
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 15:
“Exceptional Control Flow I:
Exceptions and Processes”

John P. Shen & Zhiyi Yu
October 19, 2016

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 8 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 1

SE
18-600

PL
OS
CA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Computer System: SW/HW

18-600 Lecture #18/29/2016 (©J.P. Shen) 2

Application programs

Processor Main memory I/O devices

Operating system

Software

(programs)

Hardware

(computer)

COMPILER

OS

ARCHITECTURE

What is a Computer System?
 Software + Hardware

 Programs + Computer [Application program + OS] + Computer

 Programming Languages + Operating Systems + Computer Architecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Computer System: OS

18-600 Lecture #18/29/2016 (©J.P. Shen) 3

Operating system

Processor Main memory I/O devices

Processes

Files/NIC

Virtual memory

Application programs
User Mode

Kernel Mode

system calls upcalls

commands interrupts

Computer

CS:APP
Ch. 2 & 3

CS:APP
Ch. 8 & 9

CS:APP
Ch. 4

CS:APP
Ch. 6, 9, 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 4

18-600 Foundations of Computer Systems

Lecture 15:
“Exceptional Control Flow I:
Exceptions and Processes”

 Basics of Operating System

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is an Operating System?

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 5

 An intermediate program between a user of a computer and the
computer hardware (to hide messy details)

 Goals:
• Execute user programs and make solving user problems easier

• Make the computer system convenient and efficient to use

[Hsien-Hsin Sean Lee, 2007]

PwrPoint Gem5 IE

Compiler Editors Shell

Operating System

Instruction Set Architecture

Microarchitecture

Physical Devices

Application programs

System programs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer System Components

 Hardware
 Provides basic computing resources (CPU, memory, I/O)

 Operating System
 Controls and coordinates the use of the hardware among various application

programs for various users

 Application Programs
 Define the ways in which the system resources are used to solve the computing

problems of users (e.g. database systems, 3D games, business applications)

 Users
 People, machines, other computers

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstract View of Computer System Components

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 7

User
1

User
2

User
3

User
N

gcc firefox emacs mySQL

System and application programs

Operating System

Computer
Hardware

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Time-Sharing Computing Systems

 CPU is multiplexed among several jobs that are kept in memory and on disk
(The CPU is allocated to a job only if the job is in memory)

 A job is swapped in and out of memory from and to the disk

 On-line communication between the user and the system is provided
 When the OS finishes the execution of one command, it seeks the next “control

statement” from the user’s keyboard

 On-line system must be available for users to access data and code

 MIT MULTICS (MULtiplexed Information and Computing Services)
 Ken Thompson went to Bell Labs and wrote one for a PDP-7

 Brian Kernighan jokingly dubbed it UNICS (UNIplexed ..)

 Later spelled to UNIX and moved to PDP-11/20

 IEEE POSIX used to standardize UNIX

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operating System Concepts

 Process Management

 Main Memory Management

 File Management

 I/O System Management

 Networking

 Protection System

 Command-Interpreter System

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Does an Operating System Work?

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 10

HARDWARE

• Receives requests from the application: system calls

• Satisfies the requests: may issue commands to hardware

• Handles hardware interrupts: may upcall the application

hardware independent

OS

APPLICATION (user)
system calls upcalls

commands interruptshardware dependent

 Abstraction
 Process, memory, I/O, file, socket, …

 Tradeoff
 Separation between mechanisms and policies

[Xuxian Jiang, NCSU 2009]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operating System Abstractions

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 11

hardware: network interface

OS: TCP/IP protocols

application: sockets

Abstraction 4: Messaging

hardware: disk

OS: files, directories

application: copy file1 file2

Abstraction 3: File System

hardware: physical memory

OS: virtual memory

application: address space

Abstraction 2: Virtual Memory

hardware: computer

OS: process

application: application

Abstraction 1: Processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction 1: Process

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 12

A process is a system abstraction:

illusion of being the only job in the system

hardware: computer

OS: process

user: application

 Mechanism:
 Creation, destruction, suspension, context switch, signalling, IPC, etc.

 Policy:
 How to share system resources between multiple processes?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction 2: Virtual Memory

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 13

hardware: physical memory

OS: virtual memory

Virtual memory is a memory abstraction:

illusion of large contiguous memory, often more

memory than physically available

application: address space

d
e
c
o
d
e
r

Physical Address

Virtual Address

Main MemoryPA = f(VA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory Mechanism and Policy

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 14

 Mechanism:

 Virtual-to-physical memory mapping, page-fault, etc.

virtual address spaces

p1 p2

processes:

v-to-p memory mappings

physical memory:

 Policy:
 How to multiplex a virtual memory that is larger than the physical memory onto what is

available?

 How to share physical memory between multiple processes?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction 3: File System

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 15

hardware: disk

OS: files, directories

A file system is a storage abstraction:

illusion of structured storage space

application/user: copy file1 file2

 Mechanism:
 File creation, deletion, read, write, file-block- to-disk-block mapping, file buffer cache, etc.

 Policy:
 Sharing vs. protection?

 Which block to allocate for new data?

 File buffer cache management?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction 4: Messaging

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 16

hardware: network interface

OS: TCP/IP protocols

Message passing is a communication abstraction:

illusion of reliable (sometimes ordered) transport

application: sockets

 Mechanism:
 Send, receive, buffering, retransmission, etc.

 Policy:
 Congestion control and routing

 Multiplexing multiple connections onto a single NIC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction 5: Thread

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 17

A thread is a processor abstraction:

illusion of having 1 processor per execution context

hardware: processor

OS: thread

application: execution context
Process vs. Thread:
Process is the unit of
resource ownership, while
Thread is the unit of
instruction execution.

 Mechanism:
 Creation, destruction, suspension, context switch, signalling, synchronization, etc.

 Policy:
 How to share the CPU between threads from different processes?

 How to share the CPU between threads from the same process?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes

Threads:
 A thread has no data segment or

heap
 A thread cannot live on its own, it

must live within a process
 There can be more than one thread

in a process, the first thread calls
main and has the process’s stack

 Inexpensive creation
 Inexpensive context switching
 If a thread dies, its stack is reclaimed

by the process

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 18

Processes:
 A process has code/data/heap and

other segments
 There must be at least one thread in

a process
 Threads within a process share

code/data/heap, share I/O, but each
has its own stack and registers

 Expensive in creation
 Expensive context switching
 If a process dies, its resources are

reclaimed and all threads die

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Management

 A process is a program in execution

 A process contains
 Address space (e.g. read-only code, global data, heap, stack, etc)

 PC, $sp

 Opened file handles

 A process needs certain resources, including CPU time, memory, files, and
I/O devices

 The OS is responsible for the following activities for process management
 Process creation and deletion

 Process suspension and resumption

 Provision of mechanisms for:

o Process synchronization

o Process communication

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process State

 As a process executes, it changes state:

 New: The process is being created
 Ready: The process is waiting to be assigned to a processor
 Running: Instructions are being executed
 Waiting: The process is waiting for some event (e.g. I/O) to occur
 Terminated: The process has finished execution

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Control Block (PCB)

Information associated with each process:
 Process state
 Program counter
 CPU registers (for context switch)
 CPU scheduling information (e.g. priority)
 Memory-management information (e.g. page table,

segment table)
 Accounting information (PID, user time, constraint)
 I/O status information (list of I/O devices allocated,

list of open files etc.)

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Switches from Process to Process

18-600 Lecture #1510/19/2016 (©J.P. Shen & Zhiyi Yu) 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 23

18-600 Foundations of Computer Systems

Lecture 15:
“Exceptional Control Flow I:
Exceptions and Processes”

 Basics of Operating System

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:

 From startup to shutdown, a CPU simply reads and executes (interprets) a sequence
of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 24

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow
 Up to now: two mechanisms for changing control flow:

 Jumps and branches

 Call and return

React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter

 Instruction divides by zero

 User hits Ctrl-C at the keyboard

 System timer expires

 System needs mechanisms for “exceptional control flow”

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 25

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow
 Exists at all levels of a computer system

 Low level mechanisms
 1. Exceptions

 Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

 Higher level mechanisms
 2. Process context switch

 Implemented by OS software and hardware timer

 3. Signals

 Implemented by OS software

 4. Nonlocal jumps: setjmp() and longjmp()

 Implemented by C runtime library

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 26

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 15:

“Exceptional Control Flow I:

Exceptions and Processes”

 Basics of Operating System

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 27

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions
 An exception is a transfer of control to the OS kernel in response to

some event (i.e., change in processor state)

 Kernel is the memory-resident part of the OS

 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request
completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 28

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 29

0

1

2
...

n-1

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin

 Handler returns to “next” instruction

 Examples:
 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt

 Used by the kernel to take back control from user programs

 I/O interrupt from external device

 Hitting Ctrl-C at the keyboard

 Arrival of a packet from a network

 Arrival of data from a disk

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 30

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a result of executing an instruction:

 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 Unintentional and unrecoverable

 Examples: illegal instruction, parity error, machine check

 Aborts current program

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 31

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 32

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi, %rsi,
%rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative errno

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 33

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 34

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 35

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 15:

“Exceptional Control Flow I:

Exceptions and Processes”

 Basics of Operating System

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 36

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
 Definition: A process is an instance of a running program.

 One of the most profound ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:

 Logical control flow

 Each program seems to have exclusive use of the CPU

 Provided by kernel mechanism called context switching

 Private address space

 Each program seems to have exclusive use of main memory.

 Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack

Heap

Code

Data

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 37

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

 Computer runs many processes simultaneously

 Applications for one or more users

 Web browsers, email clients, editors, …

 Background tasks

 Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data …

CPU

Registers

Memory

Stack

Heap

Code

Data

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 38

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

 Running program “top” on Mac
 System has 123 processes, 5 of which are active
 Identified by Process ID (PID)

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 39

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes
concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in

course)
 Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 40

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 41

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 42

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 43

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

 Multicore processors

 Multiple CPUs on single chip

 Share main memory (and some of the caches)

 Each can execute a separate process

 Scheduling of processes onto cores done
by kernel

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU

Registers

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 44

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes
 Each process is a logical control flow.

 Two processes run concurrently (are concurrent) if their flows overlap in
time

 Otherwise, they are sequential

 Examples (running on single core):

 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

Time

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 45

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes
 Control flows for concurrent processes are physically disjoint in time

 However, we can think of concurrent processes as running in parallel
with each other

Time

Process A Process B Process C

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 46

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching
 Processes are managed by a shared chunk of memory-resident OS

code called the kernel

 Important: the kernel is not a separate process, but rather runs as part of
some existing process.

 Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 47

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 15:

“Exceptional Control Flow I:

Exceptions and Processes”

 Basics of Operating System

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 48

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling

 On error, Linux system-level functions typically return -1 and set global
variable errno to indicate cause.

 Hard and fast rule:

 You must check the return status of every system-level function

 Only exception is the handful of functions that return void

 Example:

if ((pid = fork()) < 0) {

fprintf(stderr, "fork error: %s\n", strerror(errno));

exit(0);
}

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 49

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions

 Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(0);
}

if ((pid = fork()) < 0)
unix_error("fork error");

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 50

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers

 We simplify the code we present to you even further by using
Stevens-style error-handling wrappers:

pid_t Fork(void)

{

pid_t pid;

if ((pid = fork()) < 0)

unix_error("Fork error");

return pid;
}

pid = Fork();

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 51

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs

 pid_t getpid(void)

 Returns PID of current process

 pid_t getppid(void)

 Returns PID of parent process

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 52

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as being in one
of three states

 Running
 Process is either executing, or waiting to be executed and will eventually be

scheduled (i.e., chosen to execute) by the kernel

 Stopped
 Process execution is suspended and will not be scheduled until further notice (next

lecture when we study signals)

 Terminated
 Process is stopped permanently

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 53

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes

 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (next lecture)

 Returning from the main routine

 Calling the exit function

 void exit(int status)

 Terminates with an exit status of status

 Convention: normal return status is 0, nonzero on error

 Another way to explicitly set the exit status is to return an integer value
from the main routine

 exit is called once but never returns.

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 54

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

 Parent process creates a new running child process by calling fork

 int fork(void)

 Returns 0 to the child process, child’s PID to parent process

 Child is almost identical to parent:

 Child get an identical (but separate) copy of the parent’s virtual address space.

 Child gets identical copies of the parent’s open file descriptors

 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 55

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution

 Can’t predict execution order of
parent and child

 Duplicate but separate address
space
 x has a value of 1 when fork

returns in parent and child

 Subsequent changes to x are
independent

 Shared open files
 stdout is the same in both parent

and child

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 56

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial ordering of
statements in a concurrent program:

 Each vertex is the execution of a statement

 a -> b means a happens before b

 Edges can be labeled with current value of variables

 printf vertices can be labeled with output

 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible total ordering.

 Total ordering of vertices where all edges point from left to right

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 57

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

int main()

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 58

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs

 Original graph:

 Relabled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 59

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive forks

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 60

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 61

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in children

void fork5()

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 62

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
 Idea

 When process terminates, it still consumes system resources

 Examples: Exit status, various OS tables

 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)

 Parent is given exit status information

 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned child will be

reaped by init process (pid == 1)

 So, only need explicit reaping in long-running processes

 e.g., shells and servers

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 63

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

Zombie

Example

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to be
reaped by init

void fork7() {

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n", getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /* Infinite loop */

}

} forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 64

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

Non-

terminating

Child Example

 Child process still active even though
parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

void fork8()

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

} forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 65

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

 Suspends current process until one of its children terminates

 Return value is the pid of the child process that terminated

 If child_status != NULL, then the integer it points to will be set to a
value that indicates reason the child terminated and the exit status:

 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,

WIFSTOPPED, WSTOPSIG, WIFCONTINUED

– See textbook for details

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 66

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

exit(0);

} else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 67

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
 If multiple children completed, will take in arbitrary order

 Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

void fork10() {

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */

}

for (i = 0; i < N; i++) { /* Parent */

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 68

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process
 pid_t waitpid(pid_t pid, int &status, int options)

 Suspends current process until specific process terminates

 Various options (see textbook)
void fork11() {

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 69

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs
 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv

 By convention argv[0]==filename

 …and environment variable list envp

 “name=value” strings (e.g., USER=droh)

 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 70

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of

the stack when

a new program

starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 71

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */

if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);

exit(1);

}

}

 Executes “/bin/ls –lt /usr/include” in child process using current
environment:

(argc == 3)

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 72

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Exceptions

 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and
faults)

 Processes

 At any given time, system has multiple active processes

 Only one can execute at a time on a single core, though

 Each process appears to have total control of
processor + private memory space

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 73

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)

 Spawning processes
 Call fork

 One call, two returns

 Process completion
 Call exit

 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)

 One call, (normally) no return

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 74

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 16:

“Exceptional Control Flow II:

Signals and Nonlocal Jumps”

18-600 Foundations of Computer Systems

John P. Shen & Zhiyi Yu
October 24, 2016

10/19/2016 (©J.P. Shen & Zhiyi Yu) 18-600 Lecture #15 75

 Required Reading Assignment:
• Chapter 8 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

