Lecture 13: “Cache Memories”

John Shen & Zhiyi Yu
October 12, 2016

- Required Reading Assignment: Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron
- Assignments for This Week: Lab 3 due, Lab 4 out
Today

• Cache memory organization and operation
 • Performance impact of caches
 • The memory mountain
 • Rearranging loops to improve spatial locality
 • Using blocking to improve temporal locality
Example Memory Hierarchy

- **L0:** Registers
- **L1:** L1 cache (SRAM)
 - L1 cache holds cache lines retrieved from the L2 cache.
- **L2:** L2 cache (SRAM)
 - L2 cache holds cache lines retrieved from L3 cache
- **L3:** L3 cache (SRAM)
 - L3 cache holds cache lines retrieved from main memory.
- **L4:** Main memory (DRAM)
 - Main memory holds disk blocks retrieved from local disks.
- **L5:** Local secondary storage (local disks)
 - Local disks hold files retrieved from disks on remote servers.
- **L6:** Remote secondary storage (e.g., Web servers)

Smaller, faster, and costlier (per byte) storage devices

Larger, slower, and cheaper (per byte) storage devices
General Cache Concept

Smaller, faster, more expensive memory caches a subset of the blocks.

Larger, slower, cheaper memory viewed as partitioned into “blocks”.

Data is copied in block-sized transfer units.
Data in block b is needed

Block b is in cache:
Hit!
General Cache Concepts: Miss

Data in block b is needed

Block b is not in cache: Miss!

Block b is fetched from memory

Block b is stored in cache
 • Placement policy: determines where b goes
 • Replacement policy: determines which block gets evicted (victim)
General Caching Concepts: Types of Cache Misses

• Cold (compulsory) miss
 • Cold misses occur because the cache is empty.

• Capacity miss
 • Occurs when the set of active cache blocks (working set) is larger than the cache.

• Conflict miss
 • Occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
 • E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
Cache Memories

- **Cache memories** are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:

![Diagram of computer system components](image-url)
General Cache Organization (S, E, B)

- $E = 2^e$ lines per set
- $S = 2^s$ sets
- $B = 2^b$ bytes per cache block (the data)

Cache size:
$$C = S \times E \times B \text{ data bytes}$$
Cache Read

- Locate set
- Check if any line in set has matching tag
- Yes + line valid: hit
- Locate data starting at offset

\[
E = 2^e \text{ lines per set}
\]

\[S = 2^s \text{ sets}\]

Address of word:
- \(t\) bits
- \(s\) bits
- \(b\) bits

- tag
- set
- index
- block
- offset

data begins at this offset

\[B = 2^b \text{ bytes per cache block (the data)}\]

valid bit

0 1 2 \ldots \ B-1
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S = 2^s sets

Address of int:

\[\begin{array}{c|c|c}
\text{t bits} & 0 & \ldots & 1 & 100 \\
\end{array} \]

find set
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Valid + match: assume yes = hit

Address of int:

Block offset

0...01 100
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

If tag doesn’t match: old line is evicted and replaced
Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>M[0-1]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>M[6-7]</td>
</tr>
</tbody>
</table>

x
xx
x

10/12/2016 (©Zhiyi Yu & John Shen) Lecture #13
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

```plaintext
0...01 100
```

find set
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

t bits 0...01 100

compare both

valid? + match: yes = hit

block offset
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:
\[\text{t bits} = 0...01 \]

Compare both

Valid? +
Match: yes = hit

No match:
- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

Block offset

Short int (2 Bytes) is here
2-Way Set Associative Cache Simulation

\(t=2 \quad s=1 \quad b=1 \)

- \(M=16 \) byte addresses, \(B=2 \) bytes/block,
- \(S=2 \) sets, \(E=2 \) blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>Address</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[00002],</td>
<td>miss</td>
</tr>
<tr>
<td>1</td>
<td>[00012],</td>
<td>hit</td>
</tr>
<tr>
<td>7</td>
<td>[01112],</td>
<td>miss</td>
</tr>
<tr>
<td>8</td>
<td>[10002],</td>
<td>miss</td>
</tr>
<tr>
<td>0</td>
<td>[00002]</td>
<td>hit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>M[0-1]</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>M[8-9]</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>M[6-7]</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What about writes?

• Multiple copies of data exist:
 • L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?
 • Write-through (write immediately to memory)
 • Write-back (defer write to memory until replacement of line)
 • Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
 • Write-allocate (load into cache, update line in cache)
 • Good if more writes to the location follow
 • No-write-allocate (writes straight to memory, does not load into cache)

• Typical
 • Write-through + No-write-allocate
 • Write-back + Write-allocate
Intel Core i7 Cache Hierarchy

Processor package

Core 0

Regs

L1 d-cache

L1 i-cache

L2 unified cache

L3 unified cache (shared by all cores)

Main memory

Core 3

Regs

L1 d-cache

L1 i-cache

L2 unified cache

L3 unified cache (shared by all cores)

L1 i-cache and d-cache: 32 KB, 8-way,
Access: 4 cycles

L2 unified cache: 256 KB, 8-way,
Access: 10 cycles

L3 unified cache: 8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all caches.
Cache Performance Metrics

- **Miss Rate**
 - Fraction of memory references not found in cache (misses / accesses)
 - \(= 1 - \text{hit rate}\)
 - Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- **Hit Time**
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
 - Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

- **Miss Penalty**
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)
Let's think about those numbers

• Huge difference between a hit and a miss
 • Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
 • Consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles

 • Average access time:
 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”
Writing Cache Friendly Code

• Make the common case go fast
 • Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
 • Repeated references to variables are good (**temporal locality**)
 • Stride-1 reference patterns are good (**spatial locality**)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories
Today

• Cache organization and operation
• Performance impact of caches
 • The memory mountain
 • Rearranging loops to improve spatial locality
 • Using blocking to improve temporal locality
The Memory Mountain

• Read throughput (read bandwidth)
 • Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 • Compact way to characterize memory system performance.
Memory Mountain Test Function

```c
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
   * array “data” with stride of "stride", using
   * using 4x4 loop unrolling. */
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;

    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    }

    /* Finish any remaining elements */
    for (; i < length; i++) {
        acc0 = acc0 + data[i];
    }

    return ((acc0 + acc1) + (acc2 + acc3));
}
```

Call `test()` with many combinations of `elems` and `stride`.

For each `elems` and `stride`:

1. Call `test()` once to warm up the caches.

2. Call `test()` again and measure the read throughput (MB/s)

`mountain/mountain.c`
The Memory Mountain

Aggressive prefetching

Slopes of spatial locality

Ridges of temporal locality

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Read throughput (MB/s)
Size (bytes)
Stride (x8 bytes)
Today

• Cache organization and operation
• Performance impact of caches
 • The memory mountain
 • Rearranging loops to improve spatial locality
 • Using blocking to improve temporal locality
Matrix Multiplication Example

- **Description:**
 - Multiply N x N matrices
 - Matrix elements are doubles (8 bytes)
 - O(N^3) total operations
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Variable `sum` held in register

(matmult/mm.c)
Miss Rate Analysis for Matrix Multiply

• Assume:
 • Block size = 32B (big enough for four doubles)
 • Matrix dimension (N) is very large
 • Approximate 1/N as 0.0
 • Cache is not even big enough to hold multiple rows

• Analysis Method:
 • Look at access pattern of inner loop
Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
 • each row in contiguous memory locations

• Stepping through columns in one row:
 • for (i = 0; i < N; i++)
 sum += a[0][i];
 • accesses successive elements
 • if block size (B) > sizeof(a_{ij}) bytes, exploit spatial locality
 • miss rate = sizeof(a_{ij}) / B

• Stepping through rows in one column:
 • for (i = 0; i < n; i++)
 sum += a[i][0];
 • accesses distant elements
 • no spatial locality!
 • miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Inner loop:

- **Row-wise:** A
- **Column-wise:** B
- **Fixed:** C

<table>
<thead>
<tr>
<th>Misses per inner loop iteration:</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Inner loop:
- Row-wise
- Column-wise
- Fixed

matmul/mm.c
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:

- **(i,k)**
- **(k,*)**
- **(i,*)**

A: Fixed B: Row-wise C: Row-wise

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Inner loop:

- **(*)**
- **(k)**
- **(j)**

- Column-wise
- Fixed
- Column-wise
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Inner loop:
- Column-wise
- Fixed
- Column-wise

matmult/mm.c

10/12/2016 (©Zhiyi Yu & John Shen)
Summary of Matrix Multiplication

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0
Core i7 Matrix Multiply Performance

- jki / kji
- ijk / jik
- kij / ikj

Array size (n)

Cycles per inner loop iteration
Today

• Cache organization and operation
• Performance impact of caches
 • The memory mountain
 • Rearranging loops to improve spatial locality
 • Using blocking to improve temporal locality
Example: Matrix Multiplication

```c
#include <stdlib.h>

double **c = (double **) calloc(n*n, sizeof(double));

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i*n + j] += a[i*n + k] * b[k*n + j];
}
```
Cache Miss Analysis

• Assume:
 • Matrix elements are doubles
 • Cache block = 8 doubles
 • Cache size C << n (much smaller than n)

• First iteration:
 • \(\frac{n}{8} + n = \frac{9n}{8} \) misses

• Afterwards in cache:
 (schematic)
Cache Miss Analysis

• Assume:
 • Matrix elements are doubles
 • Cache block = 8 doubles
 • Cache size C << n (much smaller than n)

• Second iteration:
 • Again:
 \[\frac{n}{8} + n = \frac{9n}{8} \text{ misses} \]

• Total misses:
 • \(\frac{9n}{8} \times n^2 = \frac{9}{8} \times n^3 \)
Block size $B \times B$

matmult/bmm.c

$c = (\text{double } *) \text{calloc} (\text{sizeof}(\text{double}), n*n);$

/* Multiply $n \times n$ matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* $B \times B$ mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 $c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];$
}
Cache Miss Analysis

• Assume:
 • Cache block = 8 doubles
 • Cache size $C \ll n$ (much smaller than n)
 • Three blocks fit into cache: $3B^2 < C$

• First (block) iteration:
 • $B^2/8$ misses for each block
 • $2n/B \times B^2/8 = nB/4$
 (omitting matrix c)

• Afterwards in cache (schematic)

10/12/2016 (©Zhiyi Yu & John Shen)
Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size $C << n$ (much smaller than n)
 - Three blocks fit into cache: $3B^2 < C$

- Second (block) iteration:
 - Same as first iteration
 - $2n/B \times B^2/8 = nB/4$

- Total misses:
 - $nB/4 \times (n/B)^2 = n^3/(4B)$
Blocking Summary

• No blocking: $(9/8) \cdot n^3$
• Blocking: $1/(4B) \cdot n^3$

• Suggest largest possible block size B, but limit $3B^2 < C$!

• Reason for dramatic difference:
 • Matrix multiplication has inherent temporal locality:
 • Input data: $3n^2$, computation $2n^3$
 • Every array elements used $O(n)$ times!
 • But program has to be written properly
Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
 • Focus on the inner loops, where bulk of computations and memory accesses occur.
 • Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 • Try to maximize temporal locality by using a data object as often as possible once it’s read from memory.
Lecture 14: “Program Performance Optimization”

John P. Shen & Zhiyi Yu
October 17, 2016

Next Time ...

➢ Required Reading Assignment:
 • Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.