
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Modern Superscalar Out-of-Order Processors”

John P. Shen & Zhiyi Yu
October 5, 2016

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 1

18-600 Foundations of Computer Systems

CS: AAP

CS: APP

18-600

 Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reading Assignment:
 Chapter 5 of Shen and Lipasti (SnL).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Modern Superscalar Out-of-Order Processors”

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 2

18-600 Foundations of Computer Systems

A. Register Data Flow Techniques
a. Resolving Anti and Output Dependencies
b. Resolving True Dependencies
c. Dynamic Out-of-Order Execution

B. Memory Data Flow Techniques
a. Memory Data Dependencies
b. Load Bypassing & Load Forwarding
c. Speculative Disambiguation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-order Execution Core

3

A Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
e
r

O
u

t
o

f

O
rd

e
r

In
 O

rd
e
r

Completion Buffer

10/05/2016 (©J.P. Shen) 18-600 Lecture #11

 We have: fetched &
decoded instructions

 In-order but speculative
(branch prediction)

 Register Renaming

 Eliminate WAR and WAW
dependencies without stalling

 Dynamic Scheduling

 Track & resolve true RAW
dependencies

 Scheduling HW: Instruction
window, reservation stations,
common data bus, …

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 4

Three Flow Paths of Superscalar Processors

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

 Wide Instruction Fetching
 Dynamic Branch Prediction

 Register Renaming
 Dynamic Scheduling

 Load Bypassing & Forwarding
 Speculative Memory Disamb.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Big Picture: Impediments Limiting ILP

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependencies

Control Dependencies Data Dependencies (registers, memory)

True Dependencies

Anti-Dependencies Output Dependencies

Storage Conflicts (registers, memory)

(Structural Dependencies)

(RAW)

(WAR) (WAW)

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Data Flow

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 6

 For an instruction to execute:
 Need availability of functional unit Fn (structural dependency)
 Need availability of Rj and Rk (RAW: true data dependency)
 Need availability of Ri (WAR and WAW: anti and output dependencies)

Each ALU Instruction: INSTRUCTION EXECUTION MODEL

Ri Fn (Rj, Rk)

Dest.

Reg.

Funct.

Unit

Source

Registers

R0
R1

Rm

FU1

FU2

FUn

Interconnect

•
•
•

•
•
•

Registers Functional
Units“Register Transfer”

“Read”

“Write”
“Execute”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 7

Causes of Register Storage Conflict

WAW

WAR

First instance of Ri

Second instance of Ri

REGISTER RECYCLING

MAXIMIZE USE OF REGISTERS

MULTIPLE ASSIGNMENTS OF VALUES TO REGISTERS

OUT OF ORDER ISSUING AND COMPLETION

LOSE IMPLIED PRECEDENCE OF SEQUENTIAL CODE

LOSE 1-1 CORRESPONDENCE BETWEEN VALUES AND REGISTERS

Ri

•
•
•

Ri

••• DEF

USE

USE

DEF•••

Ri

Ri

•
•
•

•
•
•

WAR

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 8

Reason for WAW and WAR: Register Recycling

9 $34: mul $14 $7, 40

10 addu $15, $4, $14

11 mul $24, $9, 4

12 addu $25, $15, $24

13 lw $11, 0($25)

14 mul $12, $9, 40

15 addu $13, $5, $12

16 mul $14, $8, 4

17 addu $15, $13, $14

18 lw $24, 0($15)

19 mul $25, $11, $24

20 addu $10, $10, $25

21 addu $9, $9, 1

22 ble $9, 10, $34

COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

For (k=1;k<= 10; k++)
t += a [i] [k] * b [k] [j] ;

“Spill code”
(if not enough

registers)

 Intermediate code
 Infinite number of

symbolic registers
 One used per

value definition

 Register Allocation
via graph coloring
 Map symbolic

registers to few
architectural
registers

 Leads to register
reuses

 Dynamic register reuse
 Reuse same set of registers in

each iteration
 Overlapped execution of

multiple iterations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 9

Resolving Anti-Dependencies

STALL DISPATCHING

DELAY DISPATCHING OF (2)

REQUIRE RECHECKING AND REACCESSING

COPY OPERAND

COPY NOT-YET-USED OPERAND TO PREVENT BEING
OVERWRITTEN

MUST USE TAG IF ACTUAL OPERAND NOT-YET-AVAILABLE

RENAME REGISTER

HARDWARE ALLOCATION

(2) R3 R5 + 1

Must Prevent (2) from completing •
 •
 •
(1) R4 R3 + 1

before (1) is dispatched.

R3 …

 R3

R3’ …

 R3’

WAR

only

WAR

and

WAW

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 10

Resolving Output Dependencies

STALL DISPATCHING/ISSUING

DENOTE OUTPUT DEPENDENCY

HOLD DISPATCHING UNTIL RESOLUTION OF DEPENDENCY

ALLOW DECODING OF SUBSEQUENT INSTRUCTIONS

RENAME REGISTER

HARDWARE ALLOCATION

Must Prevent (3) from completing

before (1) completes.
(1) R3 R3 op R5

R3

(3) R3 R5 + 1

•
•
•

•
•
•

R3 …

 R3

R3’ …

 R3’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming: The Idea

 Anti and output dependencies are false dependencies

 The dependency is on name/location rather than data

 Given unlimited number of registers, anti and output dependencies can always
be eliminated

r3 r1 op r2

r5 r3 op r4

r3 r6 op r7

Renamed

r1 r2 / r3

r4 r1 * r5

r8 r3 + r6

r9 r8 - r4

Original

r1 r2 / r3

r4 r1 * r5

r1 r3 + r6

r3 r1 - r4

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming Resolves:

Anti- Dependences

Output Dependences

Design of Redundant Registers:

Number:

One

Multiple

Allocation:

Fixed for Each Register

Pooled for all Regsiters

Location:

Attached to Register File

(Centralized)

Attached to functional units
(Distributed)

Architected Physical

Registers Registers

R1
R2

•
•
•

Rn

P1

P2
•

•
•
Pn

•
•

•
Pn + k

10/05/2016 (©J.P. Shen) 18-600 Lecture #11

Register Renaming

12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming Implementation

 Renaming:

 Map small set of architecture registers to a large set of physical registers

 New mapping for architectural register when it is assigned a new value

 Renaming buffer organization (how are registers stored)

 Unified RF, split RF, renaming in the ROB

 RF = register file

 Number of renaming registers

 Number of read/write ports

 Register mapping (how do I find the register I am looking for)

 Allocation, de-allocation, and tracking

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Renaming Buffer Options

MERGED Rename

& Architectural

Register File

Rename

Register File

Architectural

Register File
ROB

Architectural

Register File

Commit
Commit

 Unified/merged register file – MIPS R10K, Alpha 21264
 Registers change role architecture to renamed

 Rename register file (RRF) – PA 8500, PPC 620
 Holds new values until they are committed to ARF (extra transfer)

 Renaming in the ROB – Pentium III

 Note: can have a single scheme or separate for integer/FP

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unified Register File: Physical Register FSM

Available

Architectural
Renamed

Valid

Renamed

Not Valid

Initialized

(first 32 registers)

Initialized

(remaining registers)

Instruction

Cancelled

New allocation

on instruction decode

Instruction Retires

Instruction

Completes

Execution

Deallocate when

an overwriting

Instruction

Retires

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Number of Rename Registers

 Naïve: as many as the number of pending instructions

 Waiting to be scheduled + executing + waiting to commit

 Simplification

 Do not need renaming for stores, branches, …

 Usual approach:

 # scheduler entries # RRF entries # ROB entries

 Examples:

 PPC 620: scheduler 15, RRF 16 (RRF), ROB 16

 MIPS R12000: scheduler 48, RRF 64 (merged), ROB 48

 Pentium III: scheduler 20, RRF 40 (in ROB), ROB 40

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register File Ports

 Read: if operands read as instructions enter scheduler
 Max # ports = 2 * # instructions dispatched

 Read: if operands read as instruction leave scheduler
 Max #ports = 2* # instructions issued

 Write: # of FUs or # of instructions committing
 Depends on unified vs separate rename registers

 Notes:
 Can implement less ports and have structural hazards

 Need control logic for port assignment & hazard handling

 When using separate RRF and ARF, need ports for the final transfer

 Alternatives to increasing ports: duplicated RF or banked RF

 What are the issues?

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integrating Map Table with the ARF

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 19

Register Renaming Tasks
 Source Read, Destination Allocate, Register Update

Next entry
to complete

Next entry
to be allocated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39

Free List

head tail

tail

head

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1

OP T S1 S2 S3 OP T S1 S2 S3

Register Renaming in the IBM RS/6000

Incoming FPU instructions pass through a renaming table prior to decode

Physical register names only within the FPU!!

32 architectural registers 40 physical registers

Complex control logic maintains active register mapping

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39

Free Listhead tail

head

tail
release

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1

OP T S1 S2 S3 OP T S1 S2 S3

Incoming FPU instructions pass through a renaming table prior to decode

The 32 architectural registers are remapped to 40 physical registers

Physical register names are used within the FPU

Complex control logic maintains active register mapping

Simplified FPU Register Model

Register Renaming in the IBM RS/6000 FPU

Fload R7 <= Mem[] (P32 alloc)

R7: P32

7

Free when

Fload R7

commits

Fload R7 <= Mem[] (P32 freed)

…

<= R7 (actual last use) (P32)

…

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Renaming Difficulties: Wide Instruction Issue

 Need many ports in RFs and mapping tables

 Instruction dependences during dispatching/issuing/committing

 Must handle dependences across instructions

 E.g. add R1←R2+R3; sub R6←R1+R5

 Implementation: use comparators, multiplexors, counters

 Comparators: discover RAW dependences

 Multiplexors: generate right physical address (old or new allocation)

 Counters: determine number of physical registers allocated

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Renaming Difficulties: Mispredictions & Exceptions

 On exception/misprediction, register mapping must be precise

 Separate RRF: consider all RRF entries free

 ROB renaming: consider all ROB entries free

 Unified RF: restore precise mapping
 Single map: traverse ROB to undo mapping (history file approach)

 ROB must remember old mapping…

 Two maps: architectural and future register map

 On exception, copy architectural map into future map…

 Checkpointing: keep regular check points of map, restore when needed

 When do we make a checkpoint? On every instruction? On every branch?

 What are the trade-offs?

 We’ll revisit this approach later on…

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #11

Resolving True Data Dependencies

1) Read register(s), get “IOU” if not ready

2) Advance to reservation station

3) Wait for “IOU” to show up

4) Execute

10/05/2016 (©J.P. Shen)

STALL DISPATCHING

ADVANCE INSTRUCTIONS

“DYNAMIC EXECUTION”

Reservation Station + Complex Forwarding

Out-of-order (OoO) Execution

Try to Approach the “Data-Flow Limit”

REGISTER READ

ALU OP

REGISTER WRITE

(1) R2 R1 + 1
•
•
•

(2) R3 R2
•
•
•

(3) R4 R3

24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen)

Embedded “Dataflow” Engine
Dispatch Buffer

Reservation

Dispatch

Complete

Stations

“Dynamic

Completion Buffer

Branch

Execution”

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data
 being forwarded
- Issue when all
 operands ready

- Advance instructions
 to reservation stations

25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

18-600 Lecture #1110/05/2016 (©J.P. Shen) 26

Elements of Modern Micro-Dataflow Engine

in
o

rd
e

r
o
u
t-

o
f-

o
rd

e
r

in
o

rd
e

r

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Steps in Dynamic OOO Execution (1)

2710/05/2016 (©J.P. Shen) 18-600 Lecture #11

 FETCH instruction (in-order, speculative)

 I-cache access, predictions, insert in a fetch buffer

 DISPATCH (in-order, speculative)

 Read operands from Register File (ARF) and/or Rename Register File (RRF)

 RRF may return a ready value or a Tag for a physical location

 Allocate new RRF entry (rename destination register) for destination

 Allocate Reorder Buffer (ROB) entry

 Advance instruction to appropriate entry in the scheduling hardware

 Typical name for centralized: Issue Queue or Instruction Window

 Typical name for distributed: Reservation Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Steps in Dynamic OOO Execution (2)

2810/05/2016 (©J.P. Shen) 18-600 Lecture #11

 ISSUE & EXECUTE (out-of-order, speculative)
 Scheduler entry monitors result bus for rename register Tag(s) for pending operand(s)

 Find out if source operand becomes ready; if Tag(s) match, latch in operand(s)

 When all operands ready, instruction is ready to be issued into FU (wake-up)

 Issue instruction into FU, deallocate scheduler entry, no further stalling in FU pipe

 Issuing is subject to structural hazards and scheduling priorities (select)

 When execution finishes, broadcast result to waiting scheduler entries and RRF entry

 COMMIT/RETIRE/GRADUATE (in-order, non-speculative)
 When ready to commit result into “in-order” (architectural) state (head of the ROB):

 Update architectural register from RRF entry, deallocate RRF entry, and if it is a store
instruction, advance it to Store Buffer

 Deallocate ROB entry and instruction is considered architecturally completed

 Update predictors based on instruction result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 29

Reservation Station Implementation

+ info for executing instruction
(opcode, ROB entry, RRF entry…)

• Reservation Stations:
distributed vs. centralized

• Wakeup: benefit to partition
across data types

• Select: much easier with
partitioned scheme

• Select 1 of n/4 vs. 4 of n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 30

Reorder Buffer Implementation

• Reorder Buffer
• “Bookkeeping”
• Can be instruction-

grained, or block-
grained (4-5 ops)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Priority/Select Logic Issues

 Selection is easier if priority depends on instruction location

 Older instructions are at the bottom of window and receive priority

 This creates an issue of compacting/collapsing

 As instructions depart, compress remaining towards the bottom

 Younger instructions will be inserted towards the top (lower priority)

 Compacting the window can be quite complex

 Its complexity can affect performance (clock frequency)

 Often implemented in some restricted form

 E.g. split window into multiple groups, allow compaction of groups

 Trade-off between window utilization and compaction simplicity

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wake-up Latency

3210/05/2016 (©J.P. Shen) 18-600 Lecture #11

 Assume a result becomes available in cycle i
 When can you start executing an instruction that is waiting for it?

 Ideal solution: in cycle i+1
 Back to back executing, just like with 5-stage pipeline
 Requirement: the following have to work in one cycle

 Distribute result tag to the window and detect that instruction
becomes ready

 Select instruction for execution and forward its info/operands to FU
 May stress clock cycle in wide processors

 Alternative: split wake-up and select in separate cycles
 Simpler hardware, faster clock cycle
 Lower IPC (dependencies cost one extra cycle)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Result Forwarding

 Common data bus: used to broadcast results of FUs

 Broadcast destinations
 ARF or RRF or ROB, depending on the renaming scheme

 Instruction window
 May need result or tag for the result

 Number of CDBs
 Best case, 1 per functional unit

 Can have less, but now we may have structural hazard

 Notes:
 CDBs can be slow as the routing goes across large chip area

 Broadcast tag early

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Scheduling Implementation Cost

3410/05/2016 (©J.P. Shen) 18-600 Lecture #11

 To support N-way dispatch into IW per cycle
 Nx2 simultaneous lookups into the rename map (or associative search)
 N simultaneous write ports into the IW and the ROB

 To support N-way issue per cycle (assuming read at issue)
 1 prioritized associative lookup of N entries
 N read ports into the IW
 Nx2 read ports into the RF

 To support N-way complete per cycle
 N write ports into the RF and the ROB
 Nx2 associative lookup and write in IW

 To support N-way retire per cycle
 N read ports in the ROB
 N ports into the RF (potentially)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: MIPS R10000 circa 1996

 4-way superscalar

 fetch, decode, dispatch, and complete

 5 execution pipelines

 2 Int, FP Add, FP Mult, Ld/St

 Micro-dataflow instruction scheduling

 16+16 instruction window

 Register renaming + memory renaming

 64 physical integer registers to hold 33 logical registers + renamed registers

 Speculative execution pass 4 unresolved branches

 Precise Interrupts

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Scheduling in the OOO MIPS R10000

4xinst decode

map table

pre-decoded I-cache

8x4 entries

Active List

(ROB)

16-entry

int. Q

(R.S.)

ALU1 ALU2

64-entry

Int GPR

7R3W

LD/ST

64-entry

FPR

5R3W

ALU1 ALU2

16-entry

FP. Q

(R.S.)

map table(16R4W)
IN ORDER

IN ORDER
OOO

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design Choices

 Register Renaming
 Map table lookup + dependency check on simultaneous dispatches
 Unified physical register file
 4-deep branch stack to backup the map table on branch predictions
 Sequential (4-at-a-time) back-tracking to recover from exceptions

 Instruction Queues
 Separate 16-entry floating point and integer instruction queues
 Prioritized, dataflow-ordered scheduling

 Reorder Buffer
 One per outstanding instruction, FIFO ordered
 Stores PC, logical destination number, old physical destination number

Why not current physical destination number?

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

R10000 Instruction Fetch and Branch

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

R10000 Register Renaming

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

R10000 Pipelines

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• So far, we only considered register-register instructions
– Add, sub, mul, branch, jump,

• Loads and Stores
– Necessary because we don’t have enough registers for everything

• Memory allocated objects, register spill code
– RISC ISAs: only loads and stores access memory
– CISC ISAs: memory micro-ops are essentially RISC loads/stores

• Steps in load/store processing
– Generate address (not fully encoded by instruction)
– Translate address (virtual ⇒ physical)
– Execute memory access (actual load/store)

41

Memory Operations and Data Flow

10/05/2016 (©J.P. Shen) 18-600 Lecture #11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Data Dependencies

 Besides branches, long memory latencies are one of the biggest performance challenges
today.

 To preserve sequential (in-order) state in the data caches and external memory (so that
recovery from exceptions is possible) stores are performed in order. This takes care of anti-
dependences and output dependences to memory locations.

 However, loads can be issued out of order with respect to stores if the out-of-order loads
check for data dependences with respect to previous, pending stores.

WAW WAR RAW

store X load X store X

: : :

store X store X load X

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Data Dependency Terminology

 “Memory Aliasing” = Two memory references involving the same memory location
(collision of two memory addresses).

 “Memory Disambiguation” = Determine whether two memory references will alias or not
(whether there is a dependence or not).

 Memory Dependency Detection:
• Must compute effective addresses of both memory references
• Effective addresses can depend on run-time data and other instructions
• Comparison of addresses require much wider comparators

Example code:
(1) STORE V
(2) ADD
(3) LOAD W
(4) LOAD X
(5) LOAD V
(6) ADD
(7) STORE W

RAW

WAR

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Total Ordering of Loads and Stores

 Keep all loads and stores totally in order with respect to each other.

However, loads and stores can execute out of order with respect to other
types of instructions (while obeying register data dependences).

 Consequently, stores are held for all previous instructions, and loads are
held for stores.

• I.e. stores performed at commit point

• Sufficient to prevent wrong branch path stores since all prior branches
now resolved

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• Stores
– Allocate store buffer entry at DISPATCH (in-order)
– When register value available, issue and calculate address (“finished”)
– When all previous instructions retire, store considered completed

• Store buffer split into “finished” and “completed” part through pointers
– Completed stores go to memory in order

• Loads
– Loads remember the store buffer entry of the last store before them
– A load can issue when

• Address register value is available AND
• All older stores are considered “completed”

In-Order (Total Ordering) Load/store Processing

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Reordering of Memory Operations

 Storing to memory irrevocably changes the in-order machine state, therefore
a Store instruction is only executed when it is the oldest unfinished
instruction

No memory WAW or WAR

When to start a load instruction (on a uniprocessor)?

• No more older store instructions in RS

or

• Must know the addresses (VA or PA??) of all older stores
or

• Load speculatively and just reload if RAW hazard

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 47

Processing of Load/Store Instructions

LD/ST Queue
cannot follow

simple register
dataflow

Dispatch Buffer

Dispatch

Reservation Stations

Arch. RF Ren. RF

Reg. Write Back

Reorder Buffer

Address Generation

Address Translation

Memory Access

Data Memory

Complete

Retire

Store Buffer

Branch Integer Integer Float.-

Point

Load/

Store

in
o

rd
e

r
o
u
t-

o
f-

o
rd

e
r

in
o

rd
e

r

Store Path

Load
Path

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 48

Load/Store Units and Store Buffer

Speculative

State

Reservation Station

Address Generation

Address Translation

Memory Access

Data Cache

Load

unit

Store

unit

Address Generation

Address Translation

(Finished)

Store Buffer

(Completed)

Store Buffer

Memory Update

AddressData

Committed

In-order

State

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Bypassing Load Forwarding

Load Bypassing and Load Forwarding: Motivation

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Bypassing
 Loads can be allowed to bypass older stores if no aliasing is found

• Older stores’ addresses must be computed before loads can be issued to allow checking
for RAW load dependences. If dependence cannot be checked, e.g. store address cannot
be determined, then all subsequent loads are held until address is valid (conservative).

Alternatively a load can assume no aliasing and bypass older stores
speculatively

• Validation of no aliasing with previous stores must be done and mechanism for reversing
the effect must be provided.

 Stores are kept in ROB until all previous instructions complete, and kept in the
store buffer until gaining access to cache port.

• At completion time, a store is moved to the Completed Store Buffer to wait for turn to
access cache. Store buffer is “future file” for memory.

Store is consider completed. Latency beyond this point has little effect on the processor throughput.

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reservation Station

Data Cache

Store

unit

(Finished)
Store Buffer

(Completed)
Store Buffer

Load

unit

Match/No match

Tag match
Address

Data

If no match: update
destination register

addrdata

18-600 Lecture #1110/05/2016 (©J.P. Shen) 51

Illustration of Load Bypassing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Forwarding

If a pending load is RAW dependent on an earlier store still in the
store buffer, it need not wait till the store is issued to the data
cache

The load can be directly satisfied from the store buffer if both load
and store addresses are valid and the data is available in the store
buffer

Since data is sourced directly from the store buffer, this avoids the
latency (and power consumption) of accessing the data cache

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addr

match

data

Reservation Station

Load

unit

Data Cache

Store

unit

(Finished)
Store Buffer

(Completed)
Store Buffer

Match/No match

Tag match
Address

Data

If match: forward to
destination register

18-600 Lecture #1110/05/2016 (©J.P. Shen) 53

Illustration of Load Forwarding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The “DAXPY” Example

Total Order

Y(i) = A * X(i) + Y(i)

LD F0, a

ADDI R4, Rx, #512 ; last address

Loop:

LD F2, 0(Rx) ; load X(i)

MULTD F2, F0, F2 ; A*X(i)

LD F4, 0(Ry) ; load Y(i)

ADDD F4, F2, F4 ; A*X(i) + Y(i)

SD F4, 0(Ry) ; store into Y(i)

ADDI Rx, Rx, #8 ; inc. index to X

ADDI Ry, Ry, #8 ; inc. index to Y

SUB R20, R4, Rx ; compute bound

BNZ R20, loop ; check if done

LD

LD
MULTD

ADDD

SD

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Gains From Weak Ordering

Load Bypassing: Load Forwarding:

Performance gain:

Load bypassing: 11%-19% increase over total ordering

Load forwarding: 1%-4% increase over load bypassing

CODE:

ST X

:

:

LD Y

CODE:

ST X

:

:

LD X

Reservation

Station

Completion

Buffer

Store

Buffer

Load/Store

Unit

ST X

LD Y

ST X

LD X

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing Load/Store Disambiguation

 Non-speculative load/store disambiguation
1. Loads wait for addresses of all prior stores

2. Full address comparison

3. Bypass if no match, forward if match

 (1.) can limit performance:

load r5,MEM[r3] cache miss

store r7, MEM[r5] RAW for agen (addr. Gen.), stalled

…

load r8, MEM[r9] independent load stalled

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speculative Disambiguation

 What if aliases are rare?
1. Loads don’t need to wait for addresses of

all prior stores
2. Full address comparison of stores that are

ready
3. Bypass if no match, forward if match
4. Check all store addresses when they

commit
– No matching loads – speculation was correct
– Matching un-bypassed load – incorrect

speculation

5. Replay starting from incorrect load

Load

Queue

Store

Queue

Load/Store RS

Agen

Reorder Buffer

Mem

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 58

Speculative Load Bypassing

addrdata

Reservation Station

Data Cache

Store

Unit

(Finished)
Store Buffer

(Completed)
Store Buffer

Load

Unit

Match/No match

Tag match
Address

Data

dataaddrFinished
Load Buffer

Tag match

Match/No match

update in-order state

(architectural reg’s)

update

renamed

register
At store completion

yes: flush aliased load and
all younger instructions

When load is issued

Yes: load forwarding
No: spec. load bypassing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Eff. Addr. Gen.

Addr. Translation

D-cache Access

Data Cache

Complete

Retire

Store Buff.

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 60

Easing the Memory Bottleneck (missed-load buffer)
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reservation Station

Data Cache

Store

unit

(Finished)

(Completed)
Store Buffer

Load

unit

Data

Load

unit
Cache missCache miss

Data

Address Address

Missed

load
queue

Main Memory

18-600 Lecture #1110/05/2016 (©J.P. Shen) 61

Dual-Ported Non-Blocking Cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1110/05/2016 (©J.P. Shen) 62

Prefetching Data Cache

Completion Buffer

Decode Buffer

Dispatch Buffer

Reservation

Decode

Dispatch

Stations

Complete
Data Cache

Main Memory

I-cacheBranch
Predictor

branch integer integer floating store load
point

Memory
Reference
Prediction

Prefetch
Queue

S
to

re
 B

u
ff

e
r

Main Memory

Cortex-A9 Single Core Microarchitecture

Cortex-A9 Microarchitecture Structure and the Single Core Interfaces

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 12:
“The Memory Hierarchy”

Zhiyi Yu & John P. Shen
October 10, 2016

10/05/2016 (©J.P. Shen) 18-600 Lecture #11 64

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reference:
 Chapter 3 of Shen and Lipasti (SnL).

