
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 25:
“Concurrent Programming”

John P. Shen & Zhiyi Yu
November 30, 2016

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 25:
“Concurrent Programming”

18-600 Foundations of Computer Systems

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 2

A. Concurrency Approaches
 Process Based
 Event Based
 Thread Based

B. Thread Synchronization
 Semaphores (P & V operations)
 Producer-Consumer Problem
 Readers-Writers Problem
 Thread Safety, Races, Deadlocks

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

 Races: outcome depends on arbitrary scheduling decisions elsewhere in the system
 Example: who gets the last seat on the airplane?

 Deadlock: improper resource allocation prevents forward progress
 Example: traffic gridlock

 Livelock / Starvation / Fairness: external events and/or system scheduling decisions
can prevent sub-task progress
 Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the scope of our
course..

 but, not all

 We’ll cover some of these aspects in the next two lectures.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 3

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2

connect

accept connect

write read

call read

close

accept

write

read

close

Wait for server
to finish with
Client 1

call read

write

ret read

writeret read

read

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 4

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Block?
 Second client attempts to

connect to iterative server Call to connect returns

 Even though connection not yet
accepted

 Server side TCP manager queues request

 Feature known as “TCP listen backlog”

 Call to rio_writen returns

 Server side TCP manager buffers input
data

 Call to rio_readlineb blocks

 Server hasn’t written anything for it to
read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 5

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
 Concurrent servers use multiple concurrent flows to serve multiple clients at the same

time

User goes

out to lunch

Client 1 blocks

waiting for user

to type in data

Client 2 blocks

waiting to read

from server

Server blocks

waiting for

data from

Client 1

Client 1 Server Client 2

connect

accept connect

write call read

call read
write

call read
writeret read

call read

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 6

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers
Allow server to handle multiple clients concurrently

1. Process-based

 Kernel automatically interleaves multiple logical flows

 Each flow has its own private address space

2. Event-based

 Programmer manually interleaves multiple logical flows

 All flows share the same address space

 Uses technique called I/O multiplexing.

3. Thread-based

 Kernel automatically interleaves multiple logical flows

 Each flow shares the same address space

 Hybrid of process-based and event-based.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 7

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers
 Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes out

to lunch

Client 1 blocks

waiting for user

to type in data

call accept

ret accept

call fgets

writefork

call

read

child 2

write

call read

ret read

close
close

...

Child blocks

waiting for data

from Client 1

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 8

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {

Close(listenfd); /* Child closes its listening socket */
echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exit(0); /* Child exits */

}
Close(connfd); /* Parent closes connected socket (important!) */

}
}

Process-Based Concurrent Echo Server

echoserverp.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 9

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server (cont)

void sigchld_handler(int sig)
{

while (waitpid(-1, 0, WNOHANG) > 0)
;

return;
}

 Reap all zombie children

echoserverp.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 10

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,
waiting for connection
request on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Forks child to handle client.
Connection is now established
between clientfd and connfdServer

Child

connfd(4)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 11

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

 Each client handled by independent child process

 No shared state between them

 Both parent & child have copies of listenfd and connfd
 Parent must close connfd

 Child should close listenfd

Client 1

server

process

Client 2

server

process

Listening

server

process

Connection requests

Client 1 data

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 12

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

 Listening server process must reap zombie children

 to avoid fatal memory leak

 Parent process must close its copy of connfd

 Kernel keeps reference count for each socket/open file

 After fork, refcnt(connfd) = 2

 Connection will not be closed until refcnt(connfd) = 0

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 13

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

 + Handle multiple connections concurrently

 + Clean sharing model
 descriptors (no)

 file tables (yes)

 global variables (no)

 + Simple and straightforward

 – Additional overhead for process control

 – Nontrivial to share data between processes
 Requires IPC (interprocess communication) mechanisms

 FIFO’s (named pipes), System V shared memory and semaphores

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 14

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

 Server maintains set of active connections

 Array of connfd’s

 Repeat:

 Determine which descriptors (connfd’s or listenfd) have pending inputs

 e.g., using select or epoll functions

 arrival of pending input is an event

 If listenfd has input, then accept connection

 and add new connfd to array

 Service all connfd’s with pending inputs

 Details for select-based server in book

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 15

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Active Descriptors Pending Inputs

Read and service

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 16

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

 + One logical control flow and address space.

 + Can single-step with a debugger.

 + No process or thread control overhead.
 Design of choice for high-performance Web servers and search engines. e.g.,

Node.js, nginx, Tornado

 – Significantly more complex to code than process- or thread-based
designs.

 – Hard to provide fine-grained concurrency
 E.g., how to deal with partial HTTP request headers

 – Cannot take advantage of multi-core
 Single thread of control

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 17

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)

 …but using threads instead of processes

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 18

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Shared libraries

Run-time heap

0

Read/write data

Program context:

Data registers

Condition codes

Stack pointer (SP)

Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:

VM structures

Descriptor table

brk pointer

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 19

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

Data registers

Condition codes

Stack pointer (SP)

Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:

VM structures

Descriptor table

brk pointer

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 20

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

 Each thread has its own logical control flow
 Each thread shares the same code, data, and kernel context
 Each thread has its own stack for local variables

 but not protected from other threads
 Each thread has its own thread id (TID)

Thread 1 context:

Data registers

Condition codes

SP1

PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures

Descriptor table

brk pointer

Thread 2 context:

Data registers

Condition codes

SP2

PC2

stack 2

Thread 2 (peer thread)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 21

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

 Threads associated with process form a pool of peers

 Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy
Threads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 22

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

 Two threads are concurrent if their flows overlap in time

 Otherwise, they are sequential

 Examples:

 Concurrent: A & B, A&C

 Sequential: B & C

Time

Thread A Thread B Thread C

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 23

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

 Single Core Processor

 Simulate parallelism by time
slicing

 Multi-Core Processor

 Can have true parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 24

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes

 How threads and processes are similar

 Each has its own logical control flow

 Each can run concurrently with others (possibly on different cores)

 Each is context switched

 How threads and processes are different

 Threads share all code and data (except local stacks)

 Processes (typically) do not

 Threads are somewhat less expensive than processes

 Process control (creating and reaping) twice as expensive as thread control

 Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 25

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that manipulate threads

from C programs
 Creating and reaping threads

 pthread_create()

 pthread_join()

 Determining your thread ID

 pthread_self()

 Terminating threads

 pthread_cancel()

 pthread_exit()

 exit() [terminates all threads] , RET [terminates current thread]

 Synchronizing access to shared variables

 pthread_mutex_init

 pthread_mutex_[un]lock

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 26

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */
{

printf("Hello, world!\n");
return NULL;

}

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h"
void *thread(void *vargp);

int main()
{

pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

Return value

(void **p)

hello.c

Thread ID

Thread routine

hello.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 27

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for

peer thread to terminate

exit()

Terminates

main thread and

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 28

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)
{

int listenfd, *connfdp;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;

listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen=sizeof(struct sockaddr_storage);
connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd,
(SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, thread, connfdp);

}
} echoservert.c

 malloc of connected descriptor necessary to avoid deadly
race (later)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 29

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{

int connfd = *((int *)vargp);
Pthread_detach(pthread_self());
Free(vargp);
echo(connfd);
Close(connfd);
return NULL;

}

 Run thread in “detached” mode.

 Runs independently of other threads

 Reaped automatically (by kernel) when it terminates

 Free storage allocated to hold connfd.

 Close connfd (important!)

echoservert.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 30

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

 Each client handled by individual peer thread

 Threads share all process state except TID

 Each thread has a separate stack for local variables

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 31

Client 1

server

peer

thread

Client 2

server

peer

thread

Listening

server

main thread

Connection requests

Client 1 data Client 2 data

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

 Must run “detached” to avoid memory leak
 At any point in time, a thread is either joinable or detached

 Joinable thread can be reaped and killed by other threads
 must be reaped (with pthread_join) to free memory resources

 Detached thread cannot be reaped or killed by other threads
 resources are automatically reaped on termination

 Default state is joinable
 use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
 For example, passing pointer to main thread’s stack

 Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 32

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

 + Easy to share data structures between threads

 e.g., logging information, file cache

 + Threads are more efficient than processes

 – Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

 The ease with which data can be shared is both the greatest strength and
the greatest weakness of threads

 Hard to know which data shared & which private

 Hard to detect by testing

 Probability of bad race outcome very low

 But nonzero!
11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 33

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
 Hard to share resources: Easy to avoid unintended sharing
 High overhead in adding/removing clients

 Event-based
 Tedious and low level
 Total control over scheduling
 Very low overhead
 Cannot create as fine grained a level of concurrency
 Does not make use of multi-core

 Thread-based
 Easy to share resources: Perhaps too easy
 Medium overhead
 Not much control over scheduling policies
 Difficult to debug

 Event orderings not repeatable

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 34

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

 Question: Which variables in a threaded C program are shared?

 The answer is not as simple as “global variables are shared” and
“stack variables are private”

 Def: A variable x is shared if and only if multiple threads reference
some instance of x.

 Requires answers to the following questions:

 What is the memory model for threads?

 How are instances of variables mapped to memory?

 How many threads might reference each of these instances?

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 35

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model

 Conceptual model:

 Multiple threads run within the context of a single process

 Each thread has its own separate thread context
 Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
 Code, data, heap, and shared library segments of the process virtual address space

 Open files and installed handlers

 Operationally, this model is not strictly enforced:

 Register values are truly separate and protected, but…

 Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 36

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing

char **ptr; /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Peer threads reference main thread’s stack

indirectly through global ptr variable

sharing.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 37

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

 Global variables

 Def: Variable declared outside of a function

 Virtual memory contains exactly one instance of any global variable

 Local variables
 Def: Variable declared inside function without static attribute

 Each thread stack contains one instance of each local variable

 Local static variables
 Def: Variable declared inside function with the static attribute

 Virtual memory contains exactly one instance of any local static variable.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 38

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

sharing.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 39

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads reference at
least one instance of x. Thus:

 ptr, cnt, and msgs are shared

 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 40

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads

 Shared variables are handy...

 …but introduce the possibility of nasty synchronization errors.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 41

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

linux> ./badcnt 10000

OK cnt=20000

linux> ./badcnt 10000

BOOM! cnt=13051

linux>

cnt should equal 20,000.

What went wrong?badcnt.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 42

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)

cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

movq cnt(%rip),%rdx

addq $1, %rdx

movq %rdx, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 43

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving is possible,

but some give an unexpected result!
 Ii denotes that thread i executes instruction I

 %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 44

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 Incorrect ordering: two threads increment the counter, but the result is
1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 45

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 How about this ordering?

 We can analyze the behavior using a progress graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0

1
1 1

1
1 1

1 Oops!
1

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 46

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 47

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal state
transitions that describes one possible
concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 48

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 49

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 50

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

unsafe

safe

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so that they
can never have an unsafe trajectory.
 i.e., need to guarantee mutually exclusive access for each critical section.

 Classic solution:
 Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
 Mutex and condition variables (Pthreads)

 Monitors (Java)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 51

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
 P(s)

 If s is nonzero, then decrement s by 1 and return immediately.
 Test and decrement operations occur atomically (indivisibly)

 If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by
a V operation.

 After restarting, the P operation decrements s and returns control to the caller.

 V(s):
 Increment s by 1.

 Increment operation occurs atomically
 If there are any threads blocked in a P operation waiting for s to become non-zero,

then restart exactly one of those threads, which then completes its P operation by
decrementing s.

 Semaphore invariant: (s >= 0)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 52

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */

int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */

void V(sem_t *s); /* Wrapper function for sem_post */

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 53

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

How can we fix this using semaphores?

badcnt.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 54

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores for Mutual Exclusion

 Basic idea:

 Associate a unique semaphore mutex, initially 1, with each shared variable (or
related set of shared variables).

 Surround corresponding critical sections with P(mutex) and

V(mutex) operations.

 Terminology:

 Binary semaphore: semaphore whose value is always 0 or 1

 Mutex: binary semaphore used for mutual exclusion

 P operation: “locking” the mutex

 V operation: “unlocking” or “releasing” the mutex

 “Holding” a mutex: locked and not yet unlocked.

 Counting semaphore: used as a counter for set of available resources.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 55

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization
 Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 */

 Surround critical section with P and V:

for (i = 0; i < niters; i++) {
P(&mutex);
cnt++;
V(&mutex);

}

linux> ./goodcnt 10000

OK cnt=20000

linux> ./goodcnt 10000

OK cnt=20000

linux>

Warning: It’s orders of magnitude slower than
badcnt.c.

goodcnt.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 56

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive access
to shared variable by surrounding
critical section with P and V
operations on semaphore s
(initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region and
that cannot be entered by any
trajectory.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 57

Unsafe region

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programmers need a clear model of how variables are shared by
threads.

 Variables shared by multiple threads must be protected to
ensure mutually exclusive access.

 Semaphores are a fundamental mechanism for enforcing mutual
exclusion.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 58

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores to Coordinate Access to

Shared Resources
 Basic idea: Thread uses a semaphore operation to notify another thread

that some condition has become true

 Use counting semaphores to keep track of resource state and to notify other
threads

 Use mutex to protect access to resource

 Two classic examples:

 The Producer-Consumer Problem

 The Readers-Writers Problem

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 59

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer Problem

 Common synchronization pattern:
 Producer waits for empty slot, inserts item in buffer, and notifies consumer

 Consumer waits for item, removes it from buffer, and notifies producer

 Examples
 Multimedia processing:

 Producer creates MPEG video frames, consumer renders them

 Event-driven graphical user interfaces

 Producer detects mouse clicks, mouse movements, and keyboard hits and inserts
corresponding events in buffer

 Consumer retrieves events from buffer and paints the display

Producer

thread

Shared

buffer
Consumer

thread

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 60

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer

 Requires a mutex and two counting semaphores:
 mutex: enforces mutually exclusive access to the the buffer

 slots: counts the available slots in the buffer

 items: counts the available items in the buffer

 Implemented using a shared buffer package called sbuf.

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 61

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Declarations

#include "csapp.h”

typedef struct {
int *buf; /* Buffer array */
int n; /* Maximum number of slots */
int front; /* buf[(front+1)%n] is first item */
int rear; /* buf[rear%n] is last item */
sem_t mutex; /* Protects accesses to buf */
sem_t slots; /* Counts available slots */
sem_t items; /* Counts available items */

} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);
void sbuf_deinit(sbuf_t *sp);
void sbuf_insert(sbuf_t *sp, int item);
int sbuf_remove(sbuf_t *sp); sbuf.h

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 62

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t *sp, int n)
{

sp->buf = Calloc(n, sizeof(int));
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem_init(&sp->items, 0, 0); /* Initially, buf has 0 items */

}

/* Clean up buffer sp */
void sbuf_deinit(sbuf_t *sp)
{

Free(sp->buf);
} sbuf.c

Initializing and deinitializing a shared buffer:

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 63

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t *sp, int item)
{

P(&sp->slots); /* Wait for available slot */
P(&sp->mutex); /* Lock the buffer */
sp->buf[(++sp->rear)%(sp->n)] = item; /* Insert the item */
V(&sp->mutex); /* Unlock the buffer */
V(&sp->items); /* Announce available item */

} sbuf.c

Inserting an item into a shared buffer:

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 64

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{

int item;
P(&sp->items); /* Wait for available item */
P(&sp->mutex); /* Lock the buffer */
item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
V(&sp->mutex); /* Unlock the buffer */
V(&sp->slots); /* Announce available slot */
return item;

} sbuf.c

Removing an item from a shared buffer:

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 65

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers-Writers Problem

 Generalization of the mutual exclusion problem

 Problem statement:

 Reader threads only read the object

 Writer threads modify the object

 Writers must have exclusive access to the object

 Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,

 Online airline reservation system

 Multithreaded caching Web proxy

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 66

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variants of Readers-Writers

 First readers-writers problem (favors readers)

 No reader should be kept waiting unless a writer has already been granted
permission to use the object

 A reader that arrives after a waiting writer gets priority over the writer

 Second readers-writers problem (favors writers)

 Once a writer is ready to write, it performs its write as soon as possible

 A reader that arrives after a writer must wait, even if the writer is also waiting

 Starvation (where a thread waits indefinitely) is possible in both cases

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 67

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially = 0 */
sem_t mutex, w; /* Initially = 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Critical section */
/* Reading happens */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Critical section */
/* Writing happens */

V(&w);
}

}

Readers: Writers:

rw1.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 68

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together:

Prethreaded Concurrent Server

Master

thread
Buffer

...

Accept

connections

Insert

descriptors Remove

descriptors

Worker

thread

Worker

thread

Client

Client

...

Service client

Service client

Pool of

worker

threads

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 69

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

sbuf_t sbuf; /* Shared buffer of connected descriptors */

int main(int argc, char **argv)
{

int i, listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;

listenfd = Open_listenfd(argv[1]);
sbuf_init(&sbuf, SBUFSIZE);
for (i = 0; i < NTHREADS; i++) /* Create worker threads */

Pthread_create(&tid, NULL, thread, NULL);
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */

}
}

echoservert_pre.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 70

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void *thread(void *vargp)
{

Pthread_detach(pthread_self());
while (1) {

int connfd = sbuf_remove(&sbuf); /* Remove connfd from buf */
echo_cnt(connfd); /* Service client */
Close(connfd);

}
} echoservert_pre.c

Worker thread routine:

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 71

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

static int byte_cnt; /* Byte counter */
static sem_t mutex; /* and the mutex that protects it */

static void init_echo_cnt(void)
{

Sem_init(&mutex, 0, 1);
byte_cnt = 0;

}
echo_cnt.c

echo_cnt initialization routine:

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 72

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void echo_cnt(int connfd)
{

int n;
char buf[MAXLINE];
rio_t rio;
static pthread_once_t once = PTHREAD_ONCE_INIT;

Pthread_once(&once, init_echo_cnt);
Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

P(&mutex);
byte_cnt += n;
printf("thread %d received %d (%d total) bytes on fd %d\n",

(int) pthread_self(), n, byte_cnt, connfd);
V(&mutex);
Rio_writen(connfd, buf, n);

}
}

Worker thread service routine:

echo_cnt.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 73

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crucial concept: Thread Safety

 Functions called from a thread must be thread-safe

 Def: A function is thread-safe iff it will always produce correct results
when called repeatedly from multiple concurrent threads

 Classes of thread-unsafe functions:

 Class 1: Functions that do not protect shared variables

 Class 2: Functions that keep state across multiple invocations

 Class 3: Functions that return a pointer to a static variable

 Class 4: Functions that call thread-unsafe functions

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 74

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 1)

 Failing to protect shared variables

 Fix: Use P and V semaphore operations

 Example: goodcnt.c

 Issue: Synchronization operations will slow down code

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 75

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations

 Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{

next = seed;
}

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 76

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Random Number Generator

 Pass state as part of argument

 and, thereby, eliminate global state

 Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp * 1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 77

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 3)

 Returning a pointer to a static
variable

 Fix 1. Rewrite function so caller
passes address of variable to
store result

 Requires changes in caller and
callee

 Fix 2. Lock-and-copy

 Requires simple changes in caller
(and none in callee)

 However, caller must free
memory.

/* lock-and-copy version */
char *ctime_ts(const time_t *timep,

char *privatep)
{

char *sharedp;

P(&mutex);
sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);
return privatep;

}

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 78

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 4)

 Calling thread-unsafe functions

 Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

 Fix: Modify the function so it calls only thread-safe functions

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 79

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reentrant Functions

 Def: A function is reentrant iff it accesses no shared variables
when called by multiple threads.

 Important subset of thread-safe functions

 Require no synchronization operations

 Only way to make a Class 2 function thread-safe is to make it reetnrant
(e.g., rand_r)

Reentrant

functions

All functions

Thread-unsafe

functions

Thread-safe

functions

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 80

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Library Functions

 All functions in the Standard C Library (at the back of your K&R text) are
thread-safe
 Examples: malloc, free, printf, scanf

 Most Unix system calls are thread-safe, with a few exceptions:

Thread-unsafe function Class Reentrant version

asctime 3 asctime_r

ctime 3 ctime_r

gethostbyaddr 3 gethostbyaddr_r

gethostbyname 3 gethostbyname_r

inet_ntoa 3 (none)

localtime 3 localtime_r

rand 2 rand_r

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 81

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

One worry: Races
 A race occurs when correctness of the program depends on one thread

reaching point x before another thread reaches point y
/* A threaded program with a race */
int main()
{

pthread_t tid[N];
int i;

for (i = 0; i < N; i++)
Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)
Pthread_join(tid[i], NULL);

exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);
printf("Hello from thread %d\n", myid);
return NULL;

} race.c

N threads are sharing i

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 82

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race Illustration

Main thread

Peer thread 0

for (i = 0; i < N; i++)
Pthread_create(&tid[i], NULL, thread, &i);

i = 0

myid = *((int *)vargp)i = 1
Race!

 Race between increment of i in main thread and deref of vargp in peer thread:
 If deref happens while i = 0, then OK

 Otherwise, peer thread gets wrong id value

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 83

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Could this race really occur?

int i;
for (i = 0; i < 100; i++) {

Pthread_create(&tid, NULL,
thread,&i);

}

 Race Test

 If no race, then each thread would get different value of i

 Set of saved values would consist of one copy each of 0 through 99

Main thread

void *thread(void *vargp) {
Pthread_detach(pthread_self());
int i = *((int *)vargp);
save_value(i);
return NULL;

}

Peer thread

race.c

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 84

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experimental Results

 The race can really happen!

No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 85

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race

Elimination

/* Threaded program without the race */
int main()
{

pthread_t tid[N];
int i, *ptr;

for (i = 0; i < N; i++) {
ptr = Malloc(sizeof(int));
*ptr = i;
Pthread_create(&tid[i], NULL, thread, ptr);

}
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);
Free(vargp);
printf("Hello from thread %d\n", myid);
return NULL;

} norace.c

 Avoid unintended sharing of
state

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 86

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition that will never
be true

 Typical Scenario

 Processes 1 and 2 needs two resources (A and B) to proceed

 Process 1 acquires A, waits for B

 Process 2 acquires B, waits for A

 Both will wait forever!

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 87

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlocking With Semaphores
int main()
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 88

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock Visualized in Progress Graph
Locking introduces the

potential for deadlock:

waiting for a condition that will never be

true

Any trajectory that enters

the deadlock region will

eventually reach the

deadlock state, waiting for either s0 or s1 to

become nonzero

Other trajectories luck out and skirt the

deadlock region

Unfortunate fact: deadlock is often

nondeterministic (race)

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 89

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoiding Deadlock
int main()

{

pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);

Pthread_create(&tid[1], NULL, count, (void*) 1);

Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

exit(0);

}

void *count(void *vargp)

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);

cnt++;

V(&mutex[id]); V(&mutex[1-id]);

}

return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);

Acquire shared resources in same order

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 90

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoided Deadlock in Progress Graph

No way for trajectory to get stuck

Processes acquire locks in same order

Order in which locks released

immaterial

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 91

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 26:
“Thread Level Parallelism”

John P. Shen & Zhiyi Yu
December 5, 2016

11/30/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #25 92

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 12 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

