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 Required Reading Assignment:
• Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

 Assignments for This Week:
Lab 3 due, Lab 4 out
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Today

• Cache memory organization and operation

• Performance impact of caches
• The memory mountain

• Rearranging loops to improve spatial locality

• Using blocking to improve temporal locality
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Example Memory  Hierarchy
Regs

L1 cache 

(SRAM)

Main memory
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Local secondary storage

(local disks)

Larger,  

slower, 

and 

cheaper 

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files 

retrieved from disks 

on remote servers

L2 cache 

(SRAM)

L1 cache holds cache lines 

retrieved from the L2 cache.

L2 cache holds cache lines

retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and 

costlier

(per byte)

storage 

devices L3 cache 

(SRAM)
L3 cache holds cache lines

retrieved from main memory.

L6:

Main memory holds disk 

blocks retrieved from 

local disks.
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General Cache Concept
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Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units
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memory caches a  subset of
the blocks
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General Cache Concepts: Hit

0 1 2 3
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8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 14

14

Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
Types of Cache Misses

• Cold (compulsory) miss
• Cold misses occur because the cache is empty.

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache.

• Conflict miss
• Occur when the level k cache is large enough, but multiple data objects all map to the same 

level k block.
• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Cache Memories

• Cache memories are small, fast SRAM-based memories managed automatically 
in hardware

• Hold frequently accessed blocks of main memory

• CPU looks first for data in cache

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memory
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General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit
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Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …
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2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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What about writes?

• Multiple copies of data exist:
• L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?
• Write-through (write immediately to memory)

• Write-back (defer write to memory until replacement of line)
• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow

• No-write-allocate (writes straight to memory, does not load into cache)

• Typical
• Write-through + No-write-allocate

• Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all 
caches. 
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Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache

• Typical numbers:
• 4 clock cycle for L1
• 10 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”
10/12/2016 (©Zhiyi Yu & John Shen) Lecture #13 22



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache Friendly Code

• Make the common case go fast
• Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
• Repeated references to variables are good (temporal locality)

• Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through 
our understanding of cache memories
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Today

• Cache organization and operation

• Performance impact of caches
• The memory mountain

• Rearranging loops to improve spatial locality

• Using blocking to improve temporal locality
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The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of spatial and 
temporal locality.

• Compact way to characterize memory system performance. 
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Memory Mountain Test Function

long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
*        array “data” with stride of "stride", using 
*        using 4x4 loop unrolling.                                                            
*/

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems
and stride.

For each elems and 

stride:

1. Call test() once 

to warm up the 

caches.

2. Call test() again 

and measure the read 

throughput(MB/s)

mountain/mountain.c
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The Memory Mountain
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Today

• Cache organization and operation

• Performance impact of caches
• The memory mountain

• Rearranging loops to improve spatial locality

• Using blocking to improve temporal locality
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Matrix Multiplication Example

• Description:
• Multiply N x N matrices

• Matrix elements are doubles (8 bytes)

• O(N3) total operations

• N reads per source element

• N values summed per destination
• but may be able to hold in register

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)

• Matrix dimension (N) is very large
• Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements

• if block size (B) > sizeof(aij) bytes, exploit spatial locality
• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];

• accesses distant elements

• no spatial locality!
• miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];   

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}
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Core i7 Matrix Multiply Performance
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Today

• Cache organization and operation

• Performance impact of caches
• The memory mountain

• Rearranging loops to improve spatial locality

• Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:
(schematic)

*=

n

*=

8 wide
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Second iteration:
• Again:

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 * n2 = (9/8) * n3

n

*=
8 wide
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=
c

+
Block size B x B

matmult/bmm.c
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks       fit into cache: 3B2 < C

• First (block) iteration:
• B2/8 misses for each block

• 2n/B * B2/8 = nB/4
(omitting matrix c)

• Afterwards in cache
(schematic) *=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks       fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration

• 2n/B * B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

• But program has to be written properly
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Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory accesses occur. 

• Try to maximize spatial locality by reading data objects with sequentially with stride 1.

• Try to maximize temporal locality by using a data object as often as possible once it’s read 
from memory. 
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18-600  Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition


