiving messages
 May be implicit in language constructs
* More commonly explicit via API

Process 1 Process 2 Process N
Variables Variables Variables
send
— e n n n
Process 1 Process 2 Process N
- -
receive
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MPI — Message Passing Interface APl (Open MPI)

= A widely used standard

* For a variety of distributed memory systems
e SMP Clusters, workstation clusters, MPPs, heterogeneous systems

= Also works on Shared Memory MPs (OpenMP)
* Easy to emulate distributed memory on shared memory HW

= Can be used with a number of high level languages
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Processes and Threads

= | ots of flexibility (advantage of message passing)
1) Multiple threads sharing an address space
2) Multiple processes sharing an address space
3) Multiple processes with different address spaces
and different OSes

= 1) and 2) are easily implemented on shared memory hardware (with

single OS)
* Process and thread creation/management similar to
= 3) probably more common in practice

shared memory

* Process creation often external to execution environment; e.g. shell script
* Hard for user process on one system to create process on another OS
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Process Management

= Processes are given identifiers

(PIDs)
* “rank” in MPI

" Process can acquire own PID

= Operations can be conditional
on PID

" Message can be sent/received
via PIDs

= Organize into groups
* For collective management
and communication

MPI_COMM_WORLD

Form Group

nclude in
Communicator

OOOOOOO
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Communication and Synchronization

= Combined in the message passing paradigm
* Synchronization of messages part of communication semantics

= Point-to-point communication
* From one Process to another

= Collective communication
* Involves groups of processes
e e.g., broadcast
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Point to Point Communication

" Use sends/receives primitives

= Send(RecProc, SendBuf,...)

e RecProc is destination (wildcards may be used)
* SendBuf names buffer holding message to be sent

= Receive(SendProc, RecBuf,...)
* SendProc names sending process (wildcards may be used)
* RecBuf names buffer where message should be placed
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MPI Examples

= MPI_Send(buffer,count,type,dest,tag,comm)
buffer — address of data to be sent
count — number of data items
type — type of data items
dest — rank of the receiving process
tag — arbitrary programmer-defined identifier
tag of send and receive must match
comm — communicator number
= MPI_Recv(buffer,count,type,source,tag,comm,status)
buffer — address of data to be sent
count — number of data items
type — type of data items
source — rank of the sending process; may be a wildcard
tag — arbitrary programmer-defined identifier; may be a wildcard
tag of send and receive must match
comm — communicator number
status — indicates source, tag, and number of bytes transferred
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Message Synchronization

= After a send or receive is executed...
* Has message actually been sent? or received?

=" Asyvnchronous vs. Synchronous
* Higher level concept

= Blocking vs. non-Blocking

* Lower level — depends on buffer implementation
* but is reflected up into the API
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Synchronous vs. Asynchronous

= Synchronous Send
 Stall until message has actually been received
* Implies a message acknowledgement from receiver to sender

= Synchronous Receive
 Stall until message has actually been received

= Asynchronous Send and Receive
e Sender and receiver can proceed regardless
* Returns request handle that can be tested for message receipt
* Request handle can be tested to see if message has been sent/received
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Blocking vs. Non-Blocking

= Blocking send blocks if send buffer is not available for new message
= Blocking receive blocks if no message in its receive buffer
= Non-blocking versions don’t block...

= Operation depends on buffering in implementation
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Blocking vs. Non-Blocking

= Buffer implementations
a) Message goes directly
from sender to receiver

reduces copying time

b) Message is buffered

Sending Process

Send Buffer 1

by system in between
may free up send buffer

Sending Process

sooner (less blocking)

Send Buffer s -

___________________________

Receiving Process

|
= —P Receive Buffer

Communication
Channel

(a)

Receiving Process

System Buffer

4/» Receive Buffer

(b)
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Collective Communications

= |nvolve all processes within a communicator
= Blocking

= MPI_Barrier (comm)
e Barrier synchronization

= MPI_Bcast (*buffer,count,datatype,root,comm)
* Broadcasts from process of rank “root” to all other processes
= MPI_Scatter (*sendbuf,sendcnt,sendtype,*recvbuf,
...... recvcnt,recvtype,root,comm)
* Sends different messages to each process in a group
= MPI_Gather (*sendbuf,sendcnt,sendtype, *recvbuf,
...... recvcount,recvtype,root,comm)
e Gathers different messages from each process in a group

=" Also reductions
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Communicators and Groups

MP|_COMM_WORLD

= Define collections of
processes that may
communicate

e Often specified in
message argument

* MPI COMM WORLD —
predefined
communicator that Commuricato \
contains all processes

= " e
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Broadcast Example

Process 0
SendBuf
08
Process 0 Process 1 Process 2 Process 3
RcvBuf RcvBuf cvBuf \Rchuf
08 08 08 08
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Scatter Example

Process 0

SendBuf
23

37
42
55

[

Process 0 Process 1 Process 2 Process 3
RcvBuf RcvBuf cvBuf \Rchuf
23 37 42 55
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Gather Example

Process 0 Process 1
SendBuf SendBuf
23 37

\

Process 2

SendBuf
42

|

Process 3

Sendbuf
55

\

|

RcvBuf

Process 0

23

37

42

\

55
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Message Passing Implementation

= At the ABI and ISA level

* No special support (beyond that needed for shared memory)
* Most of the implementation is in the runtime

* user-level libraries
* Makes message passing relatively portable

= Three implementation models
1) Multiple threads sharing an address space
2) Multiple processes sharing an address space
3) Multiple processes with non-shared address space (and different OSes)
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Multiple Threads Sharing Address Space

= Runtime manages buffering and tracks communication
 Communication via normal loads and stores using shared memory

" Example: Send/Receive
* Send calls runtime, runtime posts availability of message in runtime-managed table
* Receive calls runtime, runtime checks table, finds message
* Runtime copies data from send buffer to store buffer via load/stores

= Fast/Efficient Implementation
 May even be advantageous over shared memory paradigm
e considering portability, software engineering aspects
* Can use runtime thread scheduling
* Problem with protecting private memories and runtime data area
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Multiple Processes Sharing Address Space

= Similar to multiple threads sharing address space
= Would rely on kernel scheduling

= May offer more memory protection
* With intermediate runtime buffering
e User processes can not access others’ private memory
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Multiple Processes with Non-Shared Address Space

= Most common implementation
= Communicate via networking hardware

= Send/receive to runtime
* Runtime converts to OS (network) calls

= Relatively high overhead
* Most HPC systems use special low-latency, high-bandwidth networks

e Buffering in receiver’s runtime space may save some overhead for receive
(doesn’t require OS call)
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At the ISA Level: Shared Memory Systems

= Multiple processors

=" Architected shared virtual
memory

" Architected
Synchronization
Instructions

= Architected Cache
Coherence

= Architected Memory
Consistency

Shared Real Memory

!

!

Interconnection Network

v

Cache
Memory

v

Cache
Memory

Coherent, Consistent
Memory System

Cache
Memory

v

Processor 1

v

PC

Registers

Processor 2

PC

Registers

v

Processor N

PC

Registers

12/05/2016 (©J.P. Shen & Zhiyi Yu)

18-600

Lecture #26

Carnegie Mellon University 63




At the ISA Level: Message Passing Systems

= Multiple processors

= Shared or non-shared real
memory (multi-computers)

= Limited ISA support (if any)

* An advantage of distributed
memory systems --Just connect
a bunch of small computers

* Some implementations may
use shared memory managed
by runtime

Interconnection Network

i

i

!

Private Private Private
Real Real Real
Memory Memory Memory
Cache Cache Cache
Memory Memory Memory
Processor 1 Processor 2 Processor N
PC PC PC
Registers Registers Registers
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E. Thread Level Parallelism Examples

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
" Hyperthreading
= Efficient execution of multiple threads on single core

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example 1: Parallel summation
"= Divide-and conquer parallelism
= Example 2: Parallel quicksort
m Consistency Models

" What happens when multiple threads are reading & writing shared state
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Exploiting parallel execution

m So far, we’ve used threads to deal with I/0 delays
= e.g., one thread per client to prevent one from delaying another

m Multi-core/Hyperthreaded CPUs offer another opportunity
= Spread work over threads executing in parallel
" Happens automatically, if many independent tasks

= e.g., running many applications or serving many clients

" Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks
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Typical Multicore Processor

________________________________________________________________________

L3 unified cache
(shared by all cores)

i Core 0 Core n-1
' | | Regs Regs
|| L L1 L1 L1 5
i d-cache | | i-cache o d-cache | | i-cache i
L2 unified cache L2 unified cache

Main memory

m Multiple processors operating with coherent view of memory
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Out-of-Order Processor Structure

Registers

Instruction Control

I

Op. Queue

PC

Instruction
Cache

1

Functional Units

m Instruction control dynamically converts program into stream of operations

m Operations mapped onto functional units to execute in parallel
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Hyperthreading Implementation

Instruction Control
Instruction
Reg A Op. Queue A l Cache
Reg B Op. Queue B
I PCA PC B

Functional Units

m Replicate enough instruction control to process K instruction streams

m K copies of all registers
m Share functional units
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Benchmark Machine

m Get data about machine from /proc/cpuinfo

m Shark Machines
" |ntel Xeon E5520 @ 2.27 GHz
" Nehalem, ca. 2010
= 8 Cores
" Each can do 2x hyperthreading
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Example 1: Parallel Summation

m Sum numbers9o, ..., n-1
= Should add up to ((n-1)*n)/2
m Partition values 1, ..., n-1 into t ranges

= /n/t /values in each range
" Each of t threads processes 1 range
= For simplicity, assume n is a multiple of t

m Let’s consider different ways that multiple threads might work on their
assigned ranges in parallel
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First attempt: psum-mutex

m Simplest approach: Threads sum into a global variable protected by a
semaphore mutex.

void *sum mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0; /* Global sum */
long nelems per thread; /* Number of elements to sum */
sem t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)
{

long 1, nelems, log nelems, nthreads, myid[MAXTHREADS];
pthread t tid[MAXTHREADS];

/* Get input arguments */
nthreads = atoi(argv([1l]);
log nelems = atoi(argv([2]);
nelems = (1L << log nelems);
nelems per thread = nelems / nthreads;
sem init (&mutex, 0, 1); psum-mutex.c
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psum-mutex (cont)

m Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Create peer threads and wait for them to finish */
for (i = 0; 1 < nthreads; i++) {
myid[i] = 1i;
Pthread create(&tid[1], NULL, sum mutex, &myid[1]);
}
for (1 = 0; 1 < nthreads; i++)
Pthread join(tid[i], NULL);

/* Check final answer */
if (gsum != (nelems * (nelems-1))/2)
printf ("Error: result=%1d\n", gsum);

ex1t (0) ;
) psum-mutex.c
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psum-mutex Thread Routine

m Simplest approach: Threads sum into a global variable

protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */
void *sum mutex (void *vargp)
{

long myid = *((long *)wvargp):

long end = start + nelems per thread;
long 1i;
for (1 = start; 1 < end; 1++) {

P (&mutex) ;
gsum += 1;
V (&mutex) ;

}
return NULL;

/* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */
/* End element index */

psum-mutex.c
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psum-mutex Performance

m Shark machine with 8 cores, n=23!

Threads (Cores) (1(1) (2(2) 4(4) ' 8(8) | 16(8)
psum-mutex (secs) | 51 456 | 790 536 | 681

m Nasty surprise:
= Single thread is very slow
= Gets slower as we use more cores
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Next Attempt: psum-array

m Peer thread i sums into global array element psum[i]
m Main waits for theads to finish, then sums elements of psum
m Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */
volid *sum array(void *vargp)

{

long myid = *((long *)vargp): /* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */
long end = start + nelems per thread; /* End element index */
long 1i;

for (1 = start; 1 < end; 1++) {

psum[myid] += 1;
}
return NULL;
} psum-array.c

Carnegie Mellon University 7




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance

m Orders of magnitude faster than psum-mutex

Parallel Summation

5.36

N

w

e=g=psum-array

Elapsed seconds

N

1(1) 2(2) 4(4) 8(8) 16(8)
Threads (cores)
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Next Attempt: psum-local

m Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */
volid *sum local (void *vargp)

{

long myid = *((long *)vargp): /* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */
long end = start + nelems per thread; /* End element index */
long i, sum = 0;

for (1 = start; 1 < end; 1i++) {

sum += 1i;
}
psum[myid] = sum;
return NULL;
) psum-local.c
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psum-local Performance

m Significantly faster than psum-array

Parallel Summation

5.36

IS

w

=Q=psum-array
==psum-local

Elapsed seconds

N

0.32 0.33
———
0
1(1) 2(2) 4(4) 8(8) 16(8)

Threads (cores)
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Characterizing Parallel Program Performance

m p processor cores, T, is the running time using k cores

m Def. Speedup: S,=T,/T,
" S, is relative speedup if T, is running time of parallel version of the code running on 1 core.
" S, is absolute speedup if T, is running time of sequential version of code running on 1 core.
= Absolute speedup is a much truer measure of the benefits of parallelism.

m Def. Efficiency: E,=S, /p=T,/(pT,)
= Reported as a percentage in the range (0, 100].
" Measures the overhead due to parallelization
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Performance of psum-local
____II-

Cores (p)

Running time  1.98 1.14 0.60 0.32 0.33
(7o)

Speedup (S,) 1 1.74 3.30 6.19 6.00
Efficiency (E,) 100% 87% 82% 7% 715%

m Efficiencies OK, not great
m Our example is easily parallelizable
m Real codes are often much harder to parallelize

= e.g., parallel quicksort later in this lecture
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Amdahl’s Law

" Gene Amdahl (Nov. 16, 1922 — Nov. 10, 2015)
m Captures the difficulty of using parallelism to speed things up.

m Overall problem
= T Total sequential time required
" p Fraction of total that can be spedup (0<p <1)
= k Speedup factor

m Resulting Performance
" T, =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
" |east possible running time:
» k=00

. Too = (1_p)T
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A More Substantial Example: Sort

m Sort set of N random numbers
m Multiple possible algorithms

= Use parallel version of quicksort

m Sequential quicksort of set of values X
" Choose “pivot” p from X
" Rearrange X into
= L:Values <p
= R:Values>p
= Recursively sort L to get L'
= Recursively sort R to get R’
" Returnl':p:R’
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Sequential Quicksort Visualized

X

L
p2
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Sequential Quicksort Visualized

X

Carnegie Mellon University 8s




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

}

volid gsort serial (data t *base,
1f (nele <= 1)

return;

1f (nele == 2) {

if (base[0] > basel[l])
swap (base, base+l);
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+1l)
gsort serial (base+m+l, nele-m-1);

size t nele)

{

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element
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Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange X into
— L: Values <p
— R: Values > p
= Recursively spawn separate threads
— Sort Lto get L'
— Sort Rto get R’
= ReturnL':p: R’
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Parallel Quicksort Visualized

I—
| ><
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Thread Structure: Sorting Tasks

Task Threads
m Task: Sort subrange of data
= Specify as:

= base: Starting address

= nele: Number of elements in subrange
m Run as separate thread
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Small Sort Task Operation

Task Threads

m Sort subrange using serial quicksort
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Large Sort Task Operation

Partition Subrange -7

Spawn 2 tasks / -
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Top-Level Function (Simplified)

volid tgsort (data t *base,
init task(nele);
global base = base;
global end =
task queue ptr tg =
tgsort helper (base, nele,
join tasks (tqg);
free task queue (tqg);

tqg) ;

size t nele)

global base + nele - 1;
new task queue();

{

Sets up data structures

Calls recursive sort routine

Keeps joining threads until none left
Frees data structures
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Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static voild tgsort helper (data t *base, size t nele,
task queue ptr tqg) {
1f (nele <= nele max sort serial) {
/* Use sequential sort */
gsort serial (base, nele);
return;

}

sort task t *t = new task(base, nele, tq);
spawn_task (tqg, sort thread, (void *) t);

m Small partition: Sort serially
m Large partition: Spawn new sort task
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Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static voild *sort thread(void *vargp) {

sort task t *t = (sort task t *) wvargp;
data t *base = t->base;
size t nele = t->nele;

task queue ptr tg = t->tg;
free (vargp) ;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m, tq);
if (nele-1 > m+1)
tgsort helper (base+m+l, nele-m-1, tq);
return NULL;

m Get task parameters
m Perform partitioning step

m Call recursive sort routine on each partition
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Parallel Quicksort Performance

22.00

L~ Parallel Quicksort

18.00 \\
16.00 \
14.00 \
12.00
\ = Flapsed seconds
10.00
\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\..__________—___.—-""'__

2.00

0.00
1 2 4 3 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Serial fraction: Fraction of input at which do serial sort
m Sort 227 (134,217,728) random values
m Best speedup = 6.84X
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Parallel Quicksort Performance

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Parallel Quicksort

= Flapsed seconds

Multicore limit

= Hyperthread limit

/

__..---'""'__—_

2

4

8

16

32

64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Good performance over wide range of fraction values
" F too small: Not enough parallelism

" Ftoo large: Thread overhead + run out of thread memory
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Lessons Learned

m Must have parallelization strategy
= Partition into K independent parts
" Divide-and-conquer
m Inner loops must be synchronization free

= Synchronization operations very expensive

m Beware of Amdahl’s Law

= Serial code can become bottleneck

m Youcandoit!

= Achieving modest levels of parallelism is not difficult
= Set up experimental framework and test multiple strategies
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