18-600 Foundations of Computer Systems

Lecture 25: "Concurrent Programming"

John P. Shen & Zhiyi Yu November 30, 2016

Required Reading Assignment:

• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron.

18-600 Foundations of Computer Systems

Lecture 25: "Concurrent Programming"

- A. Concurrency Approaches
 - Process Based
 - Event Based
 - Thread Based
- **B.** Thread Synchronization
 - Semaphores (P & V operations)
 - Producer-Consumer Problem
 - Readers-Writers Problem
 - Thread Safety, Races, Deadlocks

Concurrent Programming is Hard!

Classical problem classes of concurrent programs:

- *Races:* outcome depends on arbitrary scheduling decisions elsewhere in the system
 - Example: who gets the last seat on the airplane?
- **Deadlock:** improper resource allocation prevents forward progress
 - Example: traffic gridlock
- Livelock / Starvation / Fairness: external events and/or system scheduling decisions can prevent sub-task progress
 - Example: people always jump in front of you in line
- Many aspects of concurrent programming are beyond the scope of our course..
 - but, not all 🙂
 - We'll cover some of these aspects in the next two lectures.

Iterative Servers

Iterative servers process one request at a time

Where Does Second Client Block?

 Second client attempts to connect to iterative server

Client

Call to connect returns

- Even though connection not yet accepted
- Server side TCP manager queues request
- Feature known as "TCP listen backlog"

Call to rio_writen returns

 Server side TCP manager buffers input data

Call to rio_readlineb blocks

 Server hasn't written anything for it to read yet.

Fundamental Flaw of Iterative Servers

Solution: use concurrent servers instead

 Concurrent servers use multiple concurrent flows to serve multiple clients at the same time

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based

- Kernel automatically interleaves multiple logical flows
- Each flow has its own private address space

2. Event-based

- Programmer manually interleaves multiple logical flows
- All flows share the same address space
- Uses technique called I/O multiplexing.

3. Thread-based

- Kernel automatically interleaves multiple logical flows
- Each flow shares the same address space
- Hybrid of process-based and event-based.

Approach #1: Process-based Servers Spawn separate process for each client

client 1 client 2 server call accept call connect ret accept call connect call fgets fork child 1 User goes out call accept call read to lunch ret accept Child blocks call fgets waiting for data Client 1 blocks fork write child 2 from Client 1 waiting for user to type in data call read call read . . . write ret read close close

11/30/2016 (©J.P. Shen & Zhiyi Yu)

18-600 Lecture #25

Carnegie Mellon University 8

Process-Based Concurrent Echo Server

```
int main(int argc, char **argv)
```

```
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr storage clientaddr;
Signal(SIGCHLD, sigchld handler);
listenfd = Open listenfd(argv[1]);
while (1) {
  clientlen = sizeof(struct sockaddr_storage);
  connfd = Accept(listenfd, (SA *) & clientaddr, & clientlen);
  if (Fork() == 0) {
    Close(listenfd); /* Child closes its listening socket */
    echo(connfd); /* Child services client */
    Close(connfd); /* Child closes connection with client */
    exit(0); /* Child exits */
  Close(connfd); /* Parent closes connected socket (important!) */
```

echoserverp.c

Process-Based Concurrent Echo Server (cont)

```
void sigchld_handler(int sig)
{
    while (waitpid(-1, 0, WNOHANG) > 0)
    ;
    return;
}
```

Reap all zombie children

Concurrent Server: accept Illustrated

Server

Server

Child

listenfd(3)

1. Server blocks in accept, waiting for connection request on listening descriptor listenfd

2. Client makes connection request by calling connect

Server connfd(4)

11/30/2016 (©J.P. Shen & Zhiyi Yu)

Client

clientfd

Carnegie Mellon University 11

Process-based Server Execution Model

- Each client handled by independent child process
- No shared state between them
- Both parent & child have copies of listenfd and connfd
 - Parent must close connfd
 - Child should close listenfd

Issues with Process-based Servers

Listening server process must reap zombie children

to avoid fatal memory leak

Parent process must close its copy of connfd

- Kernel keeps reference count for each socket/open file
- After fork, refcnt (connfd) = 2
- Connection will not be closed until refcnt (connfd) = 0

Pros and Cons of Process-based Servers

- + Handle multiple connections concurrently
- + Clean sharing model
 - descriptors (no)
 - file tables (yes)
 - global variables (no)
- + Simple and straightforward
- Additional overhead for process control
- Nontrivial to share data between processes
 - Requires IPC (interprocess communication) mechanisms
 - FIFO's (named pipes), System V shared memory and semaphores

Approach #2: Event-based Servers

Server maintains set of active connections

Array of connfd's

Repeat:

- Determine which descriptors (connfd's or listenfd) have pending inputs
 - e.g., using select or epoll functions
 - arrival of pending input is an *event*
- If listenfd has input, then accept connection
 - and add new connfd to array
- Service all connfd's with pending inputs

Details for select-based server in book

11/30/2016 (©J.P. Shen & Zhiyi Yu)

18-600 Lecture #25

Carnegie Mellon University ¹⁶

Pros and Cons of Event-based Servers

- + One logical control flow and address space.
- + Can single-step with a debugger.
- + No process or thread control overhead.
 - Design of choice for high-performance Web servers and search engines. e.g., Node.js, nginx, Tornado
- Significantly more complex to code than process- or thread-based designs.
- Hard to provide fine-grained concurrency
 - E.g., how to deal with partial HTTP request headers
- Cannot take advantage of multi-core
 - Single thread of control

Approach #3: Thread-based Servers

Very similar to approach #1 (process-based)

...but using threads instead of processes

Traditional View of a Process

Process = process context + code, data, and stack

Alternate View of a Process

Process = thread + code, data, and kernel context

A Process With Multiple Threads

Multiple threads can be associated with a process

- Each thread has its own logical control flow
- Each thread shares the same code, data, and kernel context
- Each thread has its own stack for local variables
 - but not protected from other threads
- Each thread has its own thread id (TID)

Logical View of Threads

Threads associated with process form a pool of peers

Unlike processes which form a tree hierarchy

Concurrent Threads

Two threads are concurrent if their flows overlap in time

Time

Otherwise, they are sequential

Examples:

- Concurrent: A & B, A&C
- Sequential: B & C

Concurrent Thread Execution

Single Core Processor

 Simulate parallelism by time slicing

Multi-Core Processor

Can have true parallelism

Threads vs. Processes

How threads and processes are similar

- Each has its own logical control flow
- Each can run concurrently with others (possibly on different cores)
- Each is context switched

How threads and processes are different

- Threads share all code and data (except local stacks)
 - Processes (typically) do not
- Threads are somewhat less expensive than processes
 - Process control (creating and reaping) twice as expensive as thread control
 - Linux numbers:
 - ~20K cycles to create and reap a process
 - ~10K cycles (or less) to create and reap a thread

Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 functions that manipulate threads from C programs

- Creating and reaping threads
 - pthread_create()
 - pthread_join()
- Determining your thread ID
 - pthread_self()
- Terminating threads
 - pthread_cancel()
 - pthread_exit()
 - exit() [terminates all threads], RET [terminates current thread]
- Synchronizing access to shared variables
 - pthread_mutex_init
 - pthread_mutex_[un]lock

The Pthreads "hello, world" Program

Thread-Based Concurrent Echo Server

```
int main(int argc, char **argv)
  int listenfd, *connfdp;
  socklen_t clientlen;
  struct sockaddr_storage clientaddr;
  pthread t tid;
  listenfd = Open_listenfd(argv[1]);
  while (1) {
          clientlen=sizeof(struct sockaddr_storage);
          connfdp = Malloc(sizeof(int));
          *connfdp = Accept(listenfd,
          (SA *) & clientaddr, & clientlen);
          Pthread_create(&tid, NULL, thread, connfdp);
```

echoservert.c

malloc of connected descriptor necessary to avoid deadly race (later)

Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{
 int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
} echoservert.c

- Run thread in "detached" mode.
 - Runs independently of other threads
 - Reaped automatically (by kernel) when it terminates
- Free storage allocated to hold connfd.
- Close connfd (important!)

Thread-based Server Execution Model

- Each client handled by individual peer thread
- Threads share all process state except TID
- Each thread has a separate stack for local variables

Issues With Thread-Based Servers

- Must run "detached" to avoid memory leak
 - At any point in time, a thread is either *joinable* or *detached*
 - Joinable thread can be reaped and killed by other threads
 - must be reaped (with pthread_join) to free memory resources
 - Detached thread cannot be reaped or killed by other threads
 - resources are automatically reaped on termination
 - Default state is joinable
 - use pthread_detach (pthread_self()) to make detached
- Must be careful to avoid unintended sharing
 - For example, passing pointer to main thread's stack
 - Pthread_create(&tid, NULL, thread, (void *)&connfd);
- All functions called by a thread must be thread-safe

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

- e.g., logging information, file cache
- + Threads are more efficient than processes
- Unintentional sharing can introduce subtle and hard-toreproduce errors!
 - The ease with which data can be shared is both the greatest strength and the greatest weakness of threads
 - Hard to know which data shared & which private
 - Hard to detect by testing
 - Probability of bad race outcome very low
 - But nonzero!

Summary: Approaches to Concurrency

Process-based

- Hard to share resources: Easy to avoid unintended sharing
- High overhead in adding/removing clients

Event-based

- Tedious and low level
- Total control over scheduling
- Very low overhead
- Cannot create as fine grained a level of concurrency
- Does not make use of multi-core

Thread-based

- Easy to share resources: Perhaps too easy
- Medium overhead
- Not much control over scheduling policies
- Difficult to debug
 - Event orderings not repeatable

Shared Variables in Threaded C Programs

Question: Which variables in a threaded C program are shared?

- The answer is not as simple as "global variables are shared" and "stack variables are private"
- Def: A variable x is shared if and only if multiple threads reference some instance of x.

Requires answers to the following questions:

- What is the memory model for threads?
- How are instances of variables mapped to memory?
- How many threads might reference each of these instances?

Threads Memory Model

Conceptual model:

- Multiple threads run within the context of a single process
- Each thread has its own separate thread context
 - Thread ID, stack, stack pointer, PC, condition codes, and GP registers
- All threads share the remaining process context
 - Code, data, heap, and shared library segments of the process virtual address space
 - Open files and installed handlers

Operationally, this model is not strictly enforced:

- Register values are truly separate and protected, but...
- Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model is a source of confusion and errors

Example Program to Illustrate Sharing

```
char **ptr; /* global var */
int main()
  long i;
  pthread_t tid;
  char *msgs[2] = {
    "Hello from foo",
    "Hello from bar"
  };
  ptr = msgs;
  for (i = 0; i < 2; i++)
    Pthread_create(&tid,
      NULL,
      thread,
      (void *)i);
  Pthread_exit(NULL);
```

```
void *thread(void *vargp)
```

```
long myid = (long)vargp;
static int cnt = 0;
```

```
printf("[%ld]: %s (cnt=%d)\n",
    myid, ptr[myid], ++cnt);
return NULL;
```

Peer threads reference main thread's stack indirectly through global ptr variable

sharing.c

Mapping Variable Instances to Memory

Global variables

- Def: Variable declared outside of a function
- Virtual memory contains exactly one instance of any global variable

Local variables

- Def: Variable declared inside function without static attribute
- Each thread stack contains one instance of each local variable

Local static variables

- Def: Variable declared inside function with the static attribute
- Virtual memory contains exactly one instance of any local static variable.

Shared Variable Analysis

Which variables are shared?

Variable	Refere	nced by Referer	nced by Referenced by
instance	main thread?	peer thread 0?	peer thread 1?
ptr	yes	yes	yes
cnt	no	yes	yes
i.m	yes	no	no
msgs.m	yes	yes	yes
myid.p	0 no	yes	no
myid.p	1 no	no	yes

Answer: A variable x is shared iff multiple threads reference at least one instance of x. Thus:

- ptr, cnt, and msgs are shared
- i and myid are not shared

Synchronizing Threads

Shared variables are handy...

...but introduce the possibility of nasty synchronization errors.

badcnt.c: Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
```

```
int main(int argc, char **argv)
```

```
long niters;
pthread_t tid1, tid2;
```

```
niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,
    thread, &niters);
Pthread_create(&tid2, NULL,
    thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);
```

```
/* Check result */
if (cnt != (2 * niters))
    printf("BOOM! cnt=%ld\n", cnt);
else
    printf("OK cnt=%ld\n", cnt);
exit(0);
```

/* Thread routine */
void *thread(void *vargp)

```
long i, niters =
 *((long *)vargp);
```

for (i = 0; i < niters; i++)
 cnt++;</pre>

```
return NULL;
```

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

badcnt.c

11/30/2016 (©J.P. Shen & Zhiyi Yu)

18-600 Lecture #25

Carnegie Mellon University ⁴²

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i = 0; i < niters; i++)
 cnt++;</pre>

Asm code for thread i

11/30/2016 (©J.P. Shen & Zhiyi Yu)

Concurrent Execution

Key idea: In general, any sequentially consistent interleaving is possible, but some give an unexpected result!

- I_i denotes that thread i executes instruction I
- %rdx_i is the content of %rdx in thread i's context

Concurrent Execution (cont)

Incorrect ordering: two threads increment the counter, but the result is 1 instead of 2

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	H ₁	-	_	0
1	L ₁	0	_	0
1	U ₁	1	_	0
2	H_2	-	_	0
2	L ₂	-	0	0
1	S ₁	1	_	1
1	T ₁	1	-	1
2	U_2	-	1	1
2	S ₂	_	1	1
2	T ₂	-	1	1

Concurrent Execution (cont)

How about this ordering?

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	H ₁			0
1	L ₁	0		
2	H_2			
2	L_2		0	
2	U_2		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1
1	T ₁			1
2	T ₂			

We can analyze the behavior using a progress graph

Progress Graphs

A *progress graph* depicts the discrete *execution state space* of concurrent threads.

Each axis corresponds to the sequential order of instructions in a thread.

Each point corresponds to a possible *execution state* (Inst₁, Inst₂).

E.g., (L_1, S_2) denotes state where thread 1 has completed L_1 and thread 2 has completed S_2 .

Trajectories in Progress Graphs

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Critical Sections and Unsafe Regions

L, U, and S form a *critical section* with respect to the shared variable cnt

Instructions in critical sections (wrt some shared variable) should not be interleaved

Sets of states where such interleaving occurs form *unsafe regions*

Critical Sections and Unsafe Regions

Def: A trajectory is *safe* iff it does not enter any unsafe region

Claim: A trajectory is correct (wrt cnt) iff it is safe

Enforcing Mutual Exclusion

- Question: How can we guarantee a safe trajectory?
- Answer: We must synchronize the execution of the threads so that they can never have an unsafe trajectory.
 - i.e., need to guarantee *mutually exclusive access* for each critical section.

Classic solution:

Semaphores (Edsger Dijkstra)

Other approaches (out of our scope)

- Mutex and condition variables (Pthreads)
- Monitors (Java)

Semaphores

- Semaphore: non-negative global integer synchronization variable.
 Manipulated by P and V operations.
- P(s)
 - If *s* is nonzero, then decrement *s* by 1 and return immediately.
 - Test and decrement operations occur atomically (indivisibly)
 - If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by a V operation.
 - After restarting, the P operation decrements *s* and returns control to the caller.
- V(s):
 - Increment *s* by 1.
 - Increment operation occurs atomically
 - If there are any threads blocked in a P operation waiting for s to become non-zero, then restart exactly one of those threads, which then completes its P operation by decrementing s.

Semaphore invariant: (s >= 0)

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

```
int sem init(sem t *s, 0, unsigned int val); /* s = val */
```

```
int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem t *s); /* V(s) */
```

CS:APP wrapper functions:

```
#include "csapp.h"
void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */
```

11/30/2016 (©J.P. Shen & Zhiyi Yu)

badcnt.c: Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
```

```
int main(int argc, char **argv)
```

```
long niters;
pthread_t tid1, tid2;
```

```
niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,
    thread, &niters);
Pthread_create(&tid2, NULL,
    thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);
```

```
/* Check result */
if (cnt != (2 * niters))
    printf("BOOM! cnt=%ld\n", cnt);
else
    printf("OK cnt=%ld\n", cnt);
exit(0);
```

/* Thread routine */
void *thread(void *vargp)

```
long i, niters =
 *((long *)vargp);
```

```
for (i = 0; i < niters; i++)
    cnt++;</pre>
```

```
return NULL;
```

How can we fix this using semaphores?

11/30/2016 (©J.P. Shen & Zhiyi Yu)

badcnt.c

Using Semaphores for Mutual Exclusion

Basic idea:

- Associate a unique semaphore *mutex*, initially 1, with each shared variable (or related set of shared variables).
- Surround corresponding critical sections with *P(mutex)* and *V(mutex)* operations.

Terminology:

- Binary semaphore: semaphore whose value is always 0 or 1
- Mutex: binary semaphore used for mutual exclusion
 - P operation: "locking" the mutex
 - V operation: "unlocking" or "releasing" the mutex
 - "Holding" a mutex: locked and not yet unlocked.
- *Counting semaphore*: used as a counter for set of available resources.

goodcnt.c: Proper Synchronization

Define and initialize a mutex for the shared variable cnt:

sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 */

Surround critical section with *P* and *V*:

$\mathbf{for}(\mathbf{i} = 0, \mathbf{i} < \mathbf{n}; \mathbf{torse}, \mathbf{i} < \mathbf{i})$	
for (i = 0; i < niters; i++) {	
P(&mutex);	
cnt++;	
V(&mutex);	
}	goodcnt.c

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It's orders of magnitude slower than badcnt.c.

Why Mutexes Work

Provide mutually exclusive access to shared variable by surrounding critical section with *P* and *V* operations on semaphore s (initially set to 1)

Semaphore invariant creates a *forbidden region* that encloses unsafe region and that cannot be entered by any trajectory.

Summary

- Programmers need a clear model of how variables are shared by threads.
- Variables shared by multiple threads must be protected to ensure mutually exclusive access.
- Semaphores are a fundamental mechanism for enforcing mutual exclusion.

Using Semaphores to Coordinate Access to Shared Resources

- Basic idea: Thread uses a semaphore operation to notify another thread that some condition has become true
 - Use counting semaphores to keep track of resource state and to notify other threads
 - Use mutex to protect access to resource

Two classic examples:

- The Producer-Consumer Problem
- The Readers-Writers Problem

Producer-Consumer Problem

Common synchronization pattern:

- Producer waits for empty *slot*, inserts item in buffer, and notifies consumer
- Consumer waits for *item*, removes it from buffer, and notifies producer

Examples

- Multimedia processing:
 - Producer creates MPEG video frames, consumer renders them
- Event-driven graphical user interfaces
 - Producer detects mouse clicks, mouse movements, and keyboard hits and inserts corresponding events in buffer
 - Consumer retrieves events from buffer and paints the display

Producer-Consumer on an *n*-element Buffer

Requires a mutex and two counting semaphores:

- mutex: enforces mutually exclusive access to the buffer
- slots: counts the available slots in the buffer
- items: counts the available items in the buffer

Implemented using a shared buffer package called sbuf.

sbuf Package - Declarations

#include "csapp.h"

```
typedef struct {
```

```
int *buf; /* Buffer array */
int n; /* Maximum number of slots */
int front; /* buf[(front+1)%n] is first item */
int rear; /* buf[rear%n] is last item */
sem_t mutex; /* Protects accesses to buf */
sem_t slots; /* Counts available slots */
sem_t items; /* Counts available items */
} sbuf_t;
```

void sbuf_init(sbuf_t *sp, int n); void sbuf_deinit(sbuf_t *sp); void sbuf_insert(sbuf_t *sp, int item); int sbuf_remove(sbuf_t *sp);

sbuf.h

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

```
/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf init(sbuf t *sp, int n)
  sp->buf = Calloc(n, sizeof(int));
  sp->n = n; /* Buffer holds max of n items */
  sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
  Sem init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
  Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
  Sem_init(&sp->items, 0, 0); /* Initially, buf has 0 items */
/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
  Free(sp->buf);
```

sbuf.c

sbuf Package - Implementation

Inserting an item into a shared buffer:

sbuf Package - Implementation

Removing an item from a shared buffer:

sbuf.c

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:

- Reader threads only read the object
- Writer threads modify the object
- Writers must have exclusive access to the object
- Unlimited number of readers can access the object

Occurs frequently in real systems, e.g.,

- Online airline reservation system
- Multithreaded caching Web proxy

Variants of Readers-Writers

First readers-writers problem (favors readers)

- No reader should be kept waiting unless a writer has already been granted permission to use the object
- A reader that arrives after a waiting writer gets priority over the writer

Second readers-writers problem (favors writers)

- Once a writer is ready to write, it performs its write as soon as possible
- A reader that arrives after a writer must wait, even if the writer is also waiting

Starvation (where a thread waits indefinitely) is possible in both cases

Solution to First Readers-Writers Problem

Readers:

```
int readcnt; /* Initially = 0 */
sem t mutex, w; /* Initially = 1 */
void reader(void)
ł
  while (1) {
          P(&mutex);
          readcnt++;
          if (readcnt == 1) /* First in */
             P(&w);
          V(&mutex);
          /* Critical section */
          /* Reading happens */
          P(&mutex);
          readcnt--;
          if (readcnt == 0) /* Last out */
             V(&w);
          V(&mutex);
```

Writers:

Prethreaded Concurrent Server

```
sbuf_t sbuf; /* Shared buffer of connected descriptors */
int main(int argc, char **argv)
  int i, listenfd, connfd;
  socklen_t clientlen;
  struct sockaddr_storage clientaddr;
  pthread ttid;
  listenfd = Open listenfd(argv[1]);
  sbuf_init(&sbuf, SBUFSIZE);
  for (i = 0; i < NTHREADS; i++) /* Create worker threads */</pre>
          Pthread_create(&tid, NULL, thread, NULL);
  while (1)
          clientlen = sizeof(struct sockaddr storage);
          connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
          sbuf insert(&sbuf, connfd); /* Insert connfd in buffer */
                                                                                echoservert pre.c
```

Prethreaded Concurrent Server

Worker thread routine:

Prethreaded Concurrent Server

```
echo cnt initialization routine:
```

```
static int byte_cnt; /* Byte counter */
static sem_t mutex; /* and the mutex that protects it */
static void init_echo_cnt(void)
{
    Sem_init(&mutex, 0, 1);
    byte_cnt = 0;
}
```

echo_cnt.c

Prethreaded Concurrent Server

Worker thread service routine:

```
void echo_cnt(int connfd)
 int n;
 char buf[MAXLINE];
 rio trio;
 static pthread_once_t once = PTHREAD_ONCE_INIT;
 Pthread_once(&once, init_echo_cnt);
  Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
         P(&mutex);
         byte cnt += n;
         printf("thread %d received %d (%d total) bytes on fd %d\n",
             (int) pthread_self(), n, byte_cnt, connfd);
         V(&mutex);
         Rio_writen(connfd, buf, n);
                                                                                     echo_cnt.c
```

Crucial concept: Thread Safety

Functions called from a thread must be *thread-safe*

Def: A function is thread-safe iff it will always produce correct results when called repeatedly from multiple concurrent threads

Classes of thread-unsafe functions:

- Class 1: Functions that do not protect shared variables
- Class 2: Functions that keep state across multiple invocations
- Class 3: Functions that return a pointer to a static variable
- Class 4: Functions that call thread-unsafe functions ③

Thread-Unsafe Functions (Class 1)

Failing to protect shared variables

- Fix: Use *P* and *V* semaphore operations
- Example: goodcnt.c
- Issue: Synchronization operations will slow down code

Thread-Unsafe Functions (Class 2)

Relying on persistent state across multiple function invocations

Example: Random number generator that relies on static state

```
static unsigned int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{
    next = next*1103515245 + 12345;
    return (unsigned int)(next/65536) % 32768;
}
/* srand: set seed for rand() */
void srand(unsigned int seed)
{
    next = seed;
}
```

Thread-Safe Random Number Generator

Pass state as part of argument

and, thereby, eliminate global state

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)

*nextp = *nextp * 1103515245 + 12345; return (unsigned int)(*nextp/65536) % 32768;

Consequence: programmer using rand_r must maintain seed

Thread-Unsafe Functions (Class 3)

- Returning a pointer to a static variable
- Fix 1. Rewrite function so caller passes address of variable to store result
 - Requires changes in caller and callee
- Fix 2. Lock-and-copy
 - Requires simple changes in caller (and none in callee)
 - However, caller must free memory.

```
char *sharedp;
```

```
P(&mutex);
sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);
return privatep;
```

Thread-Unsafe Functions (Class 4)

Calling thread-unsafe functions

- Calling one thread-unsafe function makes the entire function that calls it thread-unsafe
- Fix: Modify the function so it calls only thread-safe functions ③

Reentrant Functions

- Def: A function is *reentrant* iff it accesses no shared variables when called by multiple threads.
 - Important subset of thread-safe functions
 - Require no synchronization operations
 - Only way to make a Class 2 function thread-safe is to make it reetnrant (e.g., rand_r)

All functions

Thread-Safe Library Functions

- All functions in the Standard C Library (at the back of your K&R text) are thread-safe
 - Examples: malloc, free, printf, scanf
- Most Unix system calls are thread-safe, with a few exceptions:

Thread-unsafe function	Class	Reentrant version
asctime	3	asctime_r
ctime	3	ctime_r
gethostbyaddr		3 gethostbyaddr_r
gethostbyname		3 gethostbyname_r
inet_ntoa	3	(none)
localtime	3	localtime_r
rand	2	rand_r

One worry: Races

A race occurs when correctness of the program depends on one thread reaching point x before another thread reaches point y

11/30/2016 (©J.P. Shen & Zhiyi Yu)

Race Illustration

for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);</pre>

Race between increment of i in main thread and deref of vargp in peer thread:

- If deref happens while i = 0, then OK
- Otherwise, peer thread gets wrong id value

Could this race really occur?

race.c

Race Test

- If no race, then each thread would get different value of i
- Set of saved values would consist of one copy each of 0 through 99

Experimental Results

11/30/2016 (©J.P. Shen & Zhiyi Yu)

18-600 Lecture #25

```
/* Threaded program without the race */
Race
                             int main()
                                                                        Avoid unintended sharing of
 Elimination
                               pthread_t tid[N];
                                                                            state
                               int i, *ptr;
                               for (i = 0; i < N; i++) {
                                 ptr = Malloc(sizeof(int));
                                 *ptr = i;
                                 Pthread_create(&tid[i], NULL, thread, ptr);
                               for (i = 0; i < N; i++)
                                 Pthread_join(tid[i], NULL);
                               exit(0);
                             /* Thread routine */
                             void *thread(void *vargp)
                               int myid = *((int *)vargp);
                               Free(vargp);
                               printf("Hello from thread %d\n", myid);
                               return NULL;
                                                                                           norace.c
```

11/30/2016 (©J.P. Shen & Zhiyi Yu)

Carnegie Mellon University⁸⁶

Another worry: Deadlock

Def: A process is *deadlocked* iff it is waiting for a condition that will never be true

Typical Scenario

- Processes 1 and 2 needs two resources (A and B) to proceed
- Process 1 acquires A, waits for B
- Process 2 acquires B, waits for A
- Both will wait forever!

Deadlocking With Semaphores

int main()

```
pthread t tid[2];
  Sem init(&mutex[0], 0, 1); /* mutex[0] = 1 */
  Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
  Pthread_create(&tid[0], NULL, count, (void*) 0);
  Pthread create(&tid[1], NULL, count, (void*) 1);
  Pthread_join(tid[0], NULL);
  Pthread_join(tid[1], NULL);
  printf("cnt=%d\n", cnt);
  exit(0);
void *count(void *vargp)
  int i;
  int id = (int) vargp;
  for (i = 0; i < NITERS; i++) {
         P(&mutex[id]); P(&mutex[1-id]);
         cnt++;
         V(&mutex[id]); V(&mutex[1-id]);
  return NULL;
```

Carnegie Mellon University⁸⁸

11/30/2016 (©J.P. Shen & Zhiyi Yu)

Deadlock Visualized in Progress Graph

Locking introduces the potential for *deadlock:* waiting for a condition that will never be true

Any trajectory that enters the *deadlock region* will eventually reach the *deadlock state*, waiting for either s_0 or s_1 to become nonzero

Other trajectories luck out and skirt the deadlock region

Unfortunate fact: deadlock is often nondeterministic (race)

Avoiding Deadlock Acquire shared resources in same order

```
int main()
                pthread t tid[2];
                Sem init(&mutex[0], 0, 1); /* mutex[0] = 1 */
                Sem init(&mutex[1], 0, 1); /* mutex[1] = 1 */
                Pthread create(&tid[0], NULL, count, (void*) 0);
                Pthread create(&tid[1], NULL, count, (void*) 1);
                Pthread join(tid[0], NULL);
                Pthread join(tid[1], NULL);
                printf("cnt=%d\n", cnt);
                exit(0);
            void *count(void *vargp)
                                                                Tid[0]:
                                                                           Tid[1]:
                int i;
                                                                P(s0);
                                                                           P(s0);
                int id = (int) vargp;
                                                                P(s1);
                                                                           P(s1);
                for (i = 0; i < NITERS; i++) {
                    P(&mutex[0]); P(&mutex[1]);
                                                                           cnt++;
                                                                cnt++;
                   cnt++;
                                                                V(s0);
                                                                           V(s1);
                   V(&mutex[id]); V(&mutex[1-id]);
                                                                V(s1);
                                                                           V(s0);
                return NULL;
                                                                        Carnegie Mellon University 90
11/30/2016 (©J.P. Shen & Zhiyi Yu)
                                            18-600 Lecture #2
```

Avoided Deadlock in Progress Graph

No way for trajectory to get stuck

Processes acquire locks in same order

Order in which locks released immaterial

18-600 Foundations of Computer Systems

Lecture 26: "Thread Level Parallelism"

John P. Shen & Zhiyi Yu December 5, 2016

Next Time

Required Reading Assignment:

• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron.

11/30/2016 (©J.P. Shen & Zhiyi Yu)

18-600 Lecture #25

Carnegie Mellon University 92

Electrical & Computer ENGINEERING