
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 19:
“Dynamic Memory Allocation”

John Shen & Zhiyi Yu
November 7, 2016

11/7/2016 (©Zhiyi Yu & John Shen)

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 9 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

Lecture #19 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation
• Programmers use dynamic memory allocators

(such as malloc) to acquire VM at run time.

• For data structures whose size is only known at
runtime.

• Dynamic memory allocators manage an area of
process virtual memory known as the heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 3

• Allocator maintains heap as collection of variable
sized blocks, which are either allocated or free

• Types of allocators

• Explicit allocator: application allocates and
frees space
• E.g., malloc and free in C

• Implicit allocator: application allocates, but
does not free space
• E.g. garbage collection in Java, ML, and Lisp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package

#include <stdlib.h>

void *malloc(size_t size)

• Successful:
• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL

• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

• Returns the block pointed at by p to pool of available memory

• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero.

• realloc: Changes the size of a previously allocated block.

• sbrk: Used internally by allocators to grow or shrink the heap
11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 6

• Assumption
• Memory is word addressed.

• Words are int-sized.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints

• Applications
• Can issue arbitrary sequence of malloc and free requests

• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks

• Must respond immediately to malloc requests
• i.e., can’t reorder or buffer requests

• Must allocate blocks from free memory
• i.e., can only place allocated blocks in free memory

• Must align blocks so they satisfy all alignment requirements
• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

• Can manipulate and modify only free memory

• Can’t move the allocated blocks once they are malloc’d
• i.e., compaction is not allowed

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput

• Given some sequence of malloc and free requests:
• R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization
• These goals are often conflicting

• Throughput:
• Number of completed requests per unit time

• Example:
• 5,000 malloc calls and 5,000 free calls in 10 seconds

• Throughput is 1,000 operations/second

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Peak Memory Utilization
• Given some sequence of malloc and free requests:

• R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

• malloc(p) results in a block with a payload of p bytes

• After request Rk completed, the aggregate payload Pk is the sum of currently allocated payloads

• Def: Current heap size Hk

• Assume Hk is monotonically nondecreasing
• i.e., heap only grows when allocator uses sbrk

• Def: Peak memory utilization after k+1 requests
• Uk = (maxi<=k Pi) / Hk

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 9

• Poor memory utilization caused by fragmentation: internal fragmentation and
external fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is smaller than
block size

• Caused by
• Overhead of maintaining heap data structures

• Padding for alignment purposes

• Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no single free block
is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)
Oops! (what would happen now?)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that is smaller
than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert freed block?

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free

• Standard method
• Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

• Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the

length used as a key

5 4 26

5 4 26

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit List

• For each block we need both size and allocation status
• Could store this information in two words: wasteful!

• Standard trick
• If blocks are aligned, some low-order address bits are always 0

• Instead of storing an always-0 bit, use it as a allocated/free flag

• When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)

• In practice it can cause “splinters” at beginning of list

• Next fit:
• Like first fit, but search list starting where previous search finished

• Should often be faster than first fit: avoids re-scanning unhelpful blocks

• Some research suggests that fragmentation is worse

• Best fit:
• Search the list, choose the best free block: fits, with fewest bytes left over

• Keeps fragments small—usually improves memory utilization

• Will typically run slower than first fit

p = start;

while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated

(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block

• Allocating in a free block: splitting
• Since allocated space might be smaller than free space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block

• Simplest implementation:
• Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5)
Oops!

There is enough free space, but the allocator won’t be able to find it

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & -2; // clear allocated flag

next = p + *p; // find next block

if ((*next & 1) == 0)

*p = *p + *next; // add to this block if

} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags

• Internal fragmentation

• Can it be optimized?
• Which blocks need the footer tag? Only free blocks

• What does that mean? Use another free bits to indicate free/allocated blocks

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 28

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.

• Trades off lower throughput for less fragmentation

• Interesting observation: segregated free lists (next lecture) approximate a best fit placement
policy without having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?

• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called

• Deferred coalescing: try to improve performance of free by deferring coalescing until needed.
Examples:
• Coalesce as you scan the free list for malloc

• Coalesce when the amount of external fragmentation reaches some threshold
11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary

• Implementation: very simple

• Allocate cost:
• linear time worst case

• Free cost:
• constant time worst case

 even with coalescing

• Memory usage:
• will depend on placement policy

• First-fit, next-fit or best-fit

• Not used in practice for malloc/free because of linear-time allocation
 used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing are general to all allocators

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
• Method 1: Implicit free list using length—links all blocks

• Method 2: Explicit free list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length

used as a key

5 4 26

5 4 26

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks
• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes

• Still need boundary tags for coalescing

• Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

• Logically:

• Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists

• Insertion policy: Where in the free list do you put a newly freed block?

• LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list

• Pro: simple and constant time

• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)

• Con: requires search

• Pro: studies suggest fragmentation is lower than LIFO

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

• Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

• Splice out successor block, coalesce both memory blocks and insert the new block at
the root of the list

free()

Root

Before

Root

After

conceptual graphic

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

• Splice out predecessor block, coalesce both memory blocks, and insert the new block
at the root of the list

free()

Root

Root

Before

After

conceptual graphic

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

• Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert
the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary

• Comparison to implicit list:
• Allocate is linear time in number of free blocks instead of all blocks

• Much faster when most of the memory is full

• Slightly more complicated allocate and free since needs to splice blocks in and out of the list

• Some extra space for the links (2 extra words needed for each block)
• Does this increase internal fragmentation?

• Most common use of linked lists is in conjunction with segregated free lists
• Keep multiple linked lists of different size classes, or possibly for different types of objects

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator

• Given an array of free lists, each one for some size class

• To allocate a block of size n:
• Search appropriate free list for block of size m > n

• If an appropriate block is found:
• Split block and place fragment on appropriate list (optional)

• If no block is found, try next larger class

• Repeat until block is found

• If no block is found:
• Request additional heap memory from OS (using sbrk())

• Allocate block of n bytes from this new memory

• Place remainder as a single free block in largest size class.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)

• To free a block:
• Coalesce and place on appropriate list

• Advantages of seglist allocators
• Higher throughput

• log time for power-of-two size classes

• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search of entire heap.

• Extreme case: Giving each block its own size class is equivalent to best-fit.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

• D. Knuth, “The Art of Computer Programming”, 2nd edition, Addison Wesley, 1973
• The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and Critical Review”, Proc.
1995 Int’l Workshop on Memory Management, Kinross, Scotland, Sept, 1995.
• Comprehensive survey

• Available from CS:APP student site (csapp.cs.cmu.edu)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Memory Management:
Garbage Collection
• Garbage collection: automatic reclamation of heap-allocated storage—

application never has to free

• Common in many dynamic languages:
• Python, Ruby, Java, Perl, ML, Lisp, Mathematica

• Variants (“conservative” garbage collectors) exist for C and C++
• However, cannot necessarily collect all garbage

void foo() {

int *p = malloc(128);

return; /* p block is now garbage */

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbage Collection

• How does the memory manager know when memory can be freed?
• In general we cannot know what is going to be used in the future since it depends on

conditionals

• But we can tell that certain blocks cannot be used if there are no pointers to them

• Must make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers

• All pointers point to the start of a block

• Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical GC Algorithms
• Mark-and-sweep collection (McCarthy, 1960)

• Does not move blocks (unless you also “compact”)

• Reference counting (Collins, 1960)
• Does not move blocks (not discussed)

• Copying collection (Minsky, 1963)
• Moves blocks (not discussed)

• Generational Collectors (Lieberman and Hewitt, 1983)
• Collection based on lifetimes

• Most allocations become garbage very soon

• So focus reclamation work on zones of memory recently allocated

• For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”,
John Wiley & Sons, 1996.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory as a Graph
• We view memory as a directed graph

• Each block is a node in the graph

• Each pointer is an edge in the graph

• Locations not in the heap that contain pointers into the heap are called root nodes (e.g.
registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Collecting

• Can build on top of malloc/free package
• Allocate using malloc until you “run out of space”

• When out of space:
• Use extra mark bit in the head of each block
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows here
denote memory
refs, not free list

ptrs.

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions For a Simple Implementation

• Application
• new(n): returns pointer to new block with all locations cleared

• read(b,i): read location i of block b into register

• write(b,i,v): write v into location i of block b

• Each block will have a header word
• addressed as b[-1], for a block b

• Used for different purposes in different collectors

• Instructions used by the Garbage Collector
• is_ptr(p): determines whether p is a pointer

• length(b): returns the length of block b, not including the header

• get_roots(): returns all the roots

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {

if (!is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i < length(p); i++) // call mark on all words

mark(p[i]); // in the block

return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {

if markBitSet(p)

clearMarkBit();

else if (allocateBitSet(p))

free(p);

p += length(p);

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conservative Mark & Sweep in C

• A “conservative garbage collector” for C programs
• is_ptr() determines if a word is a pointer by checking if it points to an allocated block of

memory

• But, in C pointers can point to the middle of a block

• So how to find the beginning of the block?
• Can use a balanced binary tree to keep track of all allocated blocks (key is start-of-block)

• Balanced-tree pointers can be stored in header (use two additional words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

• Garbage collection

• Memory-related perils and pitfalls

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls

• Dereferencing bad pointers

• Reading uninitialized memory

• Overwriting memory

• Referencing nonexistent variables

• Freeing blocks multiple times

• Referencing freed blocks

• Failing to free blocks

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

• ->, (), and [] have high precedence, with * and & just below

• Unary +, -, and * have higher precedence than binary forms

Source: K&R page 5311/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 58

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.1211/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers

• The classic scanf bug (val need to be an address)

int val;

...

scanf(“%d”, val);

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 60

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory

• Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));

int i, j;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];

return y;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

• Allocating the (possibly) wrong sized object (should be *int)

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

p[i] = malloc(M*sizeof(int));

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

• Off-by-one error (should be N+1)

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

p[i] = malloc(M*sizeof(int));

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

• Not checking the max string size

• Basis for classic buffer overflow attacks

char s[8];

int i;

gets(s); /* reads “123456789” from stdin */

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

• Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != val)

p += sizeof(int);

return p;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 65

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

• Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {

int *packet;

packet = binheap[0];

binheap[0] = binheap[*size - 1];

*size--;

Heapify(binheap, *size, 0);

return(packet);

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables

• Forgetting that local variables disappear when a function returns

int *foo () {

int val;

return &val;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times

• Nasty!

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

y = malloc(M*sizeof(int));

<manipulate y>

free(x);

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 68

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks

• Evil!

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 69

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)

• Slow, long-term killer!

foo() {

int *x = malloc(N*sizeof(int));

...

return;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 70

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)

• Freeing only part of a data structure

struct list {

int val;

struct list *next;

};

foo() {

struct list *head = malloc(sizeof(struct list));

head->val = 0;

head->next = NULL;

<create and manipulate the rest of the list>

...

free(head);

return;

}

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 71

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
• Debugger: gdb

• Good for finding bad pointer dereferences

• Hard to detect the other memory bugs

• Data structure consistency checker
• Runs silently, prints message only on error

• Use as a probe to zero in on error

• Binary translator: valgrind
• Powerful debugging and analysis technique

• Rewrites text section of executable object file

• Checks each individual reference at runtime

• Bad pointers, overwrites, refs outside of allocated block

• glibc malloc contains checking code
• setenv MALLOC_CHECK_ 3

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 72

Lecture 20:
“Overview of Parallel Architectures”

John P. Shen & Zhiyi Yu
November 9, 2016

11/7/2016 (©Zhiyi Yu & John Shen) Lecture #19 73

18-600 Foundations of Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

