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Anatomy of a Computer System: SW/HW

Application programs

Processor Main memory I/O devices

Operating system

Software

(programs)

Hardware

(computer)

COMPILER

OS

ARCHITECTURE

What is a Computer System?
 Software + Hardware

 Programs + Computer  [Application program + OS] + Computer

 Programming Languages + Operating Systems + Computer Architecture
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Anatomy of a Typical Computer System  
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Processor Main memory I/O devices

Processes

Files/NIC

Virtual memory

Application Programs
and
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Typical Computer Hardware Organization
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Single-core CPU Chip

the single core
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Multicore CPU Chip

Core 0 Core 1 Core 2 Core 3

Multi-core CPU chip
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Multicore Processors or Chip Multiprocessors

Regs

L1 

d-cache

L1 

i-cache

L2 unified 

cache

Core 0

Regs

L1 

d-cache

L1 

i-cache

L2 unified 

cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Multicore Processor package
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A. Multicore Processors (MCP)

MULTIPROCESSING
Shared Memory Multicore 
Processors (MCP) or Chip 

Multiprocessors (CMP)

CLUSTER COMPUTING
Shared File System and LAN 
Connected Multi-Computer 

Clusters (MCC)
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The Case for Multicore Processors

 Stalled Scaling of Single-
Core Performance

 Expected continuation of 
Moore’s Law

 Throughput Performance 
for Server Workloads
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Processor Scaling Until ~2004
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Processor Development Until ~2004

 Moore’s Law: transistor count doubles every 18 months

 Used to improve processor performance by 2x every 18 months

 Single core, binary compatible to previous generations

 Contributors to performance improvements

 More ILP through OOO superscalar techniques

 Wider issue, better prediction, better scheduling, … 

 Better memory hierarchies, faster and larger

 Clock frequency improvements
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Problems with Single Core Performance

 Moore’s Law is still doing well (for the foreseeable future…)

 The Power Wall

 Power ≈ C * Vdd
2 * Freq

 Cannot scale transistor count and frequency without reducing Vdd

 Unfortunately, voltage scaling has essentially stalled

 The Complexity Wall

 Designing and verifying increasingly large OOO cores is very expensive

 100s of engineers for 3-5 years

 Caches are easier to design but can only help so much… 
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Processor Scaling Since ~2005
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The Multicore Alternative

 Use Moore’s law to place more cores per chip

 Potentially 2x cores/chip with each CMOS generation

 Without significantly compromising clock frequency

 Known as Multi-Core Processors (MCP) or Chip Multiprocessors (CMP)

 The good news

 Continued scaling of chip-level peak (throughput) performance

 Mitigate the undesirable superscalar power scaling (“wrong side of the square law”)

 Facilitate design and verification, and product differentiation

 The bad news

 Require multithreaded workloads: multiple programs or parallel programs

 Require parallelizing single applications into parallel programs 

 Power is still an issue as transistors shrink due to leakage current
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OOO Superscalar vs. Multicore Processor
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IPC Scaling of Wide-Issue OOO Superscalar
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OOO Superscalar vs. Multicore Processor Speedups
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Power Scaling for In-Order vs. OOO Cores
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Multicore Processor Design Questions

 Type of cores
 Big or small cores, e.g. few OOO cores Vs many simple cores 

 Same or different cores, e.g. homogeneous or heterogeneous

 Memory hierarchy
 Which caching levels are shared and which are private

 How to effectively share a cache

 More on this in the next lecture 

 On-chip interconnect 
 Bus vs. ring vs. scalable interconnect (e.g., mesh)

 Flat vs. hierarchical organizations

 HW assists for parallel programming
 HW support for fine-grain scheduling, transactions, etc.
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High-Level Design Issues

 Share caches?

 yes: all designs that connect at L2 or L3

 no: initial designs that connected at “bus”

 Coherence?

 Private caches? Reuse existing MP/socket coherence

 Optimize for on-chip sharing?

 Shared caches?

 Need new coherence protocol for on-chip caches

 Often write-through L1 with back-invalidates for other caches 
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Cache Organization for Parallel Systems
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Multicore Interconnects

 Bus/Crossbar 

 Point-to-point links, many possible topologies

 2D (suitable for planar realization)

 Ring

 Mesh

 2D torus

 3D - may become more interesting with 3D packaging (chip stacks)

 Hypercube

 3D Mesh

 3D torus
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Bus-Based MCPs (e.g. Pentium 4 Dual Core)
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Crossbar-Based MCPs (e.g. IBM Power4/5/6/7)
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On-Chip Bus/Crossbar Interconnects

 Used widely (Power4/5/6/7 Piranha, Niagara, etc.)

 Assumed not scalable

 Is this really true, given on-chip characteristics?

 May scale "far enough": watch out for arguments at the limit

 e.g. swizzle-switch makes x-bar scalable enough [UMich]

 Simple, straightforward, nice ordering properties

 Wiring can be a nightmare (for crossbar)

 Bus bandwidth is weak (even multiple busses)

 Compare DEC Piranha 8-lane bus (32GB/s) to Power4 crossbar (100+GB/s)

 Workload demands: commercial vs. scientific
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Ring-Based MCPs
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On-Chip Ring Interconnect

 Point-to-point ring interconnect

 Simple, easy

 Nice ordering properties (unidirectional)

 Every request a broadcast (all nodes can snoop)

 Scales poorly: O(n) latency, fixed bandwidth

 Optical ring (nanophotonic)

 HP Labs Corona project [Vantrease review]

 Latency is arguably O(sqrt(n))

 Covert switching – broadcast not easy any more

 Still fixed bandwidth (but lots of it)
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On-Chip Mesh

 Widely assumed in academic literature

 Tilera  (Wentzlaff reading), Intel 80-core prototype

 Not symmetric, so have to watch out for load imbalance on inner 
nodes/links

 2D torus: wraparound links to create symmetry

 Not obviously planar

 Can be laid out in 2D but longer wires, more intersecting links

 Latency, bandwidth scale well

 Lots of existing literature
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MCPs with Heterogeneous Cores

 WORKLOADS HAVE DIFFERENT CHARACTERISTICS
 LARGE NUMBER OF SMALL CORES (APPLICATIONS WITH HIGH THREAD COUNT)
 SMALL NUMBER OF LARGE CORES (APPLICATIONS WITH SINGLE THREAD OR LIMITED 

THREAD COUNT)
 MIX OF WORKLOADS
 MOST PARALLEL APPLICATIONS HAVE PARALLEL AND SERIAL SECTIONS (AMDAHL LAW)

 HENCE, HETEROGENEITY
 TEMPORAL: e.g., EPI THROTTLING
 SPATIAL: EACH CORE CAN DIFFER EITHER IN PERFORMANCE OR FUNCTIONALITY

 PERFORMANCE ASYMMETRY
 USING HOMOGENEOUS COREs AND DVFS, OR PROCESSOR WITH MIXED CORES
 VARIABLE RESOURCES: e.g., ADAPT SIZE OF CACHE BY GATING OFF POWER TO CACHE 

BANKS (UP TO 50%)
 SPECULATION CONTROL (LOW BRANCH PREDICTION CODE): THROTTLE THE NUMBER OF 

IN-FLIGHT INSTRUCTIONS (REDUCES ACTIVITY FACTOR)
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MCPs with Heterogeneous Cores

 FUNCTIONAL ASYMMETRY
 USE HETEROGENEOUS CORES

 E.G., GP CORES, GRAPHICS PROCESSORS, CRYTOGRAPHY, VECTOR CORES, FLOATING-POINT CO-
PROCESSORS

 HETEROGENEOUS CORES MAY BE PROGRAMMED DIFFERENTLY
 MECHANISMS MUST EXIST TO TRANSFER ACTIVITY FOR ONE CORE TO ANOTHER
 FINE-GRAIN: IN THE CASE OF FLOATING  POINT CO-PROCESSOR, USE ISA
 COARSE GRAIN: TRANSFER THE COMPUTATION FROM ONE CORE TO ANOTHER USING APIs

 EXAMPLES:
 CORES WITH DIFFERENT ISAs
 CORES WITH DIFFERENT CACHE SIZES, DIFFERENT ISSUE WIDTH, DIFFERENT BRANCH PREDICTORS
 CORES WITH DIFFERENT MICRO-ARCHITECTURES (E.G., STATIC AND DYNAMIC)
 DIFFERENT TYPES OF CORES (E.G., GP AND SIMD)

 GOALS:
 SAVE AREA (MORE CORES!)
 SAVE POWER BY USING CORES WITH DIFFERENT POWER/PERFORMANCE CHARACTERISTICS FOR 

DIFFERENT PHASES OF EXECUTION 
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MCPs with Heterogeneous Cores

 DIFFERENT APPLICATIONS MAY HAVE BETTER PERFORMANCE/POWER 
CHARACTERISTICS ON SOME TYPES OF CORE (STATIC)

 SAME APPLICATION GOES THROUGH DIFFERENT PHASES THAT CAN USE 
DIFFERENT CORES MORE EFFICIENTLY (DYNAMIC)
 EXECUTION MOVES FROM CORE TO CORE DYNAMICALLY
 MOST INTERESTING CASE (DYNAMIC)
 COST OF SWITCHING CORES (MUST BE INFREQUENT: SUCH AS O/S TIME-SLICE)

 ASSUME CORES WITH SAME ISA BUT DIFFERENT PERFORMANCE/ENERGY 
RATIO
 NEED ABILITY TO TRACK PERFORMANCE AND ENERGY TO MAKE DECISIONS
 GOAL: MINIMIZE DELAY-ENERGY PRODUCT
 SAMPLE PERFORMANCE AND ENERGY SPENT PERIODICALLY
 TO SAMPLE, RUN APPLICATION ON ONE OR MULTIPLE CORES IN SMALL INTERVALS
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 Mobile users spend a high amount of time on a  

range of mobile applications*:

 38% on web browsing and Facebook

 32% on gaming

 16% on audio, video and utility

 Common “building blocks” in workloads:

 Short bursts of high intensity

 Long periods of sustained high intensity

 Low intensity

Mobile Application Workloads

* Source: FlurryAnalytics Time
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Measured on a Quad Cortex-A7 Symmetric Multiprocessing platform33



Mobile Application Workloads

 Mobile users spend a high amount of time on a

range of mobile applications:

acebook 38 F
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% on Gaming
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Castlemaster – Long periods of sustained high Audi

intensity

Audio Playback – Low intensity

o Playback
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Sustained Performance  
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 Heterogeneous Computing

 2x higher performance vs. LITTLE only

 Up to 75% CPU power savings vs. big only

 Architecturally Identical Processors

 High-performance tuned big cores

 Low-power tuned LITTLE cores

 Hardware Coherency

 Cache Coherent Interconnect (CCI)

 L1 and L2 snooping between clusters

 Seamless & Automatic TaskAllocation

big.LITTLE Technology

L2 Cache

Interrupt Control

“Right Task on the Right Core”

Up to 40% SOC power savings*

* Measured across a set of casual games and common use-cases on an  ARM

Partner 4xCortex-A15.4xCortex-A7 big.LITTLE device

big Cluster

LITTLE

Cluster

L2 Cache

Cache Coherent Interconnect
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big.LITTLE Technology
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B. Multi-Computer Clusters (MCC)

MULTIPROCESSING
Shared Memory Multicore 
Processors (MCP) or Chip 

Multiprocessors (CMP)

CLUSTER COMPUTING
Shared File System and LAN 
Connected Multi-Computer 

Clusters (MCC)
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What is a Multi-Computer Cluster?

 Cluster = a set of computers connected with a network
 Cluster can be viewed by the user as a single system (or a “multi-computer” system)

 Typically commodity computers (PCs) connected by commodity LAN (Ethernet)

 Each computer (cluster node) runs its own OS and has its own address space

 Supports execution of parallel programs via message passing with a master node

 Typically supported by a shared file system and some “clustering middleware”

 Advantages
 Easy to build: early systems were customer built using commodity PCs and networks

 Relatively inexpensive: can get significant throughput performance at very low cost

 Wide range of systems: can vary from small personal clusters to supercomputers

 Leverage concurrent advancements in personal computers and local area networks
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The Beowulf Cluster           [Thomas Sterling & Donald Becker, NASA, 1994]

http://en.wikipedia.org/wiki/File:Beowulf-cluster-the-borg.jpghttp://en.wikipedia.org/wiki/File:Beowulf.jpg

“Beowulf is a multi-computer which can be used for parallel computations. It is a system with 
one server node, and one or more client nodes connected via Ethernet. Beowulf also uses 
commodity software like FreeBSD, Linux, PVM (Parallel Virtual Machine) and MPI (Message 
Passing Interface). Server node controls the cluster and serves files to the client nodes.”

“If you have two 
networked computers 
which share at least 
the /home file 
system via NFS, and 
trust each other to 
execute remote shell 
(rsh), then it could be 
argued that you have 
a simple, two node 
Beowulf machine.”
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Beowulf Cluster Attributes

 Multi-Computer Architecture
 Cluster Nodes: commodity PC’s (each with its OS instance, memory address space, disk}

 Cluster Interconnect: commodity LAN’s, Ethernet, switches

 Operating System: Unix, BSD, Linux (same OS running on each node)

 Cluster Storage: local storage in each node, centralized shared storage

 Parallel Programming Model
 “Clustering middleware:” a SW layer atop the nodes to orchestrate the nodes for users

 Application programs do not see the cluster nodes, only interface with master node

 PVM: (Oak Ridge NL) library installed on every node, runtime environment for message 
passing, task and resource management.

 MPI: (ARPA, NSF) use TCP/IP and socket connection, now widely available, library to 
achieve high performance at low cost.
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Example Clusters
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Example Clusters
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Physical Design
• Workstations (PCs) on a LAN
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Physical Design

• Rack Mounted PC Boards
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Physical Design

 Blades
 Shared power supply, 

cooling, etc.
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Physical Design

 Sun’s Project Black Box (Modular Datacenter)
“Portable computing” – up to 17 tons, 280 RU

BYOPS

No field-replaceable parts – why?
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Applications

 Commercial
 Large shared databases

 Largely independent threads

 “Architecture” often means software architecture

May use higher performance storage area network (SAN)

 Scientific
 Inexpensive high performance computing

 Based on message passing

 Also PGAS (partitioned global address space); software shared memory

May use higher performance node-to-node network
Where HPC clusters end and MPPs begin isn’t always clear

11/09/2016 (© J.P. Shen) 18-600  Lecture #20 47



Software Considerations
 Throughput Parallelism
 As in many commercial servers
Distributed OS message passing
 VAXcluster early example

 True Parallelism
 As in many scientific/engineering applications
Use programming model and user-level API

 Programming Models
Message-Passing
 Commonly used

 Shared memory
 Virtual Shared Memory, Software Distributed Shared Memory
 PGAS – software abstraction, runtime invokes remote DMA

 Of course, a real system can do both throughput and true parallelism
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Computer Cluster – Summary 

 Reasons for clusters
• Performance – horizontal scaling
• Cost: commodity h/w, commodity s/w
• Redundancy/fault tolerance

 Hardware Challenges
• Cost, commodity components
• Power, cooling, energy proportionality
• Reliability, usability, maintainability

 Software Challenges
• Programming model
• Applications with suitable characteristics
• Load balancing
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Google Cluster          [Luiz André Barroso , Jeffrey Dean , Urs Hölzle, 2003]

Luiz Andre Barroso, Jeffrey Dean, Urs Holzle

Google



Design Principles of Google Clusters

 Software level reliability
• No fault-tolerant hardware features; e.g.

• redundant power supplies

• A redundant array of inexpensive disks (RAID)

 Use replication 
• for better request throughput and availability

 Price/performance beats peak performance
• CPUs giving the best performance per unit price

• Not the CPUs with best absolute performance

 Using commodity PCs
• reduces the cost of computation

11/09/2016 (© J.P. Shen) 18-600  Lecture #20 51



Serving a Google Query

Figure shows Google query-serving architecture
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Google Query Serving Infrastructure

Elapsed time: 0.25s, machines involved: 1000s+
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Application Summary: Serving a Google Query

 Geographically distributed clusters

• Each with many thousands of machines

 First perform Domain Name System (DNS) lookup 

• Maps request to a nearby cluster

 Send HTTP request to selected cluster

• Request serviced locally w/in that cluster

 Clusters consist of  Google Web Servers (GWSes)

• Hardware-based load balancer distributes load among GWSes
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Query Execution

 Phase 1:
• Index servers consult inverted index that maps query word to list of documents
• Intersect hit lists and compute relevance score for each doc (*secret sauce*)
• Results in ordered list of document ids (docids)

 Both documents and inverted index consume terabytes of data
 Index partitioned into “shards”, shards are replicated

• Index search becomes highly parallel; multiple servers per shard load balanced requests
• Replicated shards add to parallelism and fault tolerance

 Phase 2:
• Start w/ docids and determine title, resource locator, document summary

 Done by document servers
• Partition documents into shards
• Replicate on multiple servers
• Route requests through load balancers



Step 1 – DNS 
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 User ’s browser must map google.com to an IP address

 “google.com” comprises

 Multiple clusters distributed worldwide

 Each cluster contains thousands of machines

 DNS-based load balancing

 Select cluster by taking user ’s geographic proximity into account

 Load balance across clusters

 [similar to Akamai’s approach]

[Paul Krzyzanowski, 2012, Rutgers]



Step 2 – Send HTTP Request
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 IP address corresponds to a load balancer within a cluster

 Load balancer

 Monitors the set of Google Web Servers (GWS)

 Performs local load balancing of requests among available servers

 GWS machine receives the query

 Coordinates the execution of the query

 Formats results into an HTML response to the user



Step 3 – Find Document via Inverted Index
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 Index Servers

 Map each query word → {list of documents} (hit list)

 Inverted index generated from web crawlers → MapReduce

 Intersect the hit lists of each per-word query

 Compute relevance score for each document

 Determine set of documents

 Sort by relevance score



Parallelizing the Inverted Index
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 Inverted index is 10s of terabytes

 Search is parallelized

 Index is divided into index shards

 Each index shard is built from a randomly chosen subset of documents

 Pool of machines serves requests for each shard

 Pools are load balanced

 Query goes to one machine per pool responsible for a shard

 Final result is ordered list of document identifiers (docids)



Step 4 – Get Title and URL for Each docid
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 For each docid, the GWS looks up

 Page title

 URL

 Relevant text: document summary specific to the query

 Handled by document servers (docservers)



Parallelizing Document Lookup
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 Like index lookup, document lookup is partitioned & parallelized

 Documents distributed into smaller shards
 Each shard = subset of documents

 Pool of load-balanced servers responsible for processing each shard

 Together, document servers access a cached copy of the entire web!



Google Clusters Through the Years

“Google” Circa 1997 (google.stanford.edu) Google (circa 1999)
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Google Data Center (Circa 2000)

Google Clusters Through the Years

Google (new data center 2001)

3 days later
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Recent Design
• In-house rack design
• PC-class motherboards
• Low-end storage and networking hardware
• Linux
• + in-house software
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Container Datacenter 
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Container Datacenter 
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Comparison: Custom Built vs. High-end Servers 

Typical x86 - based 
server

Custom built x86 - based 
server

PROCESSORS 8 2-GHz Xeon CPUs 176  2-GHz Xeon CPUs 22x

RAM 64 Gbytes of RAM 176 Gbytes of RAM 3x

DISK SPACE 8 Tbytes of disk space 7 Tbytes of disk space -1 TB

PRICE $758,000 $278,000 $480,000
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The Google “Cloud”

[ NYT: June 8, 2006]

11/09/2016 (© J.P. Shen) 18-600  Lecture #20 68



Google Cluster – Conclusions

 For a large scale web service system like Google

– Design the algorithm which can be easily parallelized

– Design the architecture using replication to achieve distributed     
computing/storage and fault tolerance

– Be aware of the power problem which significantly restricts the use of 
parallelism

 Several key pieces of infrastructure for search systems:
– GFS

– MapReduce

– BigTable
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 In 2010, Google remodeled its search infrastructure
 Old system

 Based on MapReduce (on GFS) to generate index files
 Batch process: next phase of MapReduce cannot start until first is complete

 Web crawling → MapReduce → propagation

 Initially, Google updated its index every 4 months. Around 2000, it reindexed and 
propagated changes every month
 Process took about 10 days
 Users hitting different servers might get different results

 New system, named Caffeine
 Fully incremental system: Based on BigTable running on GFS2
 Support indexing many more documents: ~100 petabytes
 High degree of interactivity: web crawlers can update tables dynamically
 Analyze web continuously in small chunks

 Identify pages that are likely to change frequently

 BTW, MapReduce is not dead. Caffeine uses it in some places, as do lots of other services.

[Paul Krzyzanowski, 2012, Rutgers]Change to Caffeine
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 GFS was designed with MapReduce in mind
 But found lots of other applications
 Designed for batch-oriented operations

 Problems
 Single master node in charge of chunkservers
 All info (metadata) about files is stored in the master’s memory – limits total number of

files
 Problems when storage grew to tens of petabytes (1012 bytes)
 Automatic failover added (but still takes 10 seconds)
 Designed for high throughput but delivers high latency: master can become a bottleneck
 Delays due to recovering from a failed replica chunkserver delay the client

 GFS2
 Distributed masters
 Support smaller files: chunks go from 64 MB to 1 MB
 Designed specifically for BigTable (does not make GFS obsolete)

GFS to GFS2
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• Web Search for a Planet: The Google Cluster Architecture

Luiz André Barroso, Jeffrey Dean, Urs Hölzle Google, Inc. 

research.google.com/archive/googlecluster.html

• Our new search index: Caffeine
–

–

The Official Google Blog

http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html

• GFS: Evolution on Fast-forward
–

–

–

Marshall Kirk McKusick, Sean Qunlan

Association for Computing Machinery, August 2009

http://queue.acm.org/detail.cfm?id=1594206

• Google search index splits with MapReduce
–

–

–

Cade Metz

The Register, September 2010

http://Sept/2009/08/12/google_file_system_part_deux/

• Google File System II: Dawn of the Multiplying Master Nodes
–

–

–

Cade Metz

The Register, August 2009

http://www.theregister.co.uk/2010/09/09/google_caffeine_explained/

• Exclusive: How Google’s Algorithm Rules the Web
–

–

–

Steven Levy

Wired Magazine, March 2010

http://www.wired.com/magazine/2010/02/ff_google_algorithm/all/1

More References
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Lecture 21:
“Multicore Cache Coherence”

 Recommended References:
• “Chip Multiprocessor Architecture: Techniques to Improve Throughput 

and Latency” by Kunle Olukotun, Lance Hammond, and James Laudon in 
Synthesis Lectures on Computer Architecture, Morgan & Claypool, 2007. 

• “Parallel Computer Organization and Design,” by Michel Dubois, Murali 
Annavaram, Per Stenstrom, Chapters 5 and 7, 2012. 

John P. Shen & Zhiyi Yu
November 14, 2016
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