
11/14/2016 (© J.P. Shen)

 Recommended Reference:
• “Parallel Computer Organization and Design,” by Michel Dubois,

Murali Annavaram, Per Stenstrom, Chapters 5 and 7, 2012.

18-600 Lecture #21 1

18-600 Foundations of Computer Systems

Lecture 21:
“Multicore Cache Coherence”

John P. Shen & Zhiyi Yu
November 14, 2016

Prevalence of multicore processors:
 2006: 75% for desktops, 85% for servers

 2007: 90% for desktops and mobiles,

100% for servers

 Today: 100% multicore processors with

core counts ranging from 2 to 8 cores for

desktops and mobiles, 8+ for servers

Lecture 21:
“Multicore Cache Coherence”

A. Cache Coherence Problem
B. Cache Coherence Protocols

 Write Update
 Write Invalidate

C. Bus-Based Snoopy Protocols
 VI & MI Protocols
 MSI, MESI, MOESI Protocols

D. Directory-Based Protocols

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 2

18-600 Foundations of Computer Systems

Shared-Memory Multiprocessors/Multicores

 All processor cores have access to unified physical memory
 They can communicate via the shared memory using loads and stores

 Advantages
 Supports multi-threading (TLP) using multiple cores
 Requires relatively simple changes to the OS for scheduling
 Threads within an app can communicate implicitly without using OS

 Simpler to code for and lower overhead
 App development: first focus on correctness, then on performance

 Disadvantages
 Implicit communication is hard to optimize
 Synchronization can get tricky
 Higher hardware complexity for cache management

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 3

Shared Memory Multiprocessors/Multicores

 Caches are (equally) helpful with multicores
 Reduce access latency, reduce bandwidth requirements
 For both private and shared data across cores

 But caches introduce the problems of coherence & consistency

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 4

18-600 Lecture #2111/14/2016 (© J.P. Shen) 5

• Advantages of private:

– They are closer to core, so faster access

– Reduces contention

• Advantages of shared:

– Threads on different cores can share the same cache data

– More cache space available if a single (or a few) high-

performance thread runs on the system

Private vs. Shared Caches

18-600 Lecture #2111/14/2016 (© J.P. Shen) 6

• Since we have private caches:

How to keep the data consistent across caches?

• Each core should perceive the memory as a monolithic array,

shared by all the cores

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 7

Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 8

Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 9

Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 10

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 11

Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

The Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 12

• This is a general problem with shared memory

multiprocessors and multicores, with private caches

• Coherence Solution:

• Use HW to ensure that loads from all cores will return the

value of the latest store to that memory location

• Use metadata to track the state for cached data

• There exist two major categories with many specific

coherence protocols.

Solutions for Cache Coherence Problem

18-600 Lecture #2111/14/2016 (© J.P. Shen) 13

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

multi-core chip

inter-core bus

Bus Based Multicore Processor

18-600 Lecture #2111/14/2016 (© J.P. Shen) 14

• Invalidation:

If a core writes to a data item, all other copies of this

data item in other caches are invalidated

• Snooping:

All cores continuously “snoop” (monitor) the bus

connecting the cores.

Invalidation Protocol with Snooping

18-600 Lecture #2111/14/2016 (© J.P. Shen) 15

Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen) 16

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

INVALIDATEDsends

invalidation

request

inter-core bus

Invalidation Based Cache Coherence Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen) 17

After invalidation:

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen) 18

Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen) 19

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

UPDATED

broadcasts

updated

value
inter-core bus

Update Based Cache Coherence Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen) 20

• Multiple writes to the same location

– invalidation: only the first time

– update: must broadcast each write

(which includes new variable value)

• Invalidation generally performs better:

it generates less bus traffic

Invalidation vs. Update Protocols

Cache Coherence

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Informally, with coherent caches: accesses to a memory
location appear to occur simultaneously in all copies of the
memory location

“copies” caches

Cache coherence suggests an absolute time scale -- this is
not necessary
What is required is the "appearance" of coherence... not

absolute coherence
 E.g. temporary incoherence between memory and a write-back

cache may be OK.

21

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Write Update vs.
Write Invalidate

 Coherent caches with
Shared Memory

 All cores see the effects
of others’ writes

 How/when writes are
propagated

 Determined by
coherence protocol

22

Bus-Based Snoopy Cache Coherence

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 All requests broadcast on bus

 All processors and memory snoop and respond

 Cache blocks writeable at one processor or read-only at several

 Single-writer protocol

 Snoops that hit dirty lines?

 Flush modified data out of cache

 Either write back to memory, then satisfy remote miss from memory, or

 Provide dirty data directly to requestor

 Big problem in MC/MP systems

 Dirty/coherence/sharing misses

23

Bus-Based Protocols

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Cache

Controller
Cache Data

Processor

Bus

Processor Actions

Bus Actions

State Tags

 Protocol consists of
states and actions
(state transitions)

 Actions can be
invoked from
processor or bus to
the cache controller

 Coherence based on
per cache line (block)

24

Main Memory

Minimal Coherence Protocol for Write-Back Caches

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Valid
(M)

Invalid
(I)

Local
Read or

Local
Write

Evict or
Remote
Read or
Remote
Write

Local Read or
Local Write

Tag State Data

A M …

B I …

Cache

 Blocks are always private or
exclusive

 State transitions:
 Local read: I->M, fetch,

invalidate other copies
 Local write: I->M, fetch,

invalidate other copies
 Evict: M->I, write back data
 Remote read: M->I, write

back data
 Remote write: M->I, write

back data

25

Invalidate Protocol Optimization

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Observation: data often read shared by multiple CPUs

 Add S (shared) state to protocol: MSI

 State transitions:

 Local read: I->S, fetch shared

 Local write: I->M, fetch modified; S->M, invalidate other copies

 Remote read: M->I, write back data

 Remote write: M->I, write back data

26

Simple Coherence Protocol FSM
[Source: Patterson/Hennessy, Comp. Org. & Design]

18-600 Lecture #2111/14/2016 (© J.P. Shen) 27

MSI Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Action and Next State

Current

State

Processor

Read

Processor

Write

Eviction Cache

Read

Cache

Read&M

Cache

Upgrade

I Cache Read

Acquire

Copy

→ S

Cache Read&M

Acquire Copy

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S No Action

→ S

Cache Upgrade

→ M

No Action

→ I

No Action

→ S

Invalidate

Frame

→ I

Invalidate

Frame

→ I

M No Action

→ M

No Action

→ M

Cache

Write

back

→ I

Memory

inhibit;

Supply

data;

→ S

Invalidate

Frame;

Memory

inhibit;

Supply data;

→ I

28

MSI Example

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Thread Event Bus Action Data From Global State Local

States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> S I I

2. T0 write→ CU <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,1> S I S

4. T1 write→ CRM Memory <0,1,0,0> I M I

 If line is in no other cache
 Read, modify, Write requires 2 bus transactions
 Optimization: add Exclusive state

29

MSI: A Coherence Protocol for Write Back Caches

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
P1 writes back

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 30

MSI Coherence Protocol Example with 2 Cores

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads

P1 writes

P2 reads

P2 writes

P1 writes

P2 writes

P1 reads

P1 writes

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 31

Invalidate Protocol Optimizations

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Observation: data can be write-private (e.g. stack frame)

 Avoid invalidate messages in that case

 Add E (exclusive) state to protocol: MESI

 State transitions:

 Local read: I->E if only copy, I->S if other copies exist

 Local write: E->M silently, S->M, invalidate other copies

32

MESI Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Variation used in many Intel processors

 4-State Protocol

Modified: <1,0,0…0>

 Exclusive: <1,0,0,…,1>

 Shared: <1,X,X,…,1>

 Invalid: <0,X,X,…X>

 Bus/Processor Actions

 Same as MSI

 Adds shared signal to indicate if other caches have a copy

33

MESI Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Action and Next State

Current

State

Processor

Read

Processor

Write
Eviction

Cache

Read

Cache

Read&M

Cache

Upgrade

I

Cache

Read

If no

sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S
No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond

Shared:

→ S

No Action

→ I

No Action

→ I

E
No Action

→ E

No Action

→ M

No Action

→ I

Respond

Shared;

→ S

No Action

→ I

M
No Action

→ M

No Action

→ M

Cache

Write-back

→ I

Respond

dirty;

Write back

data;

→ S

Respond

dirty;

Write back

data;

→ I

34

MESI Example

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Thread Event Bus

Action

Data

From

Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

35

Cache-to-Cache Transfers

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Common in many workloads:

 T0 writes to a block: <1,0,…,0> (block in M state in T0)

 T1 reads from block: T0 must write back, then T1 reads from memory

 In shared-bus system

 T1 can snarf data from the bus during the writeback

 Called cache-to-cache transfer or dirty miss or intervention

 Without shared bus

 Must explicitly send data to requestor and to memory (for writeback)

 Known as the 4th C (cold, capacity, conflict, communication)

36

MESI Example 2

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Thread Event Bus

Action

Data From Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T1 read→ CR C0 <1,1,0,1> S S I

4. T2 read→ CR Memory <1,1,1,1> S S S

37

MOESI Optimization

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Observation: shared ownership prevents cache-to-cache
transfer, causes unnecessary memory read

 Add O (owner) state to protocol: MOSI/MOESI

 Last requestor becomes the owner

 Avoid writeback (to memory) of dirty data

 Also called shared-dirty state, since memory is stale

38

MOESI Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Used in AMD Opteron

5-State Protocol

Modified: <1,0,0…0>

 Exclusive: <1,0,0,…,1>

 Shared: <1,X,X,…,1>

 Invalid: <0,X,X,…X>

Owned: <1,X,X,X,0> ; only one owner, memory not up to date

Owner can supply data, so memory does not have to

Avoids lengthy memory access

39

MOESI Protocol

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Action and Next State

Current State
Processor

Read

Processor

Write
Eviction Cache Read Cache Read&M

Cache

Upgrade

I

Cache Read

If no sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S
No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond shared;

→ S

No Action

→ I

No Action

→ I

E
No Action

→ E

No Action

→ M

No Action

→ I

Respond shared;

Supply data;

→ S

Respond

shared;

Supply data;

→ I

O
No Action

→ O

Cache Upgrade

→ M

Cache Write-

back

→ I

Respond shared;

Supply data;

→ O

Respond shared;

Supply data;

→ I

M
No Action

→ M

No Action

→ M

Cache Write-

back

→ I

Respond shared;

Supply data;

→ O

Respond shared;

Supply data;

→ I

40

MOESI Example

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Thread Event Bus Action Data From Global State local states

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,0> O I S

4. T1 write→ CRM C0 <0,1,0,0> I M I

41

MOESI Coherence Protocol

11/14/2016 (© J.P. Shen) 18-600 Lecture #21

 A protocol that tracks validity, ownership, and exclusiveness
 Modified: dirty and private

 Owned: dirty but shared

 Avoid writeback to memory on M->S transitions

 Exclusive: clean but private

 Avoid upgrade misses on private data

 Shared

 Invalid

 There are also some variations (MOSI and MESI)

 What happens when 2 cores read/write different words in a cache
line?

42

Snooping with Multi-level Caches

11/14/2016 (© J.P. Shen) 18-600 Lecture #21

 Private L2 caches
 If inclusive, snooping traffic checked at the L2 level first

 Only accesses that refer to data cached in L1 need to be
forwarded

 Saves bandwidth at the L1 cache

 Shared L2 or L3 caches
 Can act as serialization points even if there is no bus

 Track state of cache line and list of sharers (bit mask)

 Essentially the shared cache acts like a coherence directory

43

Scaling Coherence Protocols

 The problem

 Too much broadcast traffic for snooping (probing)

 Solution: probe filters

 Maintain info of which address ranges that are definitely not shared or
definitely shared

 Allows filtering of snoop traffic

 Solution: directory based coherence

 A directory stores all coherence info (e.g., sharers)

 Consult directory before sending coherence messages

 Caching/filtering schemes to avoid latency of 3-hops

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 44

Scaleable Cache Coherence

• No physical bus but still snoop
• Point-to-point tree structure (indirect) or ring
• Root of tree or ring provide ordering point
• Use some scalable network for data (ordering less important)

• Or, use level of indirection through directory
• Directory at memory remembers:

• Which processor is “single writer”
• Which processors are “shared readers”

• Level of indirection has a price
• Dirty misses require 3 hops instead of two

• Snoop: Requestor->Owner->Requestor
• Directory: Requestor->Directory->Owner->Requestor

18-600 Lecture #2111/14/2016 (© J.P. Shen) 45

Implementing Cache Coherence

• Directory implementation
• Extra bits stored in memory (directory) record state of line
• Memory controller maintains coherence based on the current state
• Other CPUs’ commands are not snooped, instead:

• Directory forwards relevant commands

• Powerful filtering effect: only observe commands that you need to observe
• Meanwhile, bandwidth at directory scales by adding memory controllers as you

increase size of the system
• Leads to very scalable designs (100s to 1000s of CPUs)

• Directory shortcomings
• Indirection through directory has latency penalty
• If shared line is dirty in other CPU’s cache, directory must forward request, adding

latency
• This can severely impact performance of applications with heavy sharing (e.g.

relational databases)

18-600 Lecture #2111/14/2016 (© J.P. Shen) 46

Directory Based Protocol Implementation

• Basic idea: Centralized directory keeps track of data location(s)
• Scalable

• Address traffic roughly proportional to number of processors
• Directory & traffic can be distributed with memory banks (interleaved)
• Directory cost (SRAM) or latency (DRAM) can be prohibitive

• Presence bits track sharers
• Full map (N processors, N bits): cost/scalability
• Limited map (limits number of sharers)
• Coarse map (identifies board/node/cluster; must use broadcast)

• Vectors track sharers
• Point to shared copies
• Fixed number, linked lists (SCI), caches chained together
• Latency vs. cost vs. scalability

18-600 Lecture #2111/14/2016 (© J.P. Shen) 47

Directory Based Protocol Latency

• Access to non-shared data
• Overlap directory read with data read
• Best possible latency given distributed memory

• Access to shared data
• Dirty miss, modified intervention
• Shared intervention?

• If DRAM directory, no gain
• If directory cache, possible gain (use F state)

• No inherent parallelism
• Indirection adds latency
• Minimum 3 hops, often 4 hops

18-600 Lecture #2111/14/2016 (© J.P. Shen) 48

Directory-Based Cache Coherence

• An alternative for large, scalable MPs

• Can be based on any of the protocols
discussed thus far

•We will use MSI

• Memory Controller becomes an active
participant

• Sharing info held in memory directory

•Directory may be distributed

• Use point-to-point messages

• Network is not totally ordered

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Cache

Processor

Interconnection Network

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

. . .

. . .

49

Example: Simple Directory Protocol

• Local cache controller states
• M, S, I as before

• Local directory states
• Shared: <1,X,X,…1>; one or more proc. has copy; memory is up-

to-date
• Modified: <0,1,0,….,0> one processor has copy; memory does not

have a valid copy
• Uncached: <0,0,…0,1> none of the processors has a valid copy

• Directory also keeps track of sharers
• Can keep global state vector in full
• e.g. via a bit vector

18-600 Lecture #2111/14/2016 (© J.P. Shen) 50

Example
• Local cache suffers load miss
• Line in remote cache in M state

• It is the owner

• Four messages send over
network

• Cache read from local controller
to home memory controller

• Memory read to remote cache
controller

• Owner data back to memory
controller; change state to S

• Memory data back to local
cache; change state to S

18-600 Lecture #2111/14/2016 (© J.P. Shen)

. . .

. . .
Cache

Processor

Owner

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

read

cache

read

memory

read

owner

data

response

memory

data

response Interconnect

51

Cache Controller State Table

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Cache Controller

Actions and Next States

from Processor Side from Memory Side

Current

State

Processor

Read

Processor

Write

Eviction Memory

Read

Memory

Read&M

Memory

Invalidate

Memory

Upgrade

Memory Data

I Cache

Read

→ I'

Cache

Read&M

→ I''

No Action

→ I

S No

Action

→ S

Cache

Upgrade

→ S'

No

Action*

→ I

Invalidate

Frame;

Cache ACK;

→ I

M No

Action

→ M

No Action

→ M

Cache

Write-back

→ I

Owner

Data;

→ S

Owner

Data;

→ I

Invalidate

Frame;

Cache ACK;

→ I

I' Fill Cache

→ S

I'' Fill Cache

→ M

S' No Action

→ M

52

Memory Controller State Table

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Memory Controller

Actions and Next States

command from Local Cache Controller response from Remote Cache Controller

Current

Directory

State

Cache

Read

Cache Read&M Cache

Upgrade

Data

Write-back

Cache ACK Owner

Data

U Memory Data;

Add Requestor to

Sharers;

→ S

Memory Data;

Add Requestor to

Sharers;

→ M

S Memory Data;

Add Requestor to

Sharers;

→ S

Memory

Invalidate All Sharers;

→ M'

Memory

Upgrade

All Sharers;

→ M''

No Action

→ I

M Memory Read

from Owner;

→ S'

Memory Read&M;

to Owner

→ M'

Make Sharers

Empty;

→ U

S' Memory Data

to Requestor;

Write memory;

Add Requestor to

Sharers;

→ S

M' When all ACKS

Memory Data;

→ M

Memory Data

to Requestor;

→ M

M'' When all ACKS

then

→ M

53

Another Example

• Local write (miss) to
shared line

• Requires invalidations and
acks

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Memory

Banks

Directory

Home Memory

Controller

. . .

. . .
Cache

Processor

Remote

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

write

cache

Read&M

memory

invalidate

cache

ack
memory

data

response Interconnect

cache

ack

54

Variation: Three Hop Protocol

• Have owner send data directly to local controller

• Owner Acks to Memory Controller in parallel

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

memory

data

1 2

3

4

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

owner

ack1 2
3

3

a) b)

55

Example Sequence

• Similar to earlier sequences

18-600 Lecture #2111/14/2016 (© J.P. Shen)

Thread Event Controller

Actions

Data From global state local states:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR,MD Memory <1,0,0,1> S I I

2. T0 write→ CU, MU*,MD <1,0,0,0> M I I

3. T2 read→ CR,MR,MD C0 <1,0,1,1> S I S

4. T1 write→ CRM,MI,CA,MD Memory <0,1,0,0> I M I

56

Directory Protocol Optimizations
• Remove dead blocks from cache:

• Eliminate 3- or 4-hop latency
• Dynamic Self-Invalidation [Lebeck/Wood, ISCA 1995]

• Last touch prediction [Lai/Falsafi, ISCA 2000]

• Dead block prediction [Lai/Fide/Falsafi, ISCA 2001]

• Predict sharers
• Prediction in coherence protocols [Mukherjee/Hill, ISCA 1998]

• Instruction-based prediction [Kaxiras/Goodman, ISCA 1999]

• Sharing prediction [Lai/Falsafi, ISCA 1999]

• Hybrid snooping/directory protocols
• Improve latency by snooping, conserve bandwidth with directory
• Multicast snooping [Bilir et al., ISCA 1999; Martin et al., ISCA 2003]

• Bandwidth-adaptive hybrid [Martin et al., HPCA 2002]

• Token Coherence [Martin et al., ISCA 2003]

• Virtual Tree Coherence [Enright Jerger MICRO 2008]

18-600 Lecture #2111/14/2016 (© J.P. Shen) 57

Update Protocols

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Basic idea:
 All writes (updates) are made visible to all caches:

 (address, value) tuples sent “everywhere”
 Similar to write-through protocol for uniprocessor caches

 Obviously not scalable beyond a few processors
 No one actually builds machines this way

 Simple optimization
 Send updates to memory/directory
 Directory propagates updates to all known copies: less bandwidth

 Further optimizations: combine & delay
 Write-combining of adjacent updates (if consistency model allows)
 Send write-combined data
 Delay sending write-combined data until requested

 Logical end result
 Writes are combined into larger units, updates are delayed until needed
 Effectively the same as invalidate protocol

58

Update vs. Invalidate

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 [Weber & Gupta, ASPLOS3]
 Consider sharing patterns

 No Sharing
 Independent threads
 Coherence due to thread migration
 Update protocol performs many wasteful updates

 Read-Only
 No significant coherence issues; most protocols work well

 Migratory Objects
 Manipulated by one processor at a time
 Often protected by a lock
 Usually a write causes only a single invalidation
 E state useful for Read-modify-Write patterns
 Update protocol could proliferate copies

59

Update vs. Invalidate, contd.

18-600 Lecture #2111/14/2016 (© J.P. Shen)

 Synchronization Objects
 Locks
 Update could reduce spin traffic invalidations
 Test & Test&Set w/ invalidate protocol would work well

 Many Readers, One Writer
 Update protocol may work well, but writes are relatively rare

 Many Writers/Readers
 Invalidate probably works better
 Update will proliferate copies

 What is used today?
 Invalidate is dominant
 CMP may change this assessment

 more on-chip bandwidth
60

Uniprocessor Coherence
 IN UNIPROCESSORS, A LOAD MUST RETURN THE VALUE OF THE LATEST STORE IN THREAD ORDER

 THIS IS DONE THROUGH MEMORY DISAMBIGUATION AND MANAGMENT OF CACHE HIERARCHY
 SOME PROBLEMS WITH I/O, AS I/O IS OFTEN CONNECTED TO MEMORY BUS

 COHERENCE BETWEEN I/O TRAFFIC AND CACHE MUST BE ENFORCED
 HOWEVER, THIS IS INFREQUENT AND SOFTWARE IS INFORMED
 SO SOFTWARE SOLUTIONS WORK
 UNCACHEABLE MEMORY, UNCACHEABLE OPS, CACHE FLUSHING
 ANOTHER SOLUTION IS TO PASS I/O THROUGH CACHE

 IN MULTIPROCESSORS THE COHERENCE PROBLEM IS PERVASIVE, PERFORMANCE CRITICAL AND
SOFTWARE IS NOT INFORMED
 SHARING OF DATA, THREAD MIGRATION AND I/O
 COMMUNICATION IS IMPLICIT
 THUS HARDWARE MUST SOLVE THE PROBLEM.

main
processor

I/O processors
DMA
I/O controllers, peripherals

I/O bus

system (memory) bus
mem

$

11/14/2016 (© J.P. Shen) 18-600 Lecture #21 61

Lecture 22:
“Performance and Power Iron Laws”

 Recommended References:
• “Energy per Instruction Trends in Intel® Microprocessors,” by Ed

Grochowski, Murali Annavaram, 2006.
• “Best of Both Latency and Throughput,” by E. Grochowski, R. Ronen,

J. Shen, H. Wang. In 22nd ICCD 2004.
• “Mitigating Amdahl's Law through EPI Throttling,” by M. Annavaram,

E. Grochowski, J. Shen. In 32nd ISCA 2005.

11/14/2016 (© J.P. Shen) 6218-600 Lecture #21

18-600 Foundations of Computer Systems

John P. Shen & Zhiyi Yu
November 16, 2016

