
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:
“System Level I/O”

John P. Shen & Zhiyi Yu (with Chris Inacio of SEI)
October 31, 2016

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 1

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 10 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:
“System Level I/O”

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 2

18-600 Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 A Linux file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
 /dev/sda2 (/usr disk partition)

 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /boot/vmlinuz-3.13.0-55-generic (kernel image)

 /proc (kernel data structures)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 3

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 Elegant mapping of files to devices allows kernel to export simple
interface called Unix I/O:
 Opening and closing files

 open()and close()

 Reading and writing a file

 read() and write()

 Changing the current file position (seek)

 indicates next offset into file to read or write

 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 4

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

 Each file has a type indicating its role in the system
 Regular file: Contains arbitrary data

 Directory: Index for a related group of files

 Socket: For communicating with a process on another machine

 Other file types beyond our scope
 Named pipes (FIFOs)

 Symbolic links

 Character and block devices

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 5

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary files

 Text files are regular files with only ASCII or Unicode characters

 Binary files are everything else

 e.g., object files, JPEG images

 Kernel doesn’t know the difference!

 Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

 Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

 Carriage return (CR) followed by line feed (LF)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 6

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

 Directory consists of an array of links
 Each link maps a filename to a file

 Each directory contains at least two entries
 . (dot) is a link to itself

 .. (dot dot) is a link to the parent directory in the directory hierarchy (next slide)

 Commands for manipulating directories
 mkdir: create empty directory

 ls: view directory contents

 rmdir: delete empty directory

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 7

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 8

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames
 Locations of files in the hierarchy denoted by pathnames

 Absolute pathname starts with ‘/’ and denotes path from root

 /home/droh/hello.c

 Relative pathname denotes path from current working directory

 ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 9

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

 Opening a file informs the kernel that you are getting ready to access that
file

 Returns a small identifying integer file descriptor
 fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three open files
associated with a terminal:
 0: standard input (stdin)

 1: standard output (stdout)

 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 10

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

 Closing a file informs the kernel that you are finished accessing that file

 Closing an already closed file is a recipe for disaster in threaded programs
(more on this later)

 Moral: Always check return codes, even for seemingly benign functions
such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 11

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files
 Reading a file copies bytes from the current file position to memory, and

then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer

 nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 12

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files
 Writing a file copies bytes from memory to the current file position,

and then updates current file position

 Returns number of bytes written from buf to file fd

 nbytes < 0 indicates that an error occurred

 As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 13

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example

 Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void)

{

char c;

while(Read(STDIN_FILENO, &c, 1) != 0)

Write(STDOUT_FILENO, &c, 1);

exit(0);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 14

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

 Short counts can occur in these situations:

 Encountering (end-of-file) EOF on reads

 Reading text lines from a terminal

 Reading and writing network sockets

 Short counts never occur in these situations:

 Reading from disk files (except for EOF)

 Writing to disk files

 Best practice is to always allow for short counts.

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 15

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:

“System Level I/O”

18-600 Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 16

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package

 RIO is a set of wrappers that provide efficient and robust I/O in apps,
such as network programs that are subject to short counts

 RIO provides two different kinds of functions
 Unbuffered input and output of binary data

 rio_readn and rio_writen

 Buffered input of text lines and binary data

 rio_readlineb and rio_readnb

 Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the
same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
 src/csapp.c and include/csapp.h

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 17

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output
 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF

 Only use it when you know how many bytes to read

 rio_writen never returns a short count

 Calls to rio_readn and rio_writen can be interleaved arbitrarily on the
same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 18

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn

csapp.c
10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 19

/*

* rio_readn - Robustly read n bytes (unbuffered)

*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

size_t nleft = n;

ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {

if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */

nread = 0; /* and call read() again */

else

return -1; /* errno set by read() */

}

else if (nread == 0)

break; /* EOF */

nleft -= nread;

bufp += nread;

}

return (n - nleft); /* Return >= 0 */

}

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially cached in

an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file fd and stores
the line in usrbuf
 Especially useful for reading text lines from network sockets

 Stopping conditions
 maxlen bytes read

 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 20

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

 rio_readnb reads up to n bytes from file fd

 Stopping conditions
 maxlen bytes read
 EOF encountered

 Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily
on the same descriptor

 Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 21

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation
 For reading from file

 File has associated buffer to hold bytes that have been read from
file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readnot in buffer unseen

Current File Position

Buffered Portion

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 22

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration

 All information contained in struct

typedef struct {

int rio_fd; /* descriptor for this internal buf */

int rio_cnt; /* unread bytes in internal buf */

char *rio_bufptr; /* next unread byte in internal buf */

char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 23

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RIO Example

 Copying the lines of a text file from standard input to standard output

#include "csapp.h"

int main(int argc, char **argv)

{

int n;

rio_t rio;

char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);

exit(0);

} cpfile.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 24

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:

“System Level I/O”

18-600 Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 25

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel
 accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

};

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 26

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv)

{

struct stat stat;

char *type, *readok;

Stat(argv[1], &stat);

if (S_ISREG(stat.st_mode)) /* Determine file type */

type = "regular";

else if (S_ISDIR(stat.st_mode))

type = "directory";

else

type = "other";

if ((stat.st_mode & S_IRUSR)) /* Check read access */

readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 27

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open files. Descriptor 1
(stdout) points to terminal, and descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 28

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through two distinct

open file table entries
 E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A (disk)

File B (disk)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 29

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files
 Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 30

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files

 After fork:

 Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 31

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

 Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function

 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 32

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
 Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 33

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)
 cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A

File B

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 34

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:

“System Level I/O”

18-600 Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 35

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

 The C standard library (libc.so) contains a collection of higher-level
standard I/O functions
 Documented in Appendix B of K&R

 Examples of standard I/O functions:
 Opening and closing files (fopen and fclose)

 Reading and writing bytes (fread and fwrite)

 Reading and writing text lines (fgets and fputs)

 Formatted reading and writing (fscanf and fprintf)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 36

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams
 Standard I/O models open files as streams

 Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)

 stdin (standard input)

 stdout (standard output)

 stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 37

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation
 Applications often read/write one character at a time

 getc, putc, ungetc

 gets, fgets

 Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
 read and write require Unix kernel calls

 > 10,000 clock cycles

 Solution: Buffered read
 Use Unix read to grab block of bytes

 User input functions take one byte at a time from buffer

 Refill buffer when empty

unreadalready readBuffer

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 38

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or exit, or return

from main.

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 39

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

 You can see this buffering in action for yourself, using the always
fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

printf("h");

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

exit(0);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 40

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 17:

“System Level I/O”

18-600 Foundations of Computer Systems

 Unix I/O
 RIO (Robust I/O) Package
 Metadata, Sharing, and Redirection
 Standard I/O
 Closing Remarks

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 41

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 42

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

 Pros

 Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O functions

 Unix I/O provides functions for accessing file metadata

 Unix I/O functions are async-signal-safe and can be used safely in signal handlers

 Cons

 Dealing with short counts is tricky and error prone

 Efficient reading of text lines requires some form of buffering, also tricky and error
prone

 Both of these issues are addressed by the standard I/O and RIO packages

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 43

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

 Pros:
 Buffering increases efficiency by decreasing the number of read and write

system calls

 Short counts are handled automatically

 Cons:

 Provides no function for accessing file metadata

 Standard I/O functions are not async-signal-safe, and not appropriate for signal
handlers

 Standard I/O is not appropriate for input and output on network sockets

 There are poorly documented restrictions on streams that interact badly
with restrictions on sockets (CS:APP3e, Sec 10.11)

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 44

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions

 General rule: use the highest-level I/O functions you can

 Many C programmers are able to do all of their work using the standard I/O functions

 But, be sure to understand the functions you use!

 When to use standard I/O

 When working with disk or terminal files

 When to use raw Unix I/O

 Inside signal handlers, because Unix I/O is async-signal-safe

 In rare cases when you need absolute highest performance

 When to use RIO

 When you are reading and writing network sockets

 Avoid using standard I/O on sockets

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 45

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Functions you should never use on binary files
 Text-oriented I/O such as fgets, scanf, rio_readlineb

 Interpret EOL characters.

 Use functions like rio_readn or rio_readnb instead

 String functions

 strlen, strcpy, strcat

 Interprets byte value 0 (end of string) as special

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 46

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information

 The Unix bible:

 W. Richard Stevens & Stephen A. Rago, Advanced Programming in the Unix
Environment, 2nd Edition, Addison Wesley, 2005

 Updated from Stevens’s 1993 classic text

 The Linux bible:

 Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

 Encyclopedic and authoritative

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 47

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 48

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 49

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 50

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv[1];

fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

Write(fd1, "pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write(fd3, "jklmn", 5);

fd2 = dup(fd1); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return 0;

} ffiles3.c

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 51

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries

 dirent structure contains information about a directory entry

 DIR structure contains information about directory while stepping through its entries

#include <sys/types.h>

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

...

if (!(directory = opendir(dir_name)))

error("Failed to open directory");

...

while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);

}

...

closedir(directory);

}

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 18:
“Virtual Memory Concepts and Systems”

John P. Shen & Zhiyi Yu
November 2, 2016

10/31/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #17 53

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 9 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

