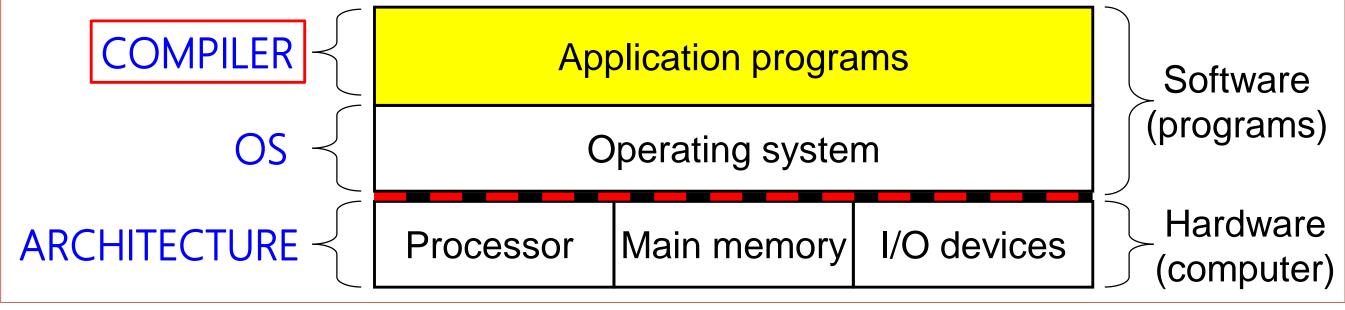
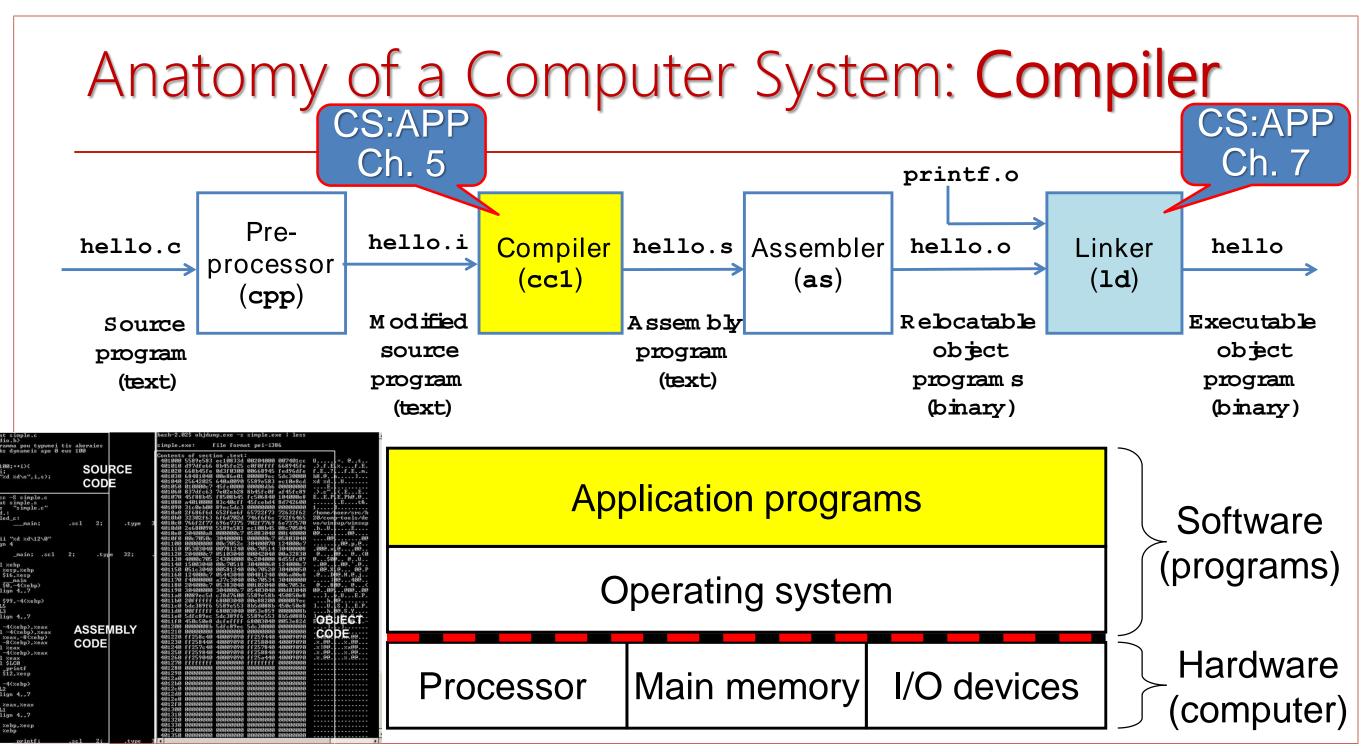

18-600 Foundations of Computer Systems

Lecture 14: "Program Performance Optimization"

John P. Shen & Zhiyi Yu October 17, 2016


- Required Reading Assignment:
 - Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron.



Anatomy of a Computer System: SW/HW

- What is a Computer System?
 - ❖ Software + Hardware
 - ❖ Programs + Computer → [Application program + OS] + Computer
 - Programming Languages + Operating Systems + Computer Architecture

18-600 Foundations of Computer Systems

Lecture 14: "Program Performance Optimization"

- **Overview of Optimizing Compilers**
- **Generally Useful Optimizations**
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Removing unnecessary procedure calls
- **Optimization Blockers**
 - Procedure calls
 - Memory aliasing
- **Exploiting Instruction-Level Parallelism**
- **Dealing with Conditionals**

Performance Realities

There's more to performance than asymptotic complexity

Constant factors matter too!

- Easily see 10:1 performance range depending on how code is written
- Must optimize at multiple levels:
 - algorithm, data representations, procedures, and loops

Must understand system to optimize performance

- How programs are compiled and executed
- How modern processors + memory systems operate
- How to measure program performance and identify bottlenecks
- How to improve performance without destroying code modularity and generality

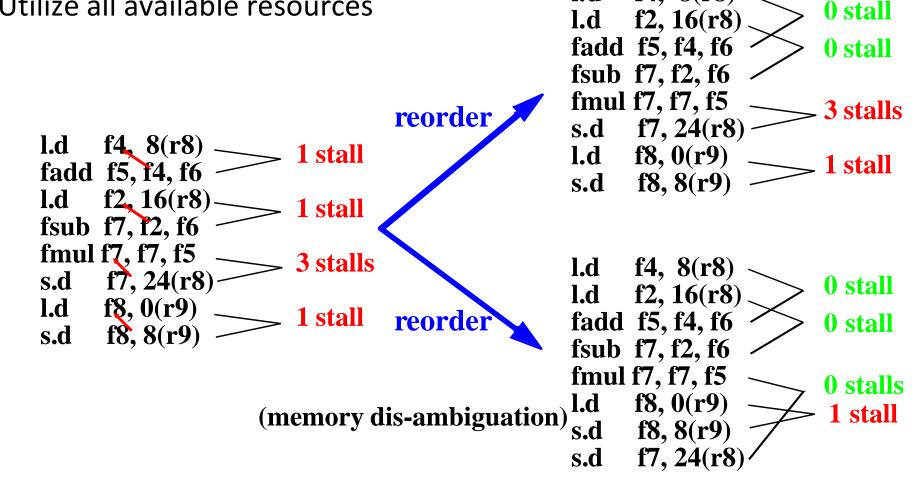
Optimizing Compilers

Provide efficient mapping of program to machine

- register allocation (via graph coloring of interference graph of variable live ranges)
- code selection and scheduling (via list scheduling and more aggressive scheduling)
- dead code elimination
- eliminating minor inefficiencies

Don't (usually) improve asymptotic efficiency

- up to programmer to select best overall algorithm
- big-O savings are (often) more important than constant factors
 - but constant factors also matter


Have difficulty overcoming "optimization blockers"

- potential memory aliasing
- potential procedure side-effects

f4, 8(r8)

Compiler Code Scheduling

- Rearrange code sequence to minimize execution time
 - Hide instruction latency
 - Utilize all available resources

Code Scheduling

Objectives: minimize execution latency of the program

- Start as early as possible instructions on the critical path
- Help expose more instruction-level parallelism to the hardware
- Help avoid resource conflicts that can increase execution time

Constraints

- Program Precedences (Dependencies)
- Machine Resources

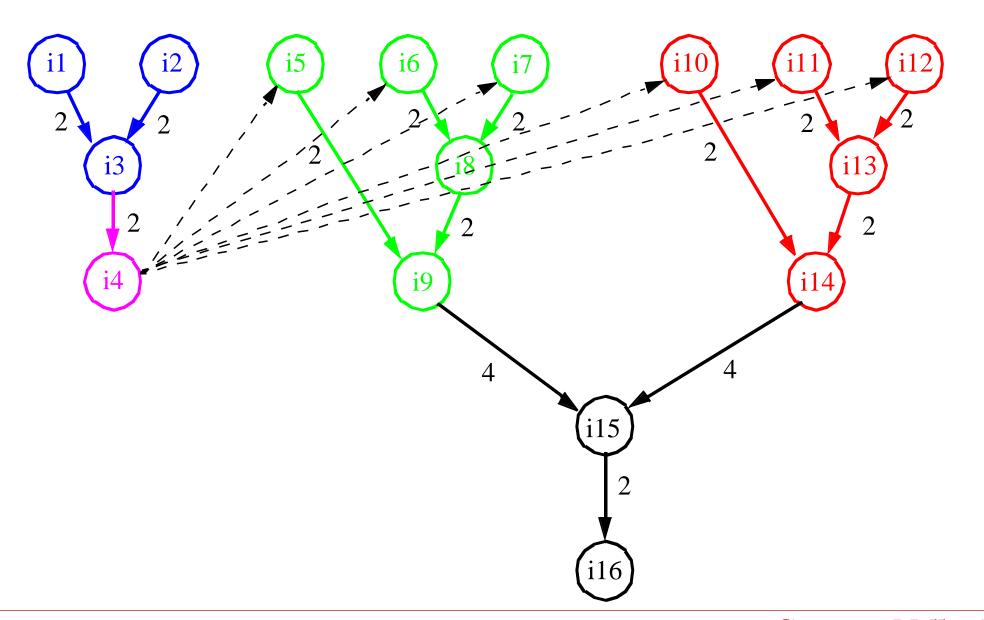
Motivations

- Dynamic/Static Interface (DSI): By employing more software (static) optimization techniques at compile time, hardware complexity can potentially be significantly reduced
- Performance Boost: Even with the same complex hardware, software scheduling can provide additional performance enhancement over that of unscheduled code

Precedence Constraints

- Minimum required ordering and latency between definition and use
- Precedence Graph (data flow graph)

```
Nodes: instructions
```

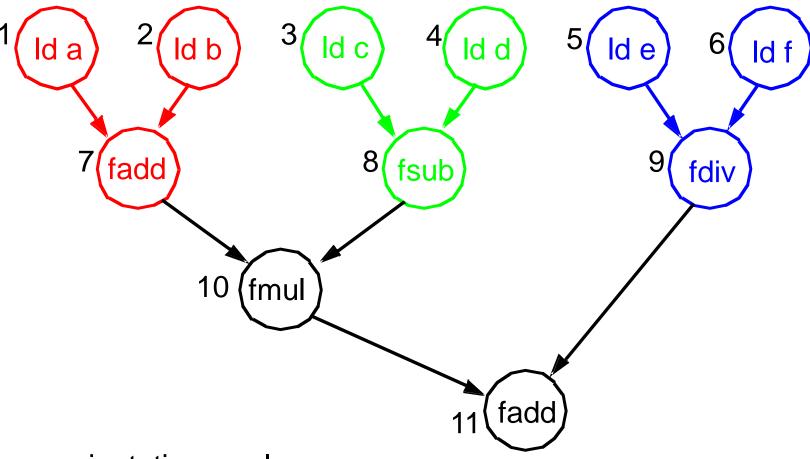

- Edges (a \rightarrow b): a precedes b
- Edges are annotated with minimum latency

```
w[i+k].ip = z[i].rp + z[m+i].rp;
w[i+j].rp = e[k+1].rp*
          (z[i].rp - z[m+i].rp) -
          e[k+1].ip *
          (z[i].ip - z[m+i].ip);
```

FFT code fragment

```
i1: 1.s f2, 4(r2)
i2: 1.s f0, 4(r5)
i3: fadd.s f0, f2, f0
i4: s.s f0, 4(r6)
i5: l.s f14, 8(r7)
i6: l.s f6, 0(r2)
i7: l.s f5, 0(r3)
i8: fsub.s f5, f6, f5
i9: fmul.s f4, f14, f5
i10: l.s f15, 12(r7)
i11: 1.s f7, 4(r2)
i12: 1.s f8, 4(r3)
i13: fsub.s f8, f7, f8
i14: fmul.s f8, f15, f8
i15: fsub.s f8, f4, f8
i16: s.s f8, 0(r8)
```

Precedence Graph (Data Flow Graph)


List Scheduling for Basic Blocks

- Initialize ready list that holds all ready instructions
 - Ready = data ready and can be scheduled
- Choose one ready instruction *i* from ready list with the highest priority
 - Number of descendants in precedence graph
 - Maximum latency from root node of precedence graph
 - Length of operation latency
 - Ranking of paths based on importance
 - Combination of above
- Insert *i* into schedule
 - Making sure resource constraints are satisfied
- Add those instructions whose precedence constraints are now satisfied into the ready list
- Can be applied in the forward or backward direction

List Scheduling Example

$$(a + b) * (c - d) + e/f$$

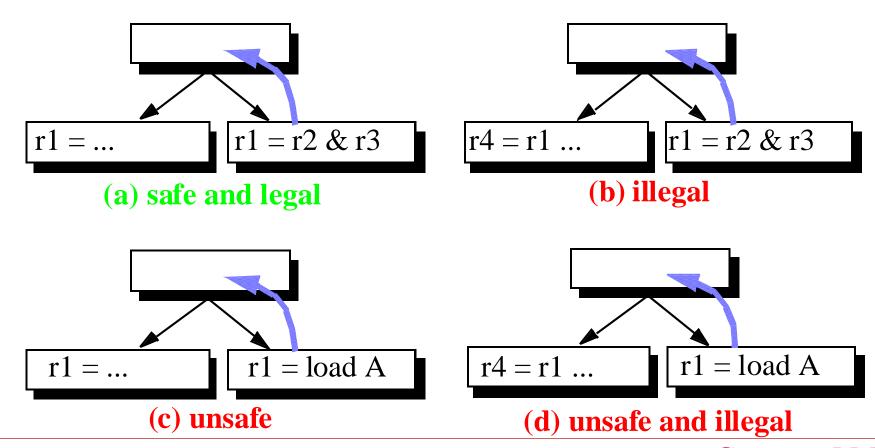
load: 2 cycles add: 1 cycle sub: 1 cycle mul: 4 cycles div: 10 cycles

orientation: cycle

direction: backward

heuristic: maximum latency to root

ist Scheduling Example

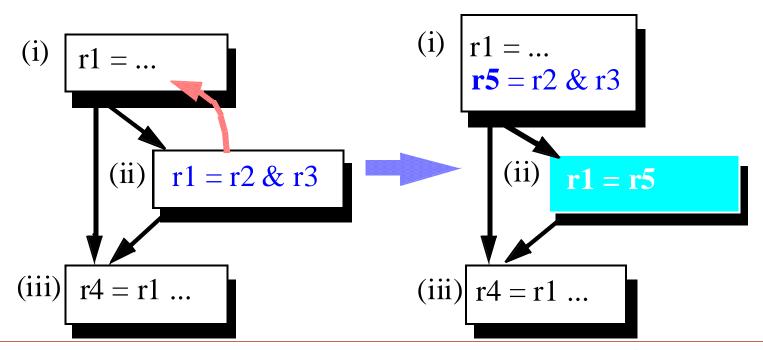

Cycle	Ready list	Schedule	Code
1	6	6	ld f
2	5 6	5	ld e
3	4 5 6	4	ld d
4	4 9	9	fdiv (e/f)
5	3 4 9	3	ld c
6	2349	2	ld b
7	1 2 3 4 9	1	ld a
8	1 2 8 9	8	fsub (c – d)
9	789	7	fadd (a + b)
10	9 10	10	fmul
11	9 10		nop
12	9 10		nop
13	9 10 green means candidate red means candidate		nop
14	11	11	fadd

Limitations of List Scheduling

- Cannot move instructions past conditional branch instructions in the program (scheduling limited by basic block boundaries)
- **Problem:** Many programs have small numbers of instructions (4-5) in each basic block. Hence, not much code motion is possible
- Solution: Allow code motion across basic block boundaries.
- Speculative Code Motion: "jumping the gun"
 - Execute instructions before we know whether or not we need to
 - Utilize otherwise idle resources to perform work which we speculate will need to be done
- Relies on program profiling to make intelligent decisions about speculation

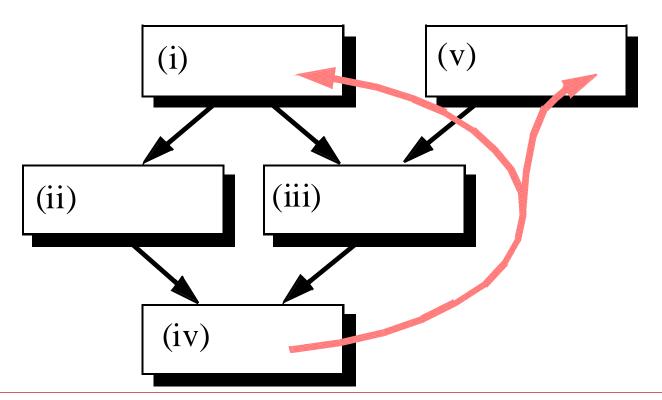
Types of Speculative Code Motion

- **■** Two characteristics of speculative code motion:
 - Safety, which indicates whether or not spurious exceptions may occur
 - **Legality**, which indicates correctness of results
- **■** Four possible types of code motion:


Register Renaming (at compile time in SW)

- **■** Prevents boosted instructions from overwriting register state needed on alternate execution path.
- Utilizes idle (non-live) registers (r6 in example below).

BB#	Original Code		Scheduled Code		
n	load load cmpi add <stall> <stall> bc</stall></stall>	r4= r5= c0,r4,10 r4=r4+r5		load load cmpi add sub and bc	r4= r5= c0,r4,10 r4=r4+r5 r3=r7-r4 r6=r3&r5 c0, A1
n+1	st	=r4		st	=r4
n+2	A1: sub and st	r3=r7-r4 r4=r3&r5 =r4	A1:	st	=r6


Copy Creation

- Register renaming causes a problem when there are multiple definitions of a register reaching a single use:
 - Below, definitions of r1 in both (i) and (ii) can reach the use in (iii).
 - If the instruction in (ii) is boosted into (i), it must be renamed to preserve the first value of r1.
 - However, the boosted definition of r1 must reach the use in (iii) as well.
 - Hence, we insert a copy instruction in (ii).

Instruction Replication

- General case of upward code motion: crossing control flow joins.
- Instructions must be present on each control flow path to their original basic block
- Replicate set is computed for each basic block that is a source for instructions to be boosted

Profile Driven Optimizations

Wrong optimization choices can be costly!

How do you determine dynamic information during compilation?

- During initial compilation, "extra code" can be added to a program to generate profiling statistics when the program is executed
- **■** Execution Profile, e.g.
 - how many times is a basic block executed
 - how often is a branch taken vs. not taken
- Recompile the program using the profile to guide optimization choices
- A profile is associated with a particular program input
 - ⇒ may not work well on all executions

Limitations of Optimizing Compilers

- **Operate under fundamental constraint**
 - Must not cause any change in program behavior
 - Except, possibly when program making use of nonstandard language features
 - Often prevents it from making optimizations that would only affect behavior under pathological conditions.
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
 - e.g., Data ranges may be more limited than variable types suggest
- Most analysis is performed only within procedures
 - Whole-program analysis is too expensive in most cases
 - Newer versions of GCC do interprocedural analysis within individual files
 - But, not between code in different files
- Most analysis is based only on static information
 - Compiler has difficulty anticipating run-time inputs
- When in doubt, the compiler must be conservative

Generally Useful Optimizations

Optimizations that you or the compiler should do regardless of processor / compiler

Code Motion

- Reduce frequency with which computation performed
 - If it will always produce same result
 - Especially moving code out of loop

```
void set row(double *a, double *b,
  long i, long n)
                                                  long j;
   long j;
                                                  int ni = n*i;
   for (j = 0; j < n; j++)
                                                  for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
                                                      a[ni+j] = b[j];
```

Compiler-Generated Code Motion (-O1)

```
void set row(double *a, double *b,
   long i, long n)
    long j;
    for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
```

```
long j;
long ni = n*i;
double *rowp = a+ni;
for (j = 0; j < n; j++)
    *rowp++ = b[i];
```

```
set row:
       testq %rcx, %rcx
                                    # Test n
                              # If 0, goto done
       jle
              .L1
       imulq %rcx, %rdx
                                   # ni = n*i
       leaq (%rdi,%rdx,8), %rdx \# rowp = A + ni*8
                                    \# i = 0
       movl $0, %eax
.L3:
                                    # loop:
       movsd (%rsi,%rax,8), %xmm0 # t = b[j]
       movsd %xmm0, (%rdx, %rax, 8) # M[A+ni*8 + j*8] = t
       addq $1, %rax
                                    # 1++
       cmpq %rcx, %rax
                                    # j:n
                                    # if !=, goto loop
       jne
            .L3
.L1:
                                     # done:
       rep ; ret
```

Reduction in Strength

- Replace costly operation with simpler one
- Shift, add instead of multiply or divide

```
16*x --> x << 4
```

- Utility machine dependent
- Depends on cost of multiply or divide instruction
 - On Intel Nehalem, integer multiply requires 3 CPU cycles
- Recognize sequence of products

```
for (i = 0; i < n; i++) {
                                        for (j = 0; j < n; j++)
                                          a[ni + j] = b[j];
                                         ni += n;
```

Share Common Subexpressions

- Reuse portions of expressions
- GCC will do this with –O1

```
/* Sum neighbors of i, j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;
```

3 multiplications: i*n, (i-1)*n, (i+1)*n

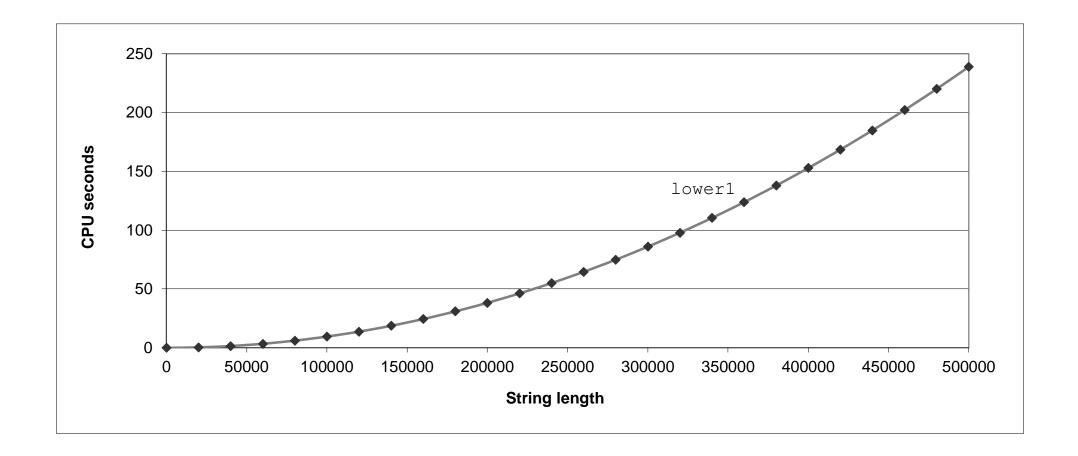
```
leaq 1(%rsi), %rax # i+1
     -1(%rsi), %r8 # i-1
leaq
imulq %rcx, %rsi # i*n
     %rcx, %rax # (i+1)*n
imula
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j
```

```
long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;
```

1 multiplication: i*n

```
imulq
      %rcx, %rsi # i*n
      %rdx, %rsi # i*n+j
addq
      %rsi, %rax # i*n+j
movq
      %rcx, %rax # i*n+j-n
subq
      (%rsi,%rcx), %rcx # i*n+j+n
leaq
```

Optimization Blocker #1: Procedure Calls


Procedure to Convert String to Lower Case

```
void lower(char *s)
 size t i;
 for (i = 0; i < strlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
```

Extracted from 213 lab submissions, Fall, 1998

Lower Case Conversion Performance

- Time quadruples when double string length
- Quadratic performance

Convert Loop To Goto Form

```
void lower(char *s)
   size t i = 0;
   if (i >= strlen(s))
     goto done;
 loop:
   if (s[i] >= 'A' && s[i] <= 'Z')
       s[i] -= ('A' - 'a');
   i++;
   if (i < strlen(s))</pre>
     goto loop;
 done:
```

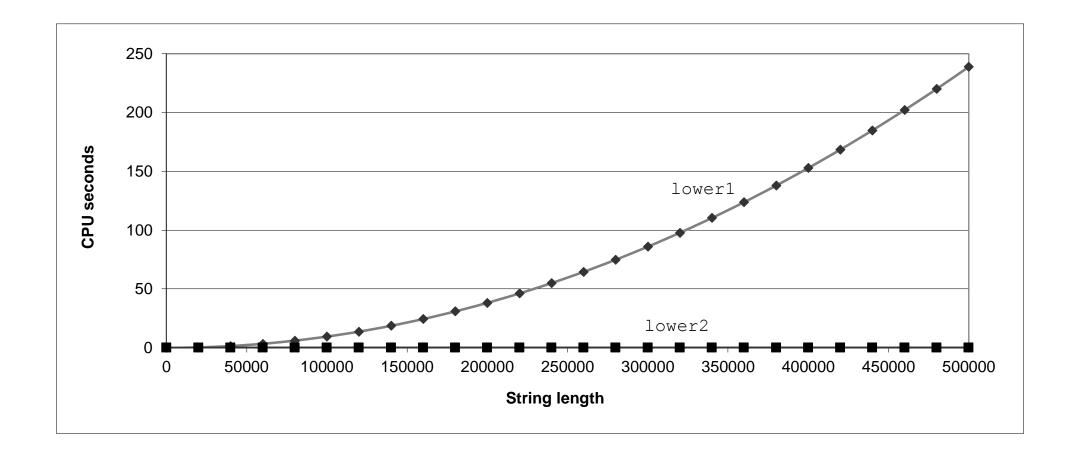
strlen executed every iteration

Calling Strlen

```
/* My version of strlen */
size t strlen(const char *s)
    size t length = 0;
    while (*s != '\0') {
       s++;
       length++;
    return length;
```

Strlen performance

- Only way to determine length of string is to scan its entire length, looking for null character.
- Overall performance, string of length N
 - N calls to strlen
 - Require times N, N-1, N-2, ..., 1
 - Overall O(N²) performance


Improving Performance

```
void lower(char *s)
 size t i;
 size t len = strlen(s);
  for (i = 0; i < len; i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
```

- Move call to strlen outside of loop
- Since result does not change from one iteration to another
- Form of code motion

Lower Case Conversion Performance

- Time doubles when double string length
- Linear performance of lower2

Optimization Blocker: Procedure Calls

- Why couldn't compiler move strlen out of inner loop?
 - Procedure may have side effects
 - Alters global state each time called
 - Function may not return same value for given arguments
 - Depends on other parts of global state
 - Procedure lower could interact with strlen

■ Warning:

- Compiler treats procedure call as a black box
- Weak optimizations near them

Remedies:

- Use of inline functions
 - GCC does this with –O1
 - Within single file
- Do your own code motion

```
size t lencnt = 0;
size t strlen(const char *s)
    size t length = 0;
    while (*s != ' \setminus 0') {
       s++; length++;
    lencnt += length;
    return length;
```

Memory Matters

```
/* Sum rows is of n X n matrix a
   and store in vector b */
void sum rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
```

```
# sum rows1 inner loop
.L4:
      movsd (%rsi,%rax,8), %xmm0 # FP load
      addsd (%rdi), %xmm0
                           # FP add
      movsd %xmm0, (%rsi,%rax,8) # FP store
      addq $8, %rdi
            %rcx, %rdi
      cmpq
      jne
             .L4
```

- Code updates b [i] on every iteration
- Why couldn't compiler optimize this away?

Memory Aliasing

```
'* Sum rows is of n X n matrix a
   and store in vector b */
void sum rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
```

```
double A[9] =
   4, 8, 16},
  32, 64, 128};
double B[3] = A+3;
sum rows1(A, B, 3);
```

Value of B:

```
init:
      [4, 8, 16]
i = 0: [3, 8, 16]
i = 1: [3, 22, 16]
i = 2: [3, 22, 224]
```

- Code updates b [i] on every iteration
- Must consider possibility that these updates will affect program behavior

Removing Aliasing

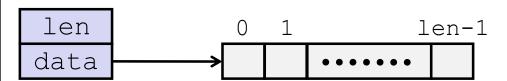
```
/* Sum rows is of n X n matrix a
   and store in vector b */
void sum rows2(double *a, double *b, long n) {
   long i, j;
   for (i = 0; i < n; i++) {
        double val = 0;
        for (j = 0; j < n; j++)
           val += a[i*n + j];
        b[i] = val;
```

```
# sum rows2 inner loop
.L10:
       addsd (%rdi), %xmm0  # FP load + add
       addq
              $8, %rdi
              %rax, %rdi
       cmpq
       jne
              .L10
```

No need to store intermediate results

Optimization Blocker: Memory Aliasing

Aliasing


- Two different memory references specify single location
- Easy to have happen in C
 - Since allowed to do address arithmetic
 - Direct access to storage structures
- Get in habit of introducing local variables
 - Accumulating within loops
 - Your way of telling compiler not to check for aliasing

Exploiting Instruction-Level Parallelism

- Need general understanding of modern processor design
 - Hardware can execute multiple instructions in parallel
- Performance limited by data dependencies
- Simple transformations can yield dramatic performance improvement
 - Compilers often cannot make these transformations
 - Lack of associativity and distributivity in floating-point arithmetic

Benchmark Example: Data Type for Vectors

```
/* data structure for vectors */
typedef struct{
   size t len;
   data t *data;
 vec;
```


■Data Types

- Use different declarations for data t
- int
- long
- float.
- double

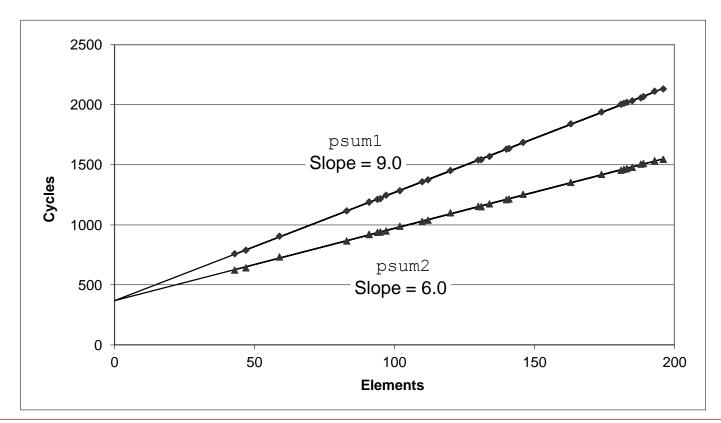
```
/* retrieve vector element
   and store at val */
int get vec element
  (*vec v, size t idx, data t *val)
    if (idx \ge v->len)
        return 0;
    *val = v->data[idx];
    return 1;
```

Benchmark Computation

```
void combine1(vec ptr v, data t *dest)
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec length(v); i++) {
      data t val;
      get vec element(v, i, &val);
      *dest = *dest OP val;
```

Compute sum or product of vector elements

Data Types


- Use different declarations for data t
- int
- long
- float
- double

Operations

- Use different definitions of OP and IDENT
- + / 0
- * / 1

Cycles Per Element (CPE)

- Convenient way to express performance of program that operates on vectors or lists
- Length = n
- In our case: CPE = cycles per OP
- T = CPE*n + Overhead
 - CPE is slope of line

Benchmark Performance

```
void combine1(vec_ptr v, data_t *dest)
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec length(v); i++) {
      data t val;
      get vec element(v, i, &val);
       *dest = *dest OP val;
```

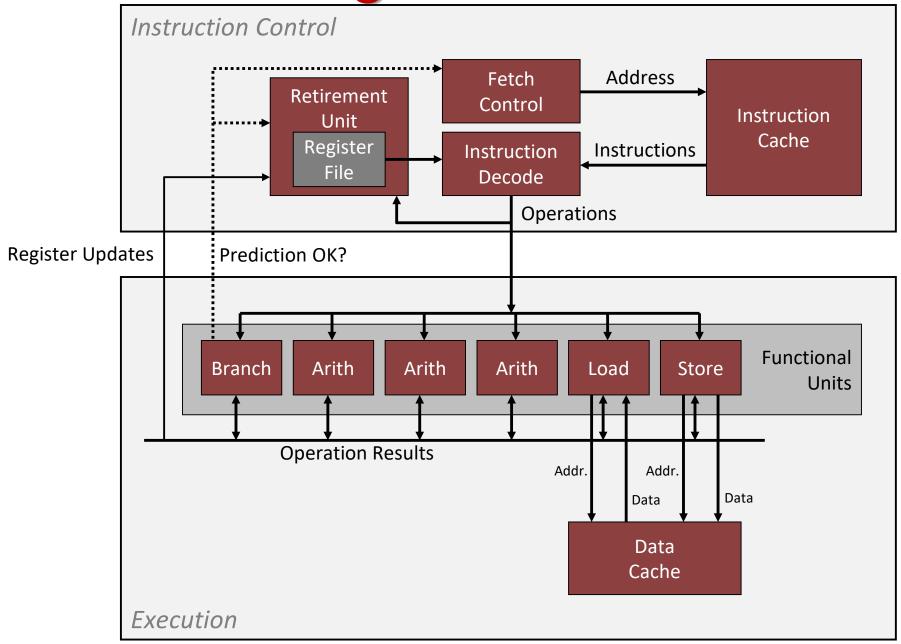
Compute sum or product of vector elements

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine1 unoptimized	22.68	20.02	19.98	20.18
Combine1 –O1	10.12	10.12	10.17	11.14

Basic Optimizations

```
void combine4(vec ptr v, data t *dest)
 long i;
 long length = vec length(v);
 data t *d = get vec start(v);
 data t t = IDENT;
 for (i = 0; i < length; i++)
   t = t OP d[i];
  *dest = t;
```

- Move vec_length out of loop
- Avoid bounds check on each cycle
- Accumulate in temporary

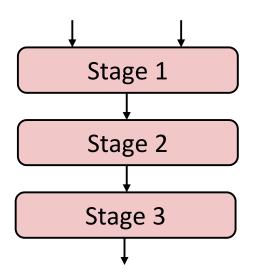

Effect of Basic Optimizations

```
void combine4(vec ptr v, data t *dest)
 long i;
 long length = vec length(v);
 data t *d = get vec start(v);
 data t t = IDENT;
 for (i = 0; i < length; i++)
   t = t OP d[i];
  *dest = t;
```

Method	Inte	ger	Doub	le FP
Operation	Add	Mult	Add	Mult
Combine1 -O1	10.12	10.12	10.17	11.14
Combine4	1.27	3.01	3.01	5.01

Eliminates sources of overhead in loop

Modern CPU Design


18-600 Lecture #14

Superscalar Processor

- **Definition:** A superscalar processor can issue and execute *multiple* instructions in one cycle. The instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically.
- Benefit: without programming effort, superscalar processor can take advantage of the *instruction level parallelism* that most programs have
- Most modern CPUs are superscalar.
- Intel: since first (in-order) superscalar Pentium (1993) and first out-oforder execution superscalar Pentium Pro or "P6" (1995)

Pipelined Functional Units

```
long mult eg(long a, long b, long c) {
    long p1 = a*b;
    long p2 = a*c;
    long p3 = p1 * p2;
    return p3;
```


	Time							
	1	2	3	4	5	6	7	
Stage 1	a*b	a*c			p1*p2			
Stage 2		a*b	a*c			p1*p2		
Stage 3			a*b	a*c			p1*p2	

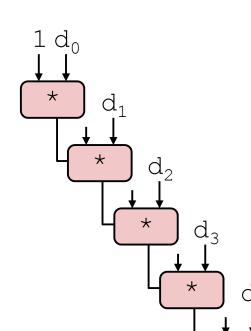
- Divide computation into stages
- Pass partial computations from stage to stage
- Stage i can start on new computation once values passed to i+1
- E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles

Haswell CPU

- 8 Total Functional Units
- Multiple instructions can execute in parallel
 - 2 load, with address computation
 - 1 store, with address computation
 - 4 integer
 - 2 FP multiply
 - 1 FP add
 - 1 FP divide

Some instructions take > 1 cycle, but can be pipelined

Instruction	Latency	Cycles/Issue
Load / Store	4	1
Integer Multiply	3	1
Integer/Long Divide	3-30	3-30
Single/Double FP Multiply	5	1
Single/Double FP Add	3	1
Single/Double FP Divide	3-15	3-15


x86-64 Compilation of Combine4

Inner Loop (Case: Integer Multiply)

```
.L519:
                         # Loop:
 imull (%rax, %rdx, 4), %ecx # t = t * d[i]
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
       .L519
                        # If >, goto Loop
 jg
```

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01
Latency Bound	1.00	3.00	3.00	5.00

Combine 4 = Serial Computation (OP = *)

Computation (length=8)

```
* d[4]) * d[5]) * d[6]) * d[7])
```

- Sequential dependence
 - Performance: determined by latency of OP

Loop Unrolling (2x1)

```
void unroll2a combine(vec ptr v, data t *dest)
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = (x OP d[i]) OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x = x OP d[i];
    *dest = x;
```

Perform 2x more useful work per iteration

Effect of Loop Unrolling

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Latency Bound	1.00	3.00	3.00	5.00

Helps integer add

Achieves latency bound

$$x = (x OP d[i]) OP d[i+1];$$

- Others don't improve. Why?
 - Still sequential dependency

Loop Unrolling with Reassociation (2x1a)

```
void unroll2aa combine(vec ptr v, data t *dest)
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = x OP (d[i] OP d[i+1]);
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x = x OP d[i];
                                 Compare to before
                                  x = (x OP d[i]) OP d[i+1];
    *dest = x;
```

- Can this change the result of the computation?
- Yes, for FP. Why?

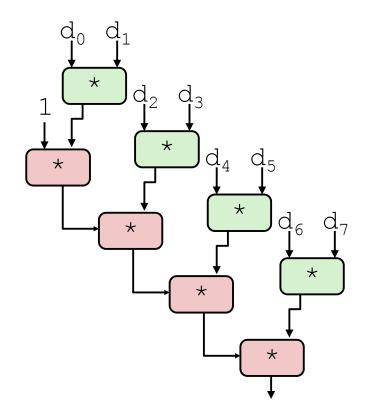
Effect of Reassociation

Method	Integer		Doub	le FP
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Unroll 2x1a	1.01	1.51	1.51	2.51
Latency Bound	1.00	3.00	3.00	5.00
Throughput Bound	0.50	1.00	1.00	0.50

Nearly 2x speedup for Int *, FP +, FP *

Reason: Breaks sequential dependency

$$x = x OP (d[i] OP d[i+1]);$$


Why is that? (next slide)

2 func. units for FP * 2 func. units for load

4 func. units for int + 2 func. units for load

Reassociated Computation

$$x = x OP (d[i] OP d[i+1]);$$

What changed:

Ops in the next iteration can be started early (no dependency)

Overall Performance

- N elements, D cycles latency/op
- (N/2+1)*D cycles: CPE = D/2

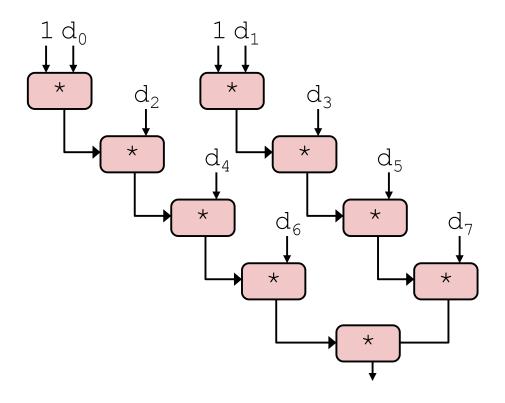
Loop Unrolling with Separate Accumulators (2x2)

```
void unroll2a combine(vec ptr v, data_t *dest)
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x0 = IDENT;
    data t x1 = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x0 = x0 \text{ OP d[i]};
       x1 = x1 OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x0 = x0 OP d[i];
    *dest = x0 OP x1;
```

Different form of reassociation

Effect of Separate Accumulators

Method	Integer		Doub	le FP
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Unroll 2x1a	1.01	1.51	1.51	2.51
Unroll 2x2	0.81	1.51	1.51	2.51
Latency Bound	1.00	3.00	3.00	5.00
Throughput Bound	0.50	1.00	1.00	0.50


Int + makes use of two load units

$$x0 = x0 \text{ OP d[i];}$$

 $x1 = x1 \text{ OP d[i+1];}$

2x speedup (over unroll2) for Int *, FP +, FP *

Separate Accumulators

$$x0 = x0 \text{ OP d[i];}$$

 $x1 = x1 \text{ OP d[i+1];}$

What changed:

Two independent "streams" of operations

Overall Performance

- N elements, D cycles latency/op
- Should be (N/2+1)*D cycles: CPE = D/2
- CPE matches prediction!

What Now?

Unrolling & Accumulating

Idea

- Can unroll to any degree L
- Can accumulate K results in parallel
- L must be multiple of K

Limitations

- Diminishing returns
 - Cannot go beyond throughput limitations of execution units
- Large overhead for short lengths
 - Finish off iterations sequentially

Unrolling & Accumulating: Double *

- Case
 - Intel Haswell
 - Double FP Multiplication
 - Latency bound: 5.00. Throughput bound: 0.50

FP *	Unrolling Factor L								
K	1	2	3	4	6	8	10	12	
1	5.01	5.01	5.01	5.01	5.01	5.01	5.01		
2		2.51		2.51		2.51			
3			1.67						
4				1.25		1.26			
6					0.84			0.88	
8						0.63			
10							0.51		
12								0.52	

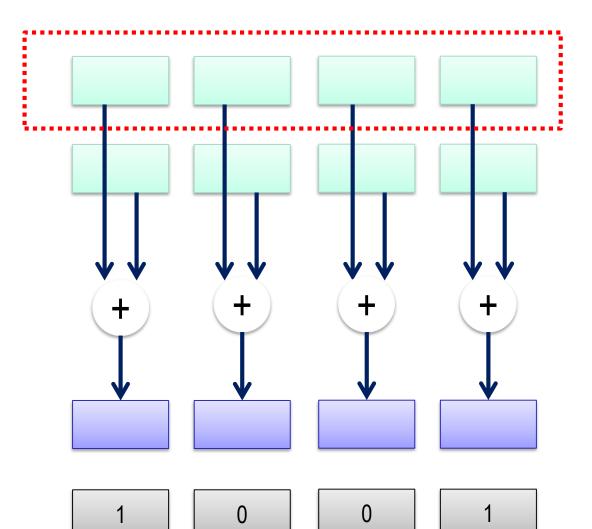
18-600 Lecture #14

Unrolling & Accumulating: Int +

- Case
 - Intel Haswell
 - Integer addition
 - Latency bound: 1.00. Throughput bound: 0.50

Int +	Unrolling Factor L								
K	1	2	3	4	6	8	10	12	
1	1.27	1.01	1.01	1.01	1.01	1.01	1.01		
2		0.81		0.69		0.54			
3			0.74						
4				0.69		1.24			
6					0.56			0.56	
8						0.54			
10							0.54		
12								0.56	

18-600 Lecture #14


Achievable Performance

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Best	0.54	1.01	1.01	0.51
Latency Bound	1.00	3.00	3.00	5.00
Throughput Bound	0.50	1.00	1.00	0.50

- Limited only by throughput of functional units
- Up to 42X improvement over original, unoptimized code

Single Instruction Multiple Data (SIMD)

128-bit register (4 32-bit data)

Source 0

Source 1

Destination

WriteMask/Predicate

SIMD Extensions for Superscalar Processors

- Every CISC/RISC processor today has SIMD extensions
 - MMX, SSE, SSE-2, SSE-3, SSE-4, AVX, AVX2, Altivec, VIS, ...
- Basic idea: accelerate multimedia processing
 - Define vectors of 8, 16, 32 and 64 bit elements in regular registers
 - Apply SIMD arithmetic on these vectors

Nice and cheap

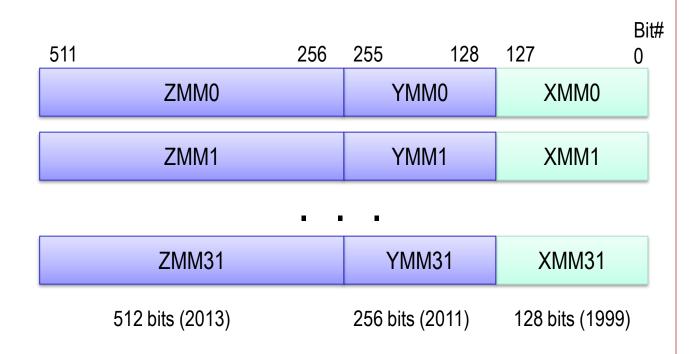
- Define big vector register file
 - The size of these vector registers has been increasing
- All we need to do
 - Add the proper opcodes for SIMD arithmetic
 - Provide wide datapaths to execute SIMD arithmetic
- Certain operations are easier on short vectors
 - Reductions, random permutations

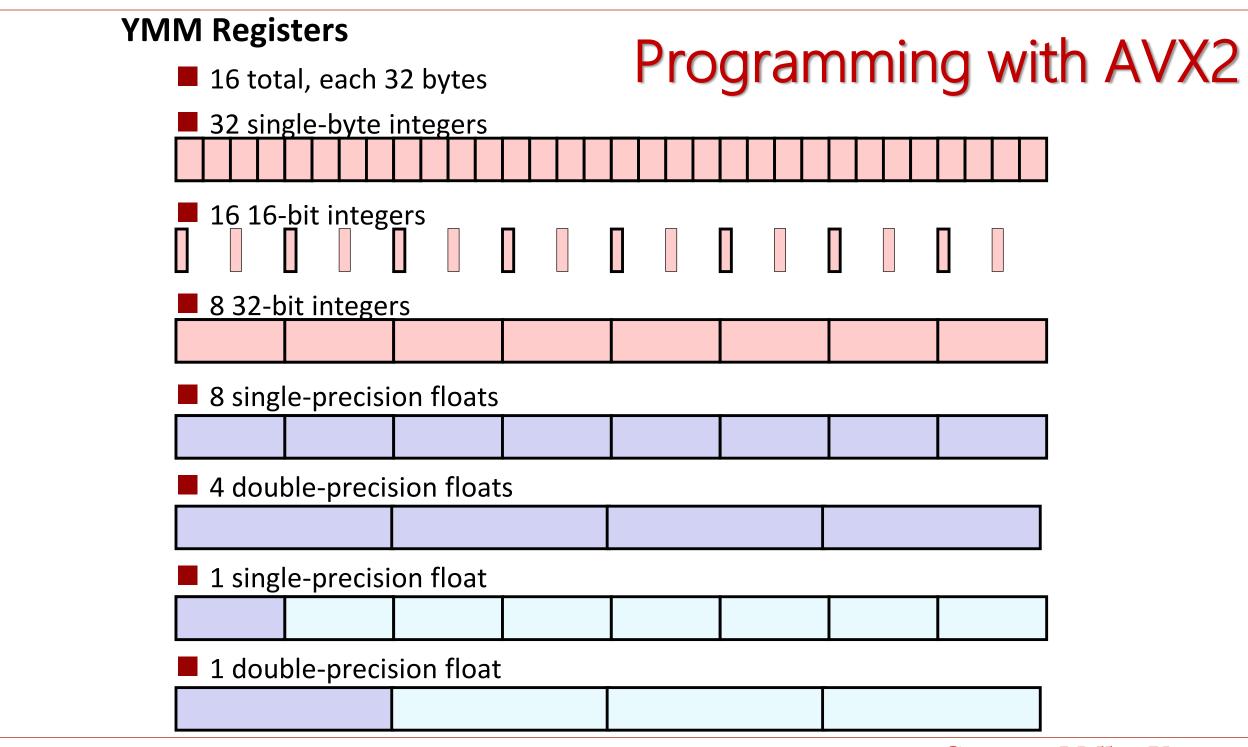
Problems with SIMD Extension

SIMD defines short, fixed-sized, vectors

- Cannot capture data parallelism wider than 64 bits
 - MMX (1996) has 64-bit register s (8 8-bit or 4 16-bit operations)
- Must use wide-issue to utilize more than 64-bit datapaths
- SSE and Altivec have switched to 128-bits because of this
- AVX2 has switched to 512-bits because of this

SIMD does not support vector memory accesses


- Strided and indexed accesses for narrow elements
- Needs multi-instruction sequence to emulate
 - Pack, unpack, shift, rotate, merge, etc
- Cancels most of performance and code density benefits of vectors


Compiler support for SIMD?

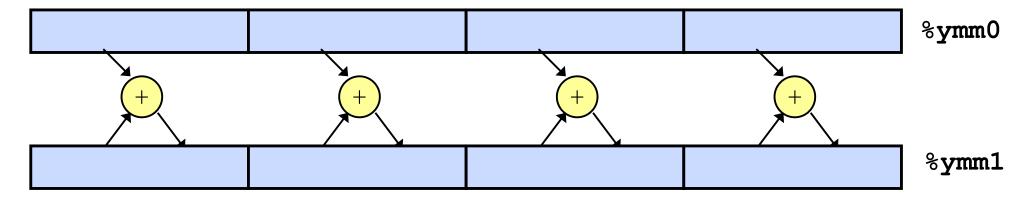
- Auto vectorization is hard
- Rely on programming model (e.g., OpenMP, Cilk+)

AVX2 SIMD Register Set

- Intel® AVX extends all 16 XMM (128 bits) registers to 256bits (YMM)
- Intel AVX instructions operate on either:
 - The whole 256-bits (FP only)
 - The lower 128-bits (like existing Intel[®] SSE instructions)
 - A replacement for existing scalar/128-bit SSE instructions
 - Provides new capabilities on existing instructions
 - The upper 128-bits of the register are zeroed out
- Intel AVX2 supports integer operations



■ SIMD Operations: Single Precision


SIMD Operations

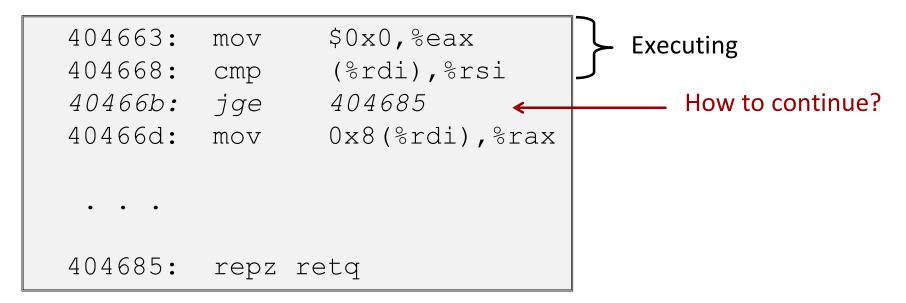
vaddsd %ymm0, %ymm1, %ymm1

■ SIMD Operations: Double Precision

vaddpd %ymm0, %ymm1, %ymm1

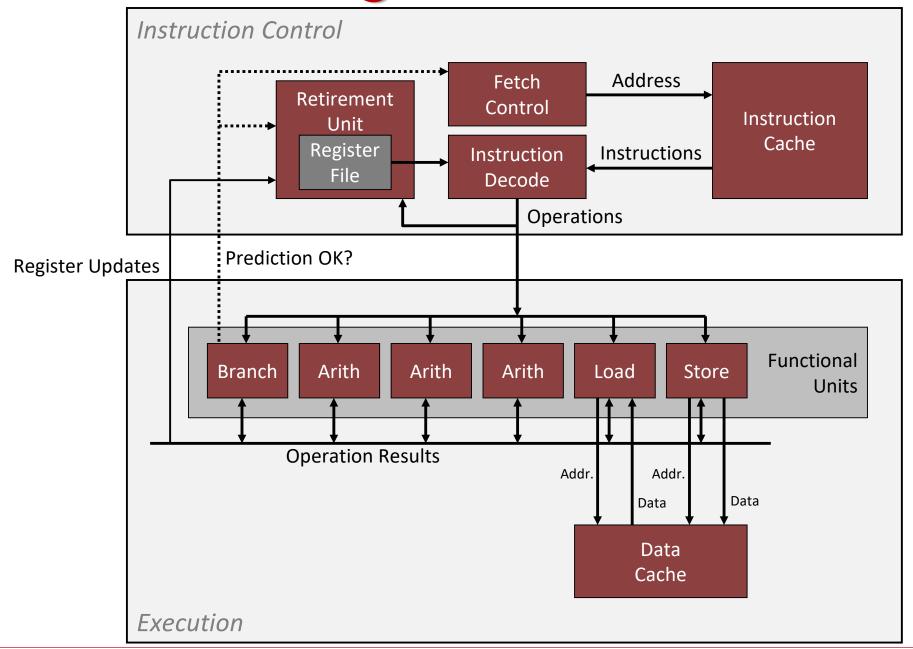
Using Vector Instructions

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Scalar Best	0.54	1.01	1.01	0.52
Vector Best	0.06	0.24	0.25	0.16
Latency Bound	0.50	3.00	3.00	5.00
Throughput Bound	0.50	1.00	1.00	0.50
Vec Throughput Bound	0.06	0.12	0.25	0.12

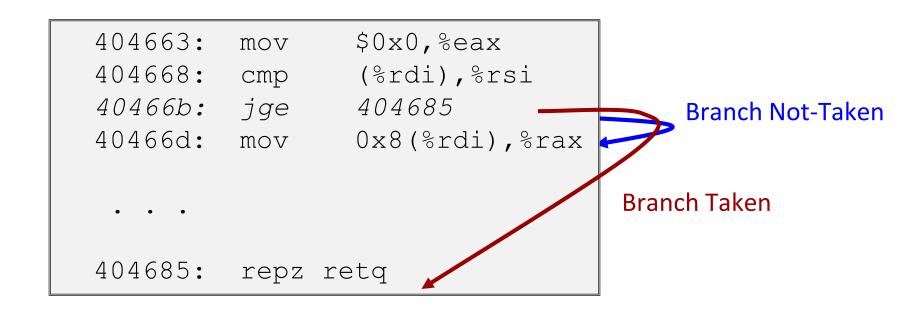

Make use of AVX Instructions

- Parallel operations on multiple data elements
- See Web Aside OPT:SIMD on CS:APP web page

What About Branches?

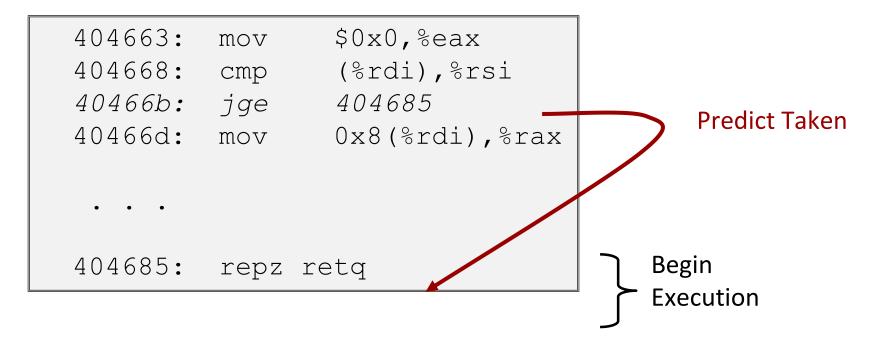

Challenge

Instruction Control Unit must work well ahead of Execution Unit to generate enough operations to keep EU busy


When encounters conditional branch, cannot reliably determine where to continue fetching

Modern CPU Design

Branch Outcomes


- When encounter conditional branch, cannot determine where to continue fetching
 - Branch Taken: Transfer control to branch target
 - Branch Not-Taken: Continue with next instruction in sequence
- Cannot resolve until outcome determined by branch/integer unit

Branch Prediction

Idea

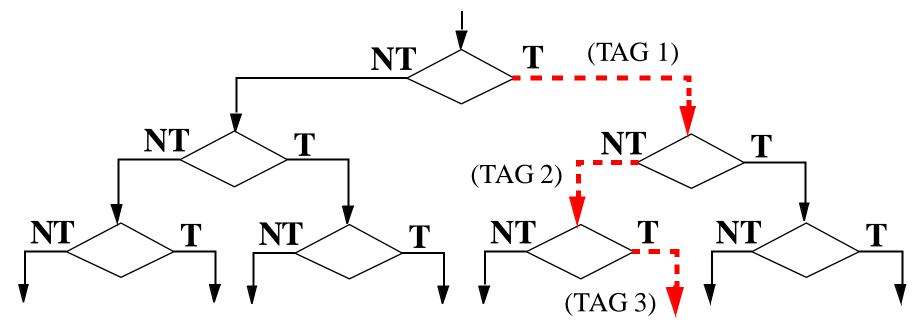
- Guess which way branch will go
- Begin executing instructions at predicted position
 - But don't actually modify register or memory data

Branch Prediction Through Loop

```
Assume
401029:
          vmulsd (%rdx),%xmm0,%xmm0
40102d:
          add
                  $0x8, %rdx
                                            vector length = 100
                  %rax,%rdx
401031:
          cmp
                               i = 98
                  401029
401034:
          ine
                                            Predict Taken (OK)
401029:
          vmulsd
                  (%rdx),%xmm0,%xmm0
40102d:
          add
                  $0x8, %rdx
401031:
                  %rax,%rdx
          cmp
                               i = 99
                  401029
401034:
          ine
                                            Predict Taken
                                            (Oops)
401029:
          vmulsd (%rdx),%xmm0,%xmm0
40102d:
          add
                  $0x8, %rdx
                                                            Executed
                                            Read
401031:
                  %rax,%rdx
          cmp
                               i = 100
                                            invalid
401034:
                  401029
          jne
                                            location
401029:
                  (%rdx),%xmm0,%xmm0
          vmulsd
                                                             Fetched
40102d:
          add
                  $0x8, %rdx
401031:
                  %rax,%rdx
          cmp
                               i = 101
                  401029
401034:
          jne
```

Branch Misprediction Invalidation

```
Assume
401029:
          vmulsd (%rdx), %xmm0, %xmm0
40102d:
          add
                  $0x8, %rdx
                                             vector\ length = 100
                  %rax,%rdx
401031:
          cmp
                                i = 98
401034:
          ine
                  401029
                                              Predict Taken (OK)
401029:
          vmulsd (%rdx),%xmm0,%xmm0
40102d:
          add
                  $0x8, %rdx
401031:
                  %rax,%rdx
          cmp
                                i = 99
                  401029
401034:
          ine
                                             Predict Taken
                                              (Oops)
          vmulsd (%rdx),%xmm0,%xmm0
401029:
40102d:
          add
                  $0x8, %rdx
401031:
                  %rax,%rdx
          cmp
                                i = 100
                  401029
401034:
          ine
                                                 Invalidate
401029:
          vmulsd (%rdx),%xmm0,%xmm0
                  $1x8 grdx
40102d.
          add
                  gray grdy
401031 •
          cmp
                                \overline{i} = 101
101031.
                  101029
```

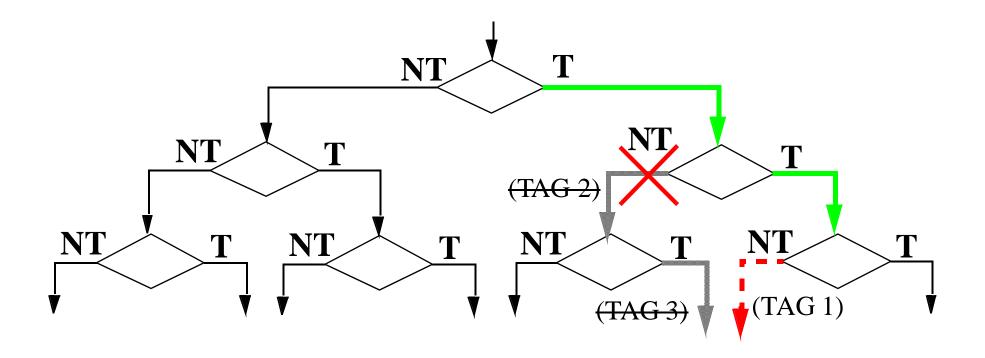

Branch Misprediction Recovery

```
401029:
          vmulsd (%rdx), %xmm0, %xmm0
40102d:
          add
                  $0x8, %rdx
                                     i = 99
                                                Definitely not taken
401031:
                  %rax,%rdx
          cmp
401034:
                  401029
          jne
401036:
          jmp
                  401040
                                                   Reload
                                                   Pipeline
          vmovsd %xmm0, (%r12)
401040:
```

Performance Cost

- Multiple clock cycles on modern processor
- Can be a major performance limiter

Control Flow Speculation


Leading Speculation

- Typically done during the Fetch stage
- Based on potential branch instruction(s) in the current fetch group

Trailing Confirmation

- Typically done during the Branch Execute stage
- Based on the next Branch instruction to finish execution

Mis-speculation Recovery

Start New Correct Path

- Must remember the alternate (non-predicted) path
- Eliminate Incorrect Path
 - Must ensure that the mis-speculated instructions produce no side effects

Getting High Performance

- Good compiler and flags
- Avoid anything foolish, develop good habits
 - Watch out for hidden algorithmic inefficiencies
 - Write compiler-friendly code
 - Watch out for optimization blockers: procedure calls & memory references
 - Look carefully at innermost loops (where most work is done)
- Tune code for machine
 - Exploit instruction-level parallelism
 - Avoid unpredictable branches
 - Make code cache friendly

18-600 Foundations of Computer Systems

Lecture 15: "Exceptional Control Flow I: Exceptions and Processes"

John P. Shen & Zhiyi Yu October 19, 2016

- ➤ Required Reading Assignment:
 - Chapter 8 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron.

