18-600 Foundations of Computer Systems

Lecture 19:
“Dynamic Memory Allocation”

John Shen & Zhiyi Yu
November 7, 2016

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 9 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron E N G I N E E RI N G

11/7/2016 (©Zzhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

* Garbage collection
 Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2

Dynamic Memory Allocation

* Programmers use dynamic memory allocators
(such asmalloc) to acquire VM at run time.

* For data structures whose size is only known at
runtime.

* Dynamic memory allocators manage an area of
process virtual memory known as the heap.

* Allocator maintains heap as collection of variable
sized blocks, which are either allocated or free

* Types of allocators

* Explicit allocator: application allocates and
frees space
e Eg, mallocand freeinC
* Implicit allocator: application allocates, but
does not free space
* E.g. garbage collection in Java, ML, and Lisp

0

Application

Dynamic Memory Allocator

Heap

User stack

> @

Heap (viamalloc)

Top of heap
(brk ptr)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 3

The malloc Package

#include <stdlib.h>

void *malloc(size t size)

e Successful:

e Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e |fsize == 0, returns NULL
e Unsuccessful: returns NULL (0) and sets errno

vold free(void *p)
* Returns the block pointed at by p to pool of available memory
* p must come from a previous call tomalloc or realloc

Other functions
* calloc: Version of malloc that initializes allocated block to zero.
« realloc: Changes the size of a previously allocated block.
* sbrk: Used internally by allocators to grow or shrink the heap

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 4

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
inti, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {
perror("malloc");
exit(0);
}

/* Initialize allocated block */
for (i=0; i<n; i++)
p[i] = i;

/* Return allocated block to the heap */
free(p);

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University s

Allocation Example

malloc (4)

pl

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

* Assumption
* Memory is word addressed.
* Words are int-sized.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University ¢

Constraints

* Applications
e Canissue arbitrary sequence of malloc and £ree requests
 free request must betoamalloc’d block

e Allocators
e Can’t control number or size of allocated blocks

Must respond immediately tomalloc requests
e j.e., can’t reorder or buffer requests

Must allocate blocks from free memory
* j.e., can only place allocated blocks in free memory

Must align blocks so they satisfy all alignment requirements
» 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

Can manipulate and modify only free memory

Can’t move the allocated blocks once they are malloc’d
* j.e., compaction is not allowed

Carnegie Mellon University 7

Performance Goal: Throughput

* Given some sequence of malloc and free requests:
* Ry R, ... Ry, ..., R,

* Goals: maximize throughput and peak memory utilization
* These goals are often conflicting

* Throughput:
* Number of completed requests per unit time

* Example:
5000 malloc calls and 5,000 £ree calls in 10 seconds
* Throughput is 1,000 operations/second

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 8

Performance Goal: Peak Memory Utilization

* Given some sequence of malloc and free requests:
* Ry R, ... Ry ..., R, ;

* Def: Aggregate payload P,
* malloc (p) resultsin a block with a payload of p bytes
* After request R, completed, the aggregate payload P, is the sum of currently allocated payloads

* Def: Current heap size H,

* Assume H, is monotonically nondecreasing
* i.e., heap only grows when allocator uses sbrk

* Def: Peak memory utilization after k+1 requests
* Uy=(max. P;) / H,

* Poor memory utilization caused by fragmentation: internal fragmentation and
external fragmentation

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University ¢

Internal Fragmentation

* For a given block, internal fragmentation occurs if payload is smaller than

Internal

fragmentation

block size
Block
A
o N
Internal - Payload
fragmentation
e Caused by

* Overhead of maintaining heap data structures
* Padding for alignment purposes

* Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

* Depends only on the pattern of previous requests
* Thus, easy to measure

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 10

External Fragmentation

* Occurs when there is enough aggregate heap memory, but no single free block
is large enough

pl = malloc (4)

malloc (5)

'O
N
Il

p3 = malloc(6)

free (p2)

Oops! (what would happen now?)

p4 = malloc (6)

* Depends on the pattern of future requests
e Thus, difficult to measure

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 11

Implementation Issues

* How do we know how much memory to free given just a pointer?
* How do we keep track of the free blocks?

 What do we do with the extra space when allocating a structure that is smaller
than the free block it is placed in?

* How do we pick a block to use for allocation -- many might fit?

e How do we reinsert freed block?

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 12

Knowing How Much to Free

e Standard method

* Keep the length of a block in the word preceding the block.
* This word is often called the header field or header

* Requires an extra word for every allocated block

p10
pO0 = malloc (4) fS W
block size payload
free (p0)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 13

Keeping Track of Free Blocks

* Method 1: Implicit list using length—Ilinks all blocks

S 4

6

 Method 2: Explicit list among the free blocks using pointers

T

L

5 - 4

6

 Method 3: Segregated free list

e Different free lists for different size classes

* Method 4: Blocks sorted by size

e Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the

length used as a key

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

* Garbage collection
 Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 15

Method 1. Implicit List

* For each block we need both size and allocation status
e Could store this information in two words: wasteful!

e Standard trick

* |f blocks are aligned, some low-order address bits are always O
* Instead of storing an always-0 bit, use it as a allocated/free flag

* When reading size word, must mask out this bit

1 word
A
o N

Size a
Format of
allocated and Payload
free blocks

Optional

padding

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 1

Detailed Implicit Free List Example

Start Unused /\ /\/\ /\

of ‘ 8/0 ‘ 16/1 ‘ 32/0
heap
. Double-word Allocated blocks: shaded
. aligned Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

16/1

‘O/lll

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 17

Implicit List: Finding a Free Block

* First fit:
e Search list from beginning, choose first free block that fits:
p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=pP+ (*p & -2); \\ goto next block (word addressed)

* Can take linear time in total number of blocks (allocated and free)

* In practice it can cause “splinters” at beginning of list
e Next fit:

» Like first fit, but search list starting where previous search finished
* Should often be faster than first fit: avoids re-scanning unhelpful blocks
* Some research suggests that fragmentation is worse

* Best fit:

e Search the list, choose the best free block: fits, with fewest bytes left over

» Keeps fragments small—usually improves memory utilization

Shen) Lecture #19 Carnegie Mellon University 18

Implicit List: Allocating in Free Block

* Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want to split the block

addblock (p, 4)

4 4 4 2 2

vold addblock (ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

* (ptnewsize) = oldsize - newsize; // set length in remaining

} // part of block

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 19

Implicit List: Freeing a Block

 Simplest implementation:
* Need only clear the “allocated” flag

void free block(ptr p) { *p = *p & -2 }

* But can lead to “false fragmentation”

T~ T~ T~

4 4 4

2

free (p) p

4 4 4

malloc (5) Oops!

There is enough free space, but the allocator won’t be able to find it

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 20

Implicit List: Coalescing

* Join (coalesce) with next/previous blocks, if they are free

* Coalescing with next block

4 4 4 2 2 .
f logically
4 4 6 2 2
void free block(ptr p) {
P = *p & —2; // clear allocated flag
next = p + *p; // find next block
1f ((*next & 1) == 0)
*p = *p t+ *next; // add to this block if
} // not allocated

* But how do we coalesce with previous block?

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2

Implicit List: Bidirectional Coalescing

* Boundary tags [Knuth73]

* Replicate size/allocated word at “bottom” (end) of free blocks

* Allows us to traverse the “list” backwards, but requires extra space

* Important and general technique!

4 4 4

4 6

6 4 4

\/\/\/

Header — Size a
Format of pavioad and
allocated and ayroac an
padding
free blocks
Boundary tag — Size a

(footer)

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 22

Constant Time Coalescing

Block being |
freed

Case 1

Allocated

Case 2

Allocated

Allocated

Free

Case 3 Case 4
Free Free
Allocated Free

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 23

Constant Time Coalescing (Case 1)

ml

ml

m2

m2

ml

ml

m2

m2

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 24

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m2 0
n 1
m2 0
m2 0 n+m2 0

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0

n 1

n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2

Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
n 1
m2 0
m2 0 n+ml+m?2 0

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 27

Disadvantages of Boundary Tags

* Internal fragmentation

* Can it be optimized?
 Which blocks need the footer tag? Only free blocks
 What does that mean? Use another free bits to indicate free/allocated blocks

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2s

Summary of Key Allocator Policies

* Placement policy:
* First-fit, next-fit, best-fit, etc.
* Trades off lower throughput for less fragmentation

* Interesting observation: segregated free lists (next lecture) approximate a best fit placement
policy without having to search entire free list

* Splitting policy:
* When do we go ahead and split free blocks?
* How much internal fragmentation are we willing to tolerate?

* Coalescing policy:
* Immediate coalescing: coalesce each time £ree is called

* Deferred coalescing: try to improve performance of £ree by deferring coalescing until needed.
Examples:

e Coalesce as you scan the free list formalloc
* Coalesce when the amount of external fragmentation reaches some threshold

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 2

Implicit Lists: Summary

Implementation: very simple

Allocate cost:
* |linear time worst case

Free cost:
e constant time worst case
= even with coalescing

Memory usage:
* will depend on placement policy
* First-fit, next-fit or best-fit

Not used in practice formalloc/free because of linear-time allocation
= used in many special purpose applications

However, the concepts of splitting and boundary tag coalescing are general to all allocators

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 3o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

* Garbage collection
 Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 31

Keeping Track of Free Blocks

* Method 1: Implicit free list using length—Ilinks all blocks

 Method 2: Explicit free list among the free blocks using pointers

,/\

5 — 4 6 2

* Method 3: Segregated free list

e Different free lists for different size classes

* Method 4: Blocks sorted by size

e Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length
used as a key

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 32

Explicit Free Lists

Allocated (as before)

Size a
Payload and

padding

Size a

Free
Size a

Next

Prev
Size a

* Maintain list(s) of free blocks, not all blocks
* The “next” free block could be anywhere

* So we need to store forward/back pointers, not just sizes

* Still need boundary tags for coalescing

* Luckily we track only free blocks, so we can use payload area

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 33

Explicit Free Lists

* Logically:

* Physically: blocks can be in any order -

/ Forward (next) links
A ,/V\\ B

4 — 4 4 4 6 / — 6 4 a4 4 4

Back (prev) links

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

conceptual graphic
Before

11

After (with splitting)

= malloc(...)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 35

Freeing With Explicit Free Lists

* Insertion policy: Where in the free list do you put a newly freed block?
* LIFO (last-in-first-out) policy
* Insert freed block at the beginning of the free list

* Pro: simple and constant time

e Con: studies suggest fragmentation is worse than address ordered

* Address-ordered policy

* Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

* Con: requires search

* Pro: studies suggest fragmentation is lower than LIFO

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

Before

conceptual graphic

free()

Root LI @)

Insert the freed block at the root of the list

After

g «S | mmmm >
I

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 37

Freeing With a LIFO Policy (Case 2)

Before

conceptual graphic

free()

Root I 1 % S

 Splice out successor block, coalesce both memory blocks and insert the new block at
the root of the list

After

Root ﬁ O

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 UG LIUE U LV AULIULL WLLL VUL DILY 38

0 «—
o—

Freeing With a LIFO Policy (Case 3)

Before

conceptual graphic

free()

Root i. I % O

* Splice out predecessor block, coalesce both memory blocks, and insert the new block
at the root of the list

After

Root H

0 «—
—0

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Vlellon University 39

Before

Root

After

Root

-

11/7/2016 (©Zhiyi Yu & John Shen)

free()

Freeing With a LIFO Policy (Case 4)

conceptual graphic

!

!

I

!

%o

* Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert
the new block at the root of the list

0 «—

—O

Lecture #19

0 «—

LCarnegie Viellon University 40

Explicit List Summary

 Comparison to implicit list:
* Allocate is linear time in number of free blocks instead of all blocks
* Much faster when most of the memory is full
 Slightly more complicated allocate and free since needs to splice blocks in and out of the list

» Some extra space for the links (2 extra words needed for each block)
* Does this increase internal fragmentation?

* Most common use of linked lists is in conjunction with segregated free lists
* Keep multiple linked lists of different size classes, or possibly for different types of objects

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

* Garbage collection
 Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 42

Segregated List (Seqlist) Allocators

e Each size class of b

1-2

5-8

9-inf

e Often

ocks has its own free list

—

nave separate classes for each sma

| size

* For larger sizes: One class for each two-power size

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19 Carnegie Mellon University 43

Seqglist Allocator

* Given an array of free lists, each one for some size class

* To allocate a block of size n:
e Search appropriate free list for block of size m > n

 |f an appropriate block is found:
* Split block and place fragment on appropriate list (optional)
* If no block is found, try next larger class

* Repeat until block is found

* If no block is found:
e Request additional heap memory from OS (using sbrk ())
 Allocate block of n bytes from this new memory
* Place remainder as a single free block in largest size class.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 44

Seqglist Allocator (cont.)

* To free a block:
* Coalesce and place on appropriate list

* Advantages of seglist allocators
* Higher throughput
* log time for power-of-two size classes
* Better memory utilization

 First-fit search of segregated free list approximates a best-fit search of entire heap.

* Extreme case: Giving each block its own size class is equivalent to best-fit.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 4

More Info on Allocators

* D. Knuth, “The Art of Computer Programming”, 2"¥ edition, Addison Wesley, 1973

* The classic reference on dynamic storage allocation

* Wilson et al, “Dynamic Storage Allocation: A Survey and Critical Review”, Proc.
1995 Int’| Workshop on Memory Management, Kinross, Scotland, Sept, 1995.

 Comprehensive survey
e Available from CS:APP student site (csapp.cs.cmu.edu)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

e Garbage collection
 Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 47

Implicit Memory Management:
Garbage Collection

* Garbage collection: automatic reclamation of heap-allocated storage—
application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

e Common in many dynamic languages:
* Python, Ruby, Java, Perl, ML, Lisp, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 4

Garbage Collection

* How does the memory manager know when memory can be freed?
* In general we cannot know what is going to be used in the future since it depends on

conditionals

* But we can tell that certain blocks cannot be used if there are no pointers to them

* Must make certain assumptions about pointers
* Memory manager can distinguish pointers from non-pointers
* All pointers point to the start of a block

e Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19 Carnegie Mellon University 49

Classical GC Algorithms

* Mark-and-sweep collection (McCarthy, 1960)

* Does not move blocks (unless you also “compact”)

» Reference counting (Collins, 1960)
* Does not move blocks (not discussed)

* Copying collection (Minsky, 1963)
* Moves blocks (not discussed)

* Generational Collectors (Lieberman and Hewitt, 1983)
e Collection based on lifetimes

* Most allocations become garbage very soon

* So focus reclamation work on zones of memory recently allocated

* For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”,
John Wiley & Sons, 1996.

Carnegie Mellon University 5o

Memory as a Graph

* We view memory as a directed graph
* Each block is a node in the graph
* Each pointer is an edge in the graph

* Locations not in the heap that contain pointers into the heap are called root nodes (e.g.
registers, locations on the stackc%obal variables)

Root nodes /C> \

Heap nodes O reachable

O Not-reachable
{ X} O (garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 51

Mark and Sweep Collecting

* Can build on top of malloc/free package
* Allocate using malloc until you “run out of space”

* When out of space:
e Use extra mark bit in the head of each block
* Mark: Start at roots and set mark bit on each reachable block
* Sweep: Scan all blocks and free blocks that are not marked

/*
After sweep | free/l/ I free |

ogt /\ Note: arrows here
denote memory
Before mark |__|\/|_J/ | | | | refs, not free list
ptrs.
After mark | | L | | Mark bit set

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 52

Assumptions For a Simple Implementation

* Application
e new (n): returns pointer to new block with all locations cleared
e read(b,i) : read location i of block b into register
e write(b,i,v): writevinto location i of blockb

 Each block will have a header word
e addressedasb[-1], forablockb

* Used for different purposes in different collectors

* [Instructions used by the Garbage Collector
* is ptr(p) : determines whether p is a pointer
* length (b): returns the length of block b, not including the header
* get roots(): returnsall the roots

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 53

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark (p[i]) ; // in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);

}

[1/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 54

Conservative Mark & Sweep in C

* A “conservative garbage collector” for C programs

* is ptr () determinesif a word is a pointer by checking if it points to an allocated block of
memory

* But, in C pointers can point to the middle of a block

ptr
Header l

* So how to find the beginning of the block?
e Can use a balanced binary tree to keep track of all allocated blocks (key is start-of-block)
* Balanced-tree pointers can be stored in header (use two additional words)

Head Data

Size

/ \ Left: smaller addresses

IQV'(TDV' QI‘IAI“ CCAC

ITCJIJI J

1 \IBI 1 L
11/7/2016 (©Zhiyi Yu & John Shen) Left nghtLecture #19 Carnegle lﬁellonUnlverSny 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

* Garbage collection

* Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University s6

Memory-Related Perils and Pitfalls

* Dereferencing bad pointers

* Reading uninitialized memory

* Overwriting memory

* Referencing nonexistent variables
* Freeing blocks multiple times

» Referencing freed blocks

* Failing to free blocks

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 57

C operators

Operators
() (] ->
I o T
* /%
+ —_
<< >>
<= > >=
—_— ':
&
|
& &
| |
7

->, (), and [] have high precedence, with * and & just below

*

&

(type)

sizeof

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

 Unary +, -, and * have higher precedence than binary forms

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Cargegiede SR prpersigy s

C Pointer Declarations: Test Yourself!

int

int

int

int

int

int

int

int

int

**p
(*p) [13]

£ ()

(* (*x[3]) O) [5]

p is a pointer to int

p is an array[13] of pointer to int
p is an array[13] of pointer to int
p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

fis a function returning ptr to an array[13]
of pointers to functions returning int

X is an array[3] of pointers to functions
returning pointers to array[5] of ints

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19 Catiiegie MeRdme Uhivelsity s

Dereferencing Bad Pointers

* The classic scanf bug (val need to be an address)

int val;

scanf (“%d”, wval);

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 6o

Reading Uninitialized Memory

* Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec (int **A, 1nt *x) {
int *y = malloc (N*sizeof (1nt))
int 1, 73,

for (1=0; 1<N; i++)
for (3=0; J<N; J++)
y[1i] += A[1][3]1*x[3J]>
return y;

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 61

Overwriting Memory

* Allocating the (possibly) wrong sized object (should be *int)

int **p;
p = malloc (N*sizeof (int)

for (i=0; i<N; i++) {

) ;

malloc (M*sizeof (1nt)) ;

11/7/2016 (©Zhiyi Yu & John Shen)

Lecture #19

Carnegie Mellon University 62

Overwriting Memory

* Off-by-one error (should be N+1)

int **p;
p = malloc (N*sizeof (int *));

for (i=0; 1<=N; i++) {
pli] = malloc (M*sizeof (1int))

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 63

Overwriting Memory

* Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

e Basis for classic buffer overflow attacks

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 64

Overwriting Memory

* Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != wval)
p t= sizeof (1nt);

return p;

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University ¢s

Overwriting Memory

e Referencing a pointer instead of the object it points to

int *packet;

packet = binheap[0];

binheap[0] = binheap[*size - 1];
*size——;

Heapify (binheap, *size, 0);
return (packet) ;

int *BinheapDelete (1nt **binheap, 1nt *size) {

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University ¢

Referencing Nonexistent Variables

* Forgetting that local variables disappear when a function returns

int *foo () {
int val;

return &val;

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 67

Freeing Blocks Multiple Times

* Nasty!

x = malloc (N*sizeof (int));
<manlpulate x>
free(x);

v = malloc (M*sizeof (int)) ;
<manilipulate y>
free (x);

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University s

Referencing Freed Blocks

e Evill

x = malloc (N*sizeof (int)) ;
<manlpulate x>

free (x);

v = malloc (M*sizeof (int)) ;
for (1i=0; i<M; 1i++)
vili] = x[1]++;

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 6

Failing to Free Blocks (Memory Leaks)

* Slow, long-term killer!

foo () {
int *x = malloc (N*sizeof (1nt));
return;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 70

Failing to Free Blocks (Memory Leaks)

* Freeing only part of a data structure

struct list {
int val;
struct list *next;

by

foo () {
struct list *head = malloc(sizeof(struct list));

head->val = 0;

head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 71

Dealing With Memory Bugs

* Debugger: gdb
* Good for finding bad pointer dereferences
* Hard to detect the other memory bugs

e Data structure consistency checker
* Runs silently, prints message only on error
* Use as a probe to zero in on error

* Binary translator: valgrind
* Powerful debugging and analysis technique
* Rewrites text section of executable object file
* Checks each individual reference at runtime

* Bad pointers, overwrites, refs outside of allocated block

* glibc malloc contains checking code
* setenv MALLOC CHECK 3

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19

Carnegie Mellon University 72

18-600 Foundations of Computer Systems

Lecture 20:
“Overview of Parallel Architectures”

John P. Shen & Zhiyi Yu
November 9, 2016

Next Time

Ky Electrical & Computer
ENGlNEERlNG

9090

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 Carnegie Mellon University 7

