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%Anatomy of a Computer System: SW/HW

» What is a Computer System?

% Software + Hardware

¢ Programs + Computer =» [Application program + OS] + Computer

¢ Programming Languages + Operating Systems + Computer Architecture
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Anatomy of a Computer System: Compiler
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Bryant and O’Hallaron,

18-600 Foundations of Computer Systems

Lecture 14

“Program Performance Optimization”

m Overview of Optimizing Compilers
m Generally Useful Optimizations
" Code motion/precomputation
" Strength reduction
" Sharing of common subexpressions
" Removing unnecessary procedure calls
m Optimization Blockers
" Procedure calls
" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

ectrical & Computer
€ ENGINEERING
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Realities

m There’s more to performance than asymptotic complexity

m Constant factors matter too!
= Easily see 10:1 performance range depending on how code is written
" Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
= How programs are compiled and executed
" How modern processors + memory systems operate
" How to measure program performance and identify bottlenecks
" How to improve performance without destroying code modularity and generality

Carnegie Mellon University 5




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation (via graph coloring of interference graph of variable live ranges)
= code selection and scheduling (via list scheduling and more aggressive scheduling)
= dead code elimination
= eliminating minor inefficiencies
m Don’t (usually) improve asymptotic efficiency
" up to programmer to select best overall algorithm
" big-O savings are (often) more important than constant factors
= but constant factors also matter
m Have difficulty overcoming “optimization blockers”

= potential memory aliasing
" potential procedure side-effects

Carnegie Mellon University ¢




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiler Code Scheduling

m Rearrange code sequence to minimize execution time

" Hide instruction latency
= Utilize all available resources

ld  f4_8(r8)
fadd 1514, 16 —— =@
ld  f2. 16(r8)
fsub 772, 6 —— oA
fmul f7, 7, f5
sd 5 24(r8)— > A

Id 8. 0(r9)
od  f3 s(ro) — *Stll

reorder

reorde

l.d 4, 8(r8)
lL.d 2, 16(r8)
fadd f5, f4, 16

fsub f7, f2, f6

fmul 7, f7, 15
sd  f7 24(r8)> 3 stalls

ld 8 0(r9)
s d f8, 8(r9) > 1 stall

l.d f4, 8(r8)
l.d f2, 16(r8)
fadd f5, f4, f6
fsub f7, f2, f6

fmul f7, 7, 5
(memory dis—ambiguation)IS'CCIl ];% %((';%)) % 1 stall

sd  f7, 24(r8)

Carnegie Mellon University 7




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Scheduling

m Objectives: minimize execution latency of the program
= Start as early as possible instructions on the critical path
" Help expose more instruction-level parallelism to the hardware
" Help avoid resource conflicts that can increase execution time

m Constraints
" Program Precedences (Dependencies)
" Machine Resources

m Motivations

= Dynamic/Static Interface (DSI): By employing more software (static) optimization
techniques at compile time, hardware complexity can potentially be significantly reduced

= Performance Boost: Even with the same complex hardware, software scheduling can
provide additional performance enhancement over that of unscheduled code

Carnegie Mellon University s




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precedence Constraints

m Minimum required ordering and latency between definition and use
m Precedence Graph (data flow graph)

= Nodes: instructions :; :2 ]]:g jgég
= Edges (a—b): a precedesb 13: fadd.s f0, f2, fO
" Edges are annotated with minimum latency 14: s.s 10, 4(r6)
15: |.s f14, 8(r7)
16: I.s 16, 0(r2)
wli+k].ip = z[i].rp + z[m+i].rp; 17: 1.s 5, 0(r3)
wli+j].rp =e[k+1].rp* 18: fsub.s 5, 16, 5
(z[i].rp -z[m+i].rp) - 19: fmul.s 4, 14, 5
e[k+1].ip * 110: |.s f15, 12(r7)
(z[i].ip - z[m+i].ip); 111: 1.s 7, 4(r2)

112: I.s 18, 4(r3)

113: fsub.s 8, f7, f8
FFT code fragment 114: fmul.s f8, f15, f8

115: fsub.s 8, f4, f8

116: s.s 8, 0(r8)

Carnegie Mellon University ¢




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precedence Graph (Data Flow Graph)

Carnegie Mellon University 10




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Scheduling for Basic Blocks

m Initialize ready list that holds all ready instructions
Ready = data ready and can be scheduled

m Choose one ready instruction i from ready list with the highest priority
Number of descendants in precedence graph
Maximum latency from root node of precedence graph
Length of operation latency
Ranking of paths based on importance
Combination of above
m Insertiinto schedule
Making sure resource constraints are satisfied

m Add those instructions whose precedence constraints are now satisfied
into the ready list
m Can be applied in the forward or backward direction

® 6 6 o o

Carnegie Mellon University 1




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Scheduling Example

(a+b)*(c-d)+e/f

load: 2 cycles
add: 1 cycle
sub: 1 cycle
mul: 4 cycles
div: 10 cycles

orientation: cycle
direction: backward
heuristic: maximum latency to root

Carnegie Mellon University 12




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cycle Ready list Schedule Code
1 6 Id f
D 2 5 de
Q.
E 3456 4 d d
(O 4 9 fdiv (e/f)
>
LL] 5 9 3 Id c
(@) ) 6 9 2 Id b
é 7 349 1 Id a
-g 811289 8 fsub (c — d)
% 97809 7 fadd (a + b)
10| 9 10 fmul
)
- 11910 nop
% 121910 nop
13| 9 10 means candidate and ready nop
red-means-candidate-but-not-yetready
14 11 fadd
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of List Scheduling

m Cannot move instructions past conditional branch instructions in the program
(scheduling limited by basic block boundaries)

m Problem: Many programs have small numbers of instructions (4-5) in each
basic block. Hence, not much code motion is possible

m Solution: Allow code motion across basic block boundaries.

m Speculative Code Motion: “jumping the gun”
= Execute instructions before we know whether or not we need to
= Utilize otherwise idle resources to perform work which we speculate will need to be done

m Relies on program profiling to make intelligent decisions about speculation

Carnegie Mellon University 14




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Types of Speculative Code Motion

m Two characteristics of speculative code motion:
= Safety, which indicates whether or not spurious exceptions may occur
= Legality, which indicates correctness of results

m Four possible types of code motion:

._ A A
ri=.. r1=r2&r3 ‘r4:r1... Ir1:r2&r3

(b) illegal

(c) unsafe (d) unsafe and illegal

Carnegie Mellon University 15




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming (at compile time in SW)

m Prevents boosted instructions from overwriting register state needed on
alternate execution path.
m Utilizes idle (non-live) registers (ré in example below).

BB# Original Code Scheduled Code

N load r4d= ... load r4= ...
load r5=... load r5=...
cmpi c0,r4,10 cmpi c0,r4,10
add rd=r4+r5 add r4=r4+r5
<stall> sub r3=r7-r4
<stall> and r6=r3&r5
bc cO, Al bc c0, Al

n+1 st ...=r4 st ...=r4

n+2 Al: sub r3=r7-r4 Al: st ... =I6
and r4=r3&r5
st ...=r4

Carnegie Mellon University 1




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy Creation

m Register renaming causes a problem when there are multiple definitions of a

register reaching a single use:

= Below, definitions of rl in both (i) and (ii) can reach the use in (iii).

= |f the instruction in (ii) is boosted into (i), it must be renamed to preserve the first value of r1.

= However, the boosted definition of r1 must reach the use in (iii) as well.

" Hence, we insert a copy instruction in (ii).

T —

(1)

rl=...
r5=r2&r3

(i) I
Y

(i) r4 =11 ...

Carnegie Mellon University 17




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Replication

m General case of upward code motion: crossing control flow joins.
m Instructions must be present on each control flow path to their original basic
block

m Replicate set is computed for each basic block that is a source for instructions
to be boosted

(in)

Carnegie Mellon University 18




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Profile Driven Optimizations

m Wrong optimization choices can be costly!
How do you determine dynamic information during compilation?

m During initial compilation, “extra code” can be added to a program to generate
profiling statistics when the program is executed

m Execution Profile, e.g.
"= how many times is a basic block executed
" how often is a branch taken vs. not taken

m Recompile the program using the profile to guide optimization choices

m A profile is associated with a particular program input
= may not work well on all executions

Carnegie Mellon University 19




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior
= Except, possibly when program making use of nonstandard language features

= Often prevents it from making optimizations that would only affect behavior under pathological
conditions.

m Behavior that may be obvious to the programmer can be obfuscated by languages and
coding styles
= e.g.,, Data ranges may be more limited than variable types suggest
m Most analysis is performed only within procedures
" Whole-program analysis is too expensive in most cases
= Newer versions of GCC do interprocedural analysis within individual files
= But, not between code in different files
m Most analysis is based only on static information
=  Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative

Carnegie Mellon University 20




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless of processor /
compiler

m Code Motion
= Reduce frequency with which computation performed
= |f it will always produce same result
= Especially moving code out of loop

volid set row(double *a, double *b,
long i, long n)

{

long j;
int ni = n*i;

long 3J;
for (J = 0; 7 <
aln*i+j] =

n; Jt++)
b[j];

for

Carnegie Mellon University 2




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiler-Generated Code Motion (-O1)

void set row(double *a, double *b,

long i, long n) long 3J;
{ long ni = n*i;

double *rowp = a+ni;
for (3 = 0; J < n; J++)
*rowp++ = b[j];

long j;
for (jJ = 0; 7 < n; J++)

set row:

Test n

If 0, goto done
1 = n*i

rowp

3 =0

loop:

t = bl]J]

M[A+ni*8 + J*8]

o

Jin

if !=, goto loop

done:

$rcx, Srcx

Ll

srcx, Srdx

(%rdi, srdx,8), %rdx
SO0, %eax

(5rsi, srax,8), %xmmO
sxmm0, (%rdx, %$rax, 8)
S1, %rax

$rcx, Srax

L3

H= S S S S S S S S

Carnegie Mellon University 22




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reduction in Strength

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
lo*x ——> x << 4
= Utility machine dependent
= Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles
= Recognize sequence of products

Carnegie Mellon University 23




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Share Common Subexpressions

= Reuse portions of expressions
= GCC will do this with —01

/* Sum neighbors of i,3j */ long inj = i*n + j;

up = val[(1-1)*n + jJ ] ¢ up = val[inj - n];

down = wval[(i+l)*n + J ] 2 down = wval[inj + n];

left = wval[i*n + J-11; left = wvall[inj - 11;

right = val[i*n + J+11]; right = vall[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

leaqg 1(%rsi), %rax # i+1 imulg $rcx, %rsi  # i*n

leaq -1(%rsi), %r8 # i-1 addg $rdx, %rsi # i*n+tj
imulg %rcx, $%$rsi # 1i*n movqg $rsi, %rax # i*n+tj
imulg %rcx, %rax # (i+1)*n subg $rcx, %rax # i*n+j-n
imulg %rcx, %r8 # (i-1)*n leaqg ($rsi, $rcx), %rcx # i*n+j+n
addg $rdx, %rsi # 1*n+7

addg $rdx, %rax # (1+1) *n+j

addg $rdx, %r8 # (i-1) *n+j

Carnegie Mellon University 24




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

volid lower (char *s)

{
Size_t i
for (1 =

s[1]

0, 1 < strlen(s
if (s[i] >= 'A' && s[i
- (vAv _ lal);

) ; 1++)
] <= '2")

" Extracted from 213 lab submissions, Fall, 1998

Carnegie Mellon University 2




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lower Case Conversion Performance

" Time quadruples when double string length
" Quadratic performance

250
200
wn
©
g 150
@ lowerl
wn
2 100
O
50
0 iﬂ#—k"‘”// : T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convert Loop To Goto Form

vold lower (char *s)
{
size & 1 = 07
1f (1 >= strlen(s))
goto done;
loop:
if (s[1i] >= '"A' && s/
s[i] -= ("A' - 'a
i++;
1f (1 < strlen(s))
goto loop;
done:

}

<= lzl)

" strlen executed every iteration

Carnegie Mellon University 27




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Strlen

/* My version of strlen */
size t strlen(const char *s)

{

size t length =
while (*s != '"\O
S++;
length++;

Jg
") A
}

return length;

}

m Strlen performance

" Only way to determine length of string is to scan its entire length, looking for null
character.

m Overall performance, string of length N
" N calls to strlen
= Require times N, N-1,N-2, ..., 1
= Qverall O(N?) performance

Carnegie Mellon University 2




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Improving Performance

void lower (char *s)
{
size t 1;
size t len = strlen(s);
for (1 = 0; 1 < len; 1++)
1f (s[i] >= '"A' && s[i] <= 'zZ'")

s[1] -= ('A" - "a');

" Move call to strlen outside of loop
" Since result does not change from one iteration to another

" Form of code motion

Carnegie Mellon University 20




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lower Case Conversion Performance

= Time doubles when double string length

" Linear performance of lower2

250

200

150

100

CPU seconds

lowerl

0

50000

100000

50
::::::: lower?2
0

150000

200000 250000 300000 350000 400000 450000 500000

String length
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of innerloop?
" Procedure may have side effects

= Alters global state each time called

" Function may not return same value for given arguments

= Depends on other parts of global state
= Procedure lower could interact with strlen

m Warning: S}ze_t lencnt = 0;
. size t strlen(const char *s)
" Compiler treats procedure call as a black box {
= Weak optimizations near them size t length = 0;

R dies: while (*s != '"\0') {
- emedies: s++; length++;
= Use of inline functions }

« GCC does this with —01 lenent += Lengias
return length;

— Within single file }

" Do your own code motion

Carnegie Mellon University 31




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Matters

/* Sum rows 1s of n X n matrix a
and store in vector b */

vold sum rowsl (double *a, double *b,
long i, 3J;
for 0;

long n) {

(i = n; i++) {

# sum rowsl inner loop
.L4:

movsd
addsd
movsd
addg

cmpg
Jne

(%rsi, $rax, 8),
(%rdi),
$xmm0O0, (%rsi, %rax, 8)
$8, %rdi

Trcx,
L4

% xmm0O
S xmm0O

Srdi

" Code updatesb [i] on every iteration

" Why couldn’t compiler optimize this away?

# FP load
# FP add
# FP store

Carnegie Mellon University 32



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Aliasing

/* Sum rows 1s of n X n matrix a
and store in vector b */
vold sum rowsl (double *a, double *b, long n)
long i, J;

n; i++) {

Value of B:

double B[3]

sum_ rowsl (A, B, c i =2: [3, 22, 224]

" Code updatesb [i] on every iteration
" Must consider possibility that these updates will affect program behavior

Carnegie Mellon University 33




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */

vold sum rowsZ (double *a, double *b, long n)

long 1, 3J;
for (1 = 0; i < n; i++) {
double val = 0;
for (j = 0; 3 < n; Jj++)
val += a[i*n + J];
b[i] = val;

# sum rows2 inner loop
.L10:

addsd (%rdi), %SxmmO
addg $8, %rdi

cmpqg $rax, Srdi
jne .L10

" No need to store intermediate results

{

# FP load + add

Carnegie Mellon University 34




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happeninC
= Since allowed to do address arithmetic
= Direct access to storage structures
" Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

Carnegie Mellon University 3s




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design

" Hardware can execute multiple instructions in parallel
m Performance limited by data dependencies

m Simple transformations can yield dramatic performance
improvement
" Compilers often cannot make these transformations
" Lack of associativity and distributivity in floating-point arithmetic

Carnegie Mellon University 3




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example: Data Type for Vectors

/* data structure for vectors
typedef struct{

gize T leng

data t *data;
} vec;

*/

mData Types

Use different declarations for
data t

int
long
float
double

len 0 1 len-1
data — eo0e0o0oco0o0

/* retrieve vector element
and store at val */
int get vec element
(*vec v, size t 1idx, data t *val)
{
if (idx >= v->len)
return O;
*val = v—->data[idx];
return 1;

Carnegie Mellon University 37




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Computation

void combinel (vec ptr v, data t *dest)
{ | | Compute sum or
1ong Lt L7 product of vector
dest = IDENT; elements
for (1 = 0; 1 < vec length(v); i++) {
data t wval;
get vec element (v, 1, &val);
*dest = *dest OP val;
}
}
m Data Types m Operations
" Use different declarations for data t " Use different definitions of OP and IDENT
" int = + /0
" long = x /1
" float
" double
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Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on vectors or lists

m Length=n

m Inour case: CPE = cycles per OP

m T=CPE*n+ Overhead

CPE is slope of line

Cycles

2500

2000

1500

1000

500

psum?2

Slope =6.0

50

100 150 200
Elements
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Benchmark Performance

void combinel (vec ptr v, data t *dest)

{

long int 1i; Compute sum or

*dest = IDENT: product of vector

for (i = 0; i < vec length(v); i++) { | e€lements

data t wval;
get vec element (v, 1, &val);
*dest = *dest OP val;

Method Integer Double FP
Operation Add Mult Add Mult
Combinel 22.68 20.02 19.98 20.18
unoptimized

Combinel -O1 10.12 10.12 10.17 11.14
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Basic Optimizations

{
long 1;
data t t = IDENT;

t =t OP dJ[i];
*dest = t;

volid combined (vec ptr v, data t *dest)

long length = vec length (v)
data t *d = get vec start (v

for Yi = 0; 1 < length; 1++)

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary
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Effect of Basic Optimizations

{

volid combined (vec ptr v,

long 1;
long length = vec length(v);
data t *d = get vec start(v);

data t *dest)

data t t = IDENT;
for (1 = 0; i < length; i++)
t =t OP dJ[i];
*dest = t;
}

Method Integer Double FP
Operation Add Mult Add Mult
Combinel =01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop
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Modern CPU Design

Instruction Control

Retirement
Unit
Register NSeHlelgM Instructions
File Decode |}

Fetch Address
Control - :
Instruction

Cache

Operations

Register Updates Prediction OK?

A 4

E A 4 A 4 A 4 A 4 A 4 A 4

: : : Functional
Branch Arith Arith Arith Load Store )

Units

A A A A A A A

A 4 A 4 A 4 A 4 A 4 A 4

Operation Results
Addr. Addr.
Data Data

Execution
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Superscalar Processor

m Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a sequential
instruction stream and are usually scheduled dynamically.

m Benefit: without programming effort, superscalar processor can take
advantage of the instruction level parallelism that most programs have

m Most modern CPUs are superscalar.

m Intel: since first (in-order) superscalar Pentium (1993) and first out-of-
order execution superscalar Pentium Pro or “P6” (1995)
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Pipelined Functional Units Y
\ Stage 1 |
long mult eg(long a, long b, long c) { ) v .
long pl = a*b; Stage 2
long p2 = a*c; . /
long p3 = pl * p2Z; Y N
return p3; { Stage 3 )
} I
1 2 3 4 5 6 7/
Stage1 | ' a*c pl*p2
Stage 2 a*b | a%*c pl*p2
Stage 3 a*b | a%*c pl*p2

Divide computation into stages

Pass partial computations from stage to stage

Stage i can start on new computation once values passed to i+1
E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles
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Haswell CPU

= 8 Total Functional Units

m Multiple instructions can execute in parallel

2 load, with address computation
1 store, with address computation
4 integer

2 FP multiply

1 FP add

1 FP divide

m Some instructions take > 1 cycle, but can be pipelined

Instruction

Load / Store

Integer Multiply
Integer/Long Divide
Single/Double FP Multiply
Single/Double FP Add
Single/Double FP Divide

Latency

Cycles/Issue
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x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # i+t

cmpg $rdx, S$rbp # Compare length:i

Jjg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00
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Combine4 = Serial Computation (OP = *)

m Computation (length=8)

(CCCCC((L * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[3]) * d[é]) * d[7])

m Sequential dependence

" Performance: determined by latency of OP
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Loop Unrolling (2x1)

void unrollZa combine(vec ptr v, data t *dest)

{

long length = vec length(v);
long limit = length-1;
data t *d = get vec start(v);
data t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; 1 < limit; i+=2) {
X = (x OP d[i]) OP df[i+1];
}
/* Finish any remaining elements */
for (; 1 < length; 1i++) {
x = x OP d[i];
}

*dest = x;

m Perform 2x more useful work per iteration
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Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add

= Achieves latency bound

x = (x OP df[1]) OP d[1+1l];

m Others don’t improve. Why?

= Still sequential dependency
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Loop Unrolling with Reassociation (2x1a)

vold unrollZaa combine(vec ptr v,

{

long length vec length (v);

long limit = length-1;

data t *d = get vec start(v);
data t x = IDENT;

long 1i;

0, 1 < limit; 1+=2)
x OP (d[1] OP d[i+1]);

for (1

X

}

for 1++) |

X

(; i < length;
x OP d[1i];

data t *dest)

/* Combine 2 elements at a time */

{

/* Finish any remaining elements */

Compare to before

}
*dest

Xy

X

(x OP d[1]) OP d[i+1];

}

m Can this change the result of the computation?

m Yes, for FP. Why?
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Effect of Reassociation

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput 0.50 1.00 1.00 0.50
Bound

m Nearly 2x speedup for Int *, FP +, FP

1 *
" Reason: Breaks sequential dependency 2 func. units for FP

2 func. units for load

x = x OP (d[1] OP d[i1+1]);

. : 4 func. units for int +
= Why is that? (next slide) 5 func. units for load
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Reassociated Computation

m What changed:

" QOpsinthe next iteration can be
started early (no dependency)

x = x OP (d[1] OP d[1+1]);

dO dl
" m Overall Performance
= N elements, D cycles latency/op

* = (N/2+1)*D cycles:
t] #d d (
* SN CPE =D/2
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Loop Unrolling with Separate Accumulators (2x2)

void unrollZa combine (vec ptr v, data t *dest)

{
long length = vec length(v);
long limit = length-1;
data t *d = get vec start(v);
data t x0 = IDENT;
data t x1 = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; 1 < limit; i+=2) {
x0 = xO0 OP d[i];
x1 = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; 1 < length; 1++) {
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

}

m Different form of reassociation
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Effect of Separate Accumulators

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Int + makes use of two load units

x0 = x0 OP d[1];
x1 = x1 OP df[i+1];

m 2x speedup (over unroll2) for Int *, FP +, FP *
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Separate Accumulators

x0 = x0 OP d[i]; m What changed:
x1l = x1 OP d[i+1]; = Two independent “streams” of
operations
1d, 1d,
éi_] é m Overall Performance
dy ds = N elements, D cycles latency/op

@ d @ q = Should be (N/2+1)*D cycles:
: > CPE = D/2
4,@;] d, 4,@;] d, = CPE matches prediction!

What Now?
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Unrolling & Accumulating

m ldea
" Canunrolltoany degree L
" Can accumulate K results in parallel
" | must be multiple of K

m Limitations
" Diminishing returns
= Cannot go beyond throughput limitations of execution units
= Large overhead for short lengths
= Finish off iterations sequentially
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Unrolling & Accumulating: Double *

m Case
" |ntel Haswell
" Double FP Multiplication
" Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 501 501 501 501 501 5.01 5.01
2 2.51 2.51 2.51
e
[ 3 1.67
kS
g 4 1.25 1.26
§ 6 0.84 0.88
= 8 0.63
10 0.51
12 0.52
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Unrolling & Accumulating: Int +

m Case

" |ntel Haswell

" |nteger addition
" Latency bound: 1.00. Throughput bound: 0.50

Int +

0o OO b W N = AR

Accumulators

10
12

1
1.27

2
1.01
0.81

Unrolling Factor L

3 4 6 8 10 12
1.01 101 101 101 1.01
0.69 0.54
0.74
0.69 1.24
0.56 0.56
0.54
0.54
0.56
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Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Carnegie Mellon University 6o




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Single Instruction Multiple Data (SIMD)

128-bit register Source 0
(4 32-bit data) SR R AR SRR SRR
Source 1
vl vl vl vl
+ + + +
Destination
1 0 0 1 WriteMask/Predicate
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SIMD Extensions for Superscalar Processors

m Every CISC/RISC processor today has SIMD extensions
= MMX, SSE, SSE-2, SSE-3, SSE-4, AVX, AVX2, Altivec, VIS, ...
m Basic idea: accelerate multimedia processing

= Define vectors of 8, 16, 32 and 64 bit elements in regular registers

= Apply SIMD arithmetic on these vectors
m Nice and cheap

= Define big vector register file

= The size of these vector registers has been increasing

= All we need to do
= Add the proper opcodes for SIMD arithmetic
= Provide wide datapaths to execute SIMD arithmetic

= Certain operations are easier on short vectors

= Reductions, random permutations
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Problems with SIMD Extension

m SIMD defines short, fixed-sized, vectors

" Cannot capture data parallelism wider than 64 bits
= MMX (1996) has 64-bit register s (8 8-bit or 4 16-bit operations)

" Must use wide-issue to utilize more than 64-bit datapaths
= SSE and Altivec have switched to 128-bits because of this
= AVX2 has switched to 512-bits because of this

m SIMD does not support vector memory accesses
= Strided and indexed accesses for narrow elements

= Needs multi-instruction sequence to emulate
= Pack, unpack, shift, rotate, merge, etc

" Cancels most of performance and code density benefits of vectors

m Compiler support for SIMD?
= Auto vectorization is hard
= Rely on programming model (e.g., OpenMP, Cilk+)
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AVX2 SIMD Regqister Set

m Intel® AVX extends all 16 XMM (128
bits) registers to 256bits (YMM)

Intel AVX instructions operate on

: . Bit#
either: 511 256 255 128 127 0
— The whole 256-bits (FP only)

. ZMMO YMMO XMMO
— The lower 128-bits (like existing Intel” SSE
instructions) ZMM1 YMM1 XMM1

= A replacement for existing scalar/128-bit
SSE instructions

" Provides new capabilities on existing ZMM31 YMMJ1 AMM31
instructions 512 bits (2013) 256 bits (2011) 128 bits (1999)
= The upper 128-bits of the register are
zeroed out

. Intel AVX2 supports integer operations
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YMM Registers
B 16 total, each 32 bytes

M 32 sin

ole-byte integers

Programming with AVX2

B 16 16-bit integers

1 1

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

M 1 single-precision float

B 1 double-precision float
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SIMD Operations

vaddsd SymmO, Symml, S$Symml

B SIMD Operations: Single Precision

%ymmO

Symml

) VAR VIR VD VR VI VN Vi
AWAWAWAWAWAWAWN

B SIMD Operations: Double Precision
vaddpd %ymmO, %ymml, Symml

% ymmO
~ ~ ~ ~
A A A A
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Using Vector Instructions

Method Integer Double FP
Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput 0.06 0.12 0.25 0.12
Bound

m Make use of AVX Instructions

= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page
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What About Branches?

m Challenge

" |Instruction Control Unit must work well ahead of Execution Unit to generate
enough operations to keep EU busy

104663: mov  $0x0,%eax } Executing

404668: cmp (5rdi), 3rsi

40466b: jge 404685 < How to continue?
40460d: mov O0x8 (%rdi), Srax

404685: repz retqg

=" When encounters conditional branch, cannot reliably determine where to continue
fetching
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Modern CPU Design

Instruction Control

Retirement
Unit
Register NSeHlelgM Instructions
File Decode |}

Fetch Address
Control - :
Instruction

Cache

Operations

Register Updates Prediction OK?

A 4

E A 4 A 4 A 4 A 4 A 4 A 4

: : : Functional
Branch Arith Arith Arith Load Store )

Units

A A A A A A A

A 4 A 4 A 4 A 4 A 4 A 4

Operation Results
Addr. Addr.
Data Data

Execution
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Branch QOutcomes

®" When encounter conditional branch, cannot determine where to continue fetching
= Branch Taken: Transfer control to branch target

= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov S0x0, $eax
404668: cmp (3rdi), srsi
40466b: jge 404685

Branch Not-Taken
40466d: mov 08 (Bieel ) Beass ?’

Branch Taken

404685: repz retqg
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Branch Prediction

m ldea
= Guess which way branch will go
= Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov S0x0, $Seax
404668: cmp (3rdi) , srsi
40466b: jge 404685 :
40466d: mov 0x8 (%rdi), $rax } Predict Taken
404685: repz retq Begin

Execution
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401029: vmulsd (%rdx),$xmm0, $xmm0 Assume

40102d: add $0x8, $rdx

401031: cmp Trax, srdx .

401034: jne 401029 =8

401029: vmulsd (%rdx), $xmmO, 3xmmO

40102d: add S0x8, $rdx

401031: cmp $rax, srdx )

401034: dne 401029 I=39

401029: vwvmulsd (%rdx), $xmmO, $xmmO ‘::> «)ops)

40102d: add $0x8, $rdx \\R .

401031: cmp srax, srdx €a

401034: jne 401029 I =100 invalid
7 location

401029: vmulsd (%rdx), $xmmO, 3xmmO

40102d: add S0x8, $rdx

401031: cmp $rax, srdx )

401034: Jne 401029 /=101

Branch Prediction Through Loop

vector length = 100

Predict Taken

7 Predict Taken (OK)

-

Executed
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Branch Misprediction Invalidation

401029: vmulsd (%rdx),$xmm0, $xmm0 Assume
40102d: add $0x8, $rdx vector length = 100
401031: cmp Trax, srdx .
401034: jne 401029 =8
7 Predict Taken (OK)
401029: vmulsd (%rdx), $xmmO, 3xmmO
40102d: add S0x8, $rdx
401031: cmp $rax, srdx )
401034: dne 401029 I=39
— Predict Taken
5 5 5 7 (Oops)
40102d: add S0x8, $rdx
401031: cmp srax, srdx
401034: qne 401029 =100
D) > Invalidate
401029~ vmiilad (Zrdx) Sxmm(  2xmm(
40102d- add $QVQ, Srdx
401037 - cmp S Lo d i '
401934 “ne 491409 /=101 J
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Branch Misprediction Recovery

401029: vmulsd (%rdx), $xmmO, 3xmmO
40102d: add S0x8, $rdx .
| =99 .

401031: cmp Srax, $rdx Definitely not taken
401034: Jjne 401029
401036: Jjmp 401040 — Reload

"o Pipeline
401040: vmovsd %SxmmO, (35rl?2)

m Performance Cost

= Multiple clock cycles on modern processor
"= Can be a major performance limiter
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Control Flow Speculation

NT T NT T

(TAG2)

NT T NL T NTé L NLT
\ (TAG3) ¥

m Leading Speculation

= Typically done during the Fetch stage

= Based on potential branch instruction(s) in the current fetch group
m Trailing Confirmation

= Typically done during the Branch Execute stage
= Based on the next Branch instruction to finish execution
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Mis-speculation Recovery

NT T
Y
NT<> T NT T
\ vy Y

m Start New Correct Path
= Must remember the alternate (non-predicted) path

m Eliminate Incorrect Path
" Must ensure that the mis-speculated instructions produce no side effects
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Getting High Performance

m Good compiler and flags
m Avoid anything foolish, develop good habits

= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

" Look carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
" Make code cache friendly
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