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 Chapter  4 of Shen and Lipasti (SnL).
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A. Motivations for Superscalar Processors
 Pipelined Processor Limitations

 Superscalar Processor Pipelines

 Instruction Level Parallelism (ILP)

B. Superscalar Pipeline Implementation
 Instruction Fetch and Decode
 Instruction Dispatch and Issue
 Instruction Execute
 Instruction Complete and Retire

C. Instruction Flow Techniques
 Control Flow Prediction
 Dynamic Branch Prediction
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3 Major Penalty Loops of (Scalar) Pipelining

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(3 cycles)

ALU  
PENALTY
(0 cycle)

Performance Objective: Reduce CPI as close to 1 as possible.

Best Possible for Real Programs is as Low as CPI = 1.15. 
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Address Limitations of Scalar Pipelined Processors

 Upper Bound on Scalar Pipeline Throughput
Limited by IPC = 1.0

 Parallel Pipelines

 Inefficient Unification Into Single Pipeline
Long latency for each instruction

Hazards and associated stalls

 Diversified Pipelines

 Performance Lost Due to In-order Pipeline
Unnecessary stalls

 Dynamic Pipelines
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Parallel Pipelines

(a) No Parallelism (b) Temporal Parallelism

(c) Spatial Parallelism

(d) Parallel Pipeline
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Intel Pentium Parallel Pipeline

IF

D1

D2

EX

WB

IF IF

D1 D1

D2 D2

EX EX

WB WB

U - Pipe V - Pipe
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Diversified Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX
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• Separate execution pipelines
• Integer simple, memory, FP, … 

• Advantages: 
• Reduce instruction latency

• Each instruction goes to WB 
asap

• Eliminate need for forwarding 
paths  

• Eliminate some unnecessary stalls

• E.g. slow FP instruction does not 
block independent integer 
instructions

• Disadvantages ??
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Power4 Diversified Pipelines

PCI-Cache

BR 
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BR 
Predict

Fetch Q

Decode

Reorder Buffer
BR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
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FX2
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Issue Q
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FP2
Unit
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Dynamic Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Dispatch
Buffer

Reorder
Buffer

( in order )

( out of order )

( out of order )

( in order )



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016  (©J.P. Shen) 18-600   Lecture #10 10

Designs of Inter-stage Buffers

• • •

Stage i

Buffer (> n)

Stage i + 1

• • •

( any order )

( any order )
_

Stage i

Buffer (1)

Stage i + 1

1

1

• • •

• • •

Stage i

Buffer (n)

Stage i +1

n

n

( in order )

• • •

( in order )

Scalar Pipeline Buffer In-order Parallel Buffers

Out-of-order Pipeline Stages

(simple register) (wide-register or FIFO)

(multiported SRAM and CAM)
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The Challenges of Out-of-Order Execution

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1  F2 x F3

. . . . .

Ib: F1  F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB

Ib: F1  “F4 + F5”

. . . . . .

Ia: F1  “F2 x F3”
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Modern Superscalar Processor Organization

Instruction/Decode Buffer
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Amdahl’s Law and Instruction Level Parallelism

 h = fraction of time in serial code

 f = fraction that is vectorizable or parallelizable

 N = max speedup for f

 Overall speedup     

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup





)1(

1
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Revisit Amdahl’s Law

Sequential bottleneck

Even if N is infinite
• Performance limited by non-vectorizable portion (1-f)

f

N

f
f

N 



 1

1

)1(

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

10/03/2016  (©J.P. Shen) 18-600   Lecture #10 14



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Processor Performance Model

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled (stalled)

1-g g

Pipeline
Depth

N

1
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Pipelined Processor Performance Model

“Tyranny of Amdahl’s Law” 

• When g is even slightly below 100%, a big performance hit will result

• Stalled cycles in the pipeline are the key adversary and must be 
minimized as much as possible

• Can we somehow fill the pipeline bubbles (stalled cycles)?

1-g g

Pipeline
Depth

N

1
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Motivation for Superscalar Design

Typical Range

Speedup jumps from 3 to 
4.3 for N=6, f=0.8, but s =2 

instead of s=1 (scalar)
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[Tilak Agerwala and John Cocke, 1987]
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Superscalar Proposal

Moderate the tyranny of Amdahl’s Law

• Ease the sequential bottleneck

• More generally applicable

• Robust (less sensitive to f)

• Revised Amdahl’s Law:

 
N

f

S

f
Speedup





1

1
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The Ideas Behind Modern Superscalar Processors

 Superscalar or wide instruction issue
Ideal IPC = n (CPI = 1/n) 

Diversified pipelines
Different instructions go through different pipe stages
Instructions go through needed stages only

Out-of-order or data-flow execution 
Stall only on RAW hazards and structural hazards

 Speculation
Overcome (some) RAW hazards through prediction

And it all relies on: Instruction Level Parallelism (ILP)
Independent instructions within sequential programs
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Limits on Instruction Level Parallelism (ILP)
Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)
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Iron Law of Processor Performance

 In the 1980’s (decade of pipelining):

 CPI: 5.0  1.15

 In the 1990’s (decade of superscalar):

 CPI: 1.15  0.5 (best case)

 In the 2000’s (decade of multicore):

 Core CPI unchanged; chip CPI scales with #cores

1/Processor Performance  =   ---------------
Time

Program

Instructions Cycles

Program Instruction

Time

Cycle

(path length)

= X X

(CPI) (cycle time)
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Landscape of Microprocessor Families
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Frequency and Performance Boost
[Source: Intel Corporation]

• 13X due to process 

technology

• Additional 4X due to 

microarchitecture
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Putting it All Together: Limits to Deeper Pipelines
[Ed Grochowski, Intel, 1997]

Pentium4

Pentium3
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Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode
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Dispatch
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Completion Buffer

 Buffers provide 
decoupling

 In OOO designs 
they also facilitate 
(re-)ordering

 More details on 
specific buffers to 
follow
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Superscalar Processor Implementation Issues

 Instruction fetching Issues
 How do we maintain high bandwidth and accurate instruction delivery

 Instruction decoding Issues

 Instruction dispatching Issues
 Register renaming

 Instruction execution Issues
 Centralized vs distributed reservation stations

 Instruction completion and Retiring Issues
 ROB, store queues, … 
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Instruction Fetch and Decode

Goal: given a PC, fetch up to N instructions to execute
• Supply the pipeline with maximum number of useful instructions per cycle

• The fetch stage sets the maximum possible performance (IPCmax)

Impediments
• Instruction cache misses

• Instruction alignment

• Complex instruction sets
• CISC (x86, 390, etc) 

• Branches and jumps
• Determining the instruction address (branch direction & targets) 

• Will start in this lecture and finish in next one…

Instruction Memory        

PC

3 instructions fetched
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Wide Instruction Fetches
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 For a N-way superscalar, need ≥ N-way fetching
 Otherwise, N-way ILP can never be achieved

 Sometimes, wider than n-way fetch helps – why?

 Implementation: wide port to I-cache
 Read many/all words from I-cache

 Select those from current PC to first taken branch 

 Reducing cache misses (remember?)
 Separate I-cache

 Larger block size, larger cache size (any problems?)

 Higher associativity

 2nd-level cache, prefetching
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Instruction Cache Organization

1 cache line = 1 physical row 1 cache line = 2 physical rows

 These are logical views: In practice, tags & data may be stored separately
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The Fetch Alignment Problem
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Solving the Alignment Problem
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 Software solution: align taken branch targets to I-cache row starts

 Effect on code size?
 Effect on the I-cache miss rate? 
 What happens when we go to the next chip?

 Hardware solution
 Detect (mis)alignment case
 Allow access of multiple rows (current and sequential next)

 True multi-ported cache, over-clocked cache, multi-banked cache, …
 Or keep around the cache line from previous access

 Assuming a large basic block

 Collapse the two fetched rows into one instruction group
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IBM RS/6000 I-Cache and Fetch (auto alignment)
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Cache Line Underutilization
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 What if we have <N instructions between two taken branches?

 Or predicted taken branches? 

 Solution: read multiple cache lines

 Current and predicted next cache line

 Merge instructions from two cache lines using a collapsing buffer

 Question: how do we get the predicted next cache line address?

 Need two predictions (PCs) per cycle

 Easier cases to handle

 Intra-cache line forward & backward  branches
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Instruction Decoding Issues
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 Primary decoding tasks

 Identify individual instructions for CISC ISAs

 Determine instruction types (especially branches)

 Drop instructions after (predicted) taken branches

 Potentially restart the fetch pipeline from target address

 Determine dependences between instructions

 Two important factors

 Instruction set architecture (RISC vs. CISC)

 Determines decoding difficulty

 Pipeline width

 Sets the number of comparators for dependence detection
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Intel Pentium Pro (P6) Fetch/Decode
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Up to 3 uops Issued to dispatch

x86 Macro-Instruction Bytes from IFU
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I-Cache Pre-decoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4

128 + 80

64

From Memory

Up to 4 ROP’s

Predecode
Logic

64 + 40

8 Instruction Bytes

8 Instr. Bytes + 

16 Instr. Bytes +

Decode, Translate
and Dispatch

Byte1 Byte2 Byte8

5 Bits

Byte1 Byte2 Byte8• • •

• • •

5 Bits 5 Bits

Predecode Bits

Predecode Bits

• Predecoding is also useful for RISC

• Cost: cache size, refill time

• Overheads of pre-decoding?

• Any uses for RISC processors? 
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Instruction Dispatch and Issue .
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Centralized Reservation Station
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Distributed Reservation Stations
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Instruction Fetch Buffer

Fetch

Unit

Out-of-order

Core
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 Smooth out the rate mismatch between fetch and execution

 Neither the fetch bandwidth nor the execution bandwidth is consistent

 Fetch bandwidth should be higher than execution bandwidth

 We prefer to have a stockpile of instructions in the buffer to hide cache 
miss latencies.  

 This requires both raw cache bandwidth + control flow speculation
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Instruction Execute
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 Current trends
 More parallelism  forwarding/bypass very challenging

 Deeper pipelines

 More diversity

 Functional unit types
 Integer

 Floating point

 Load/store most difficult to make parallel

 Branch

 Specialized units (media)
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Forwarding/Bypass Networks

PCI-Cache

BR 
Scan

BR 
Predict

Fetch Q

Decode

Reorder Buffer
BR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

 O(n2) interconnect from/to FU inputs and outputs
 Associative tag-match to find operands
 Solutions (hurt IPC, help cycle time)

 Use RF only (IBM Power4) with 

no bypass network

 Decompose into clusters 

(Alpha 21264)
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Specialized Functional Units

 FP multiply-accumulate
R = (A x B) + C

 Doubles FLOP/instruction
 Lose RISC instruction 

format symmetry:
– 3 source operands

 Widely used

10/03/2016  (©J.P. Shen) 18-600   Lecture #10 43



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specialized Functional Units in Pentium 4

 Intel Pentium 4 staggered adders
– Fireball

 Run at 2x clock frequency
 Two 16-bit bitslices
 Dependent ops execute on half-

cycle boundaries
 Full result not available until full 

cycle later
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Carry



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Complete and Retire

 Out-of-order execution
 ALU instructions

 Load/store instructions

 In-order completion/retirement
 Precise exceptions

 Memory coherence and consistency

 Solutions
 Reorder buffer

 Store buffer

 Load queue snooping (later)
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Exceptional Limitations
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 Precise exceptions: when exception occurs on instruction i
 Instruction i has not modified the processor state (regs, memory)

 All older instructions have fully completed

 No younger instruction has modified the processor state (regs, memory)

 How do we maintain precise exception in a simple pipelined 
processor?

 What makes precise exceptions difficult on a 

 In-order diversified pipeline?

 Out-of-order pipeline? 
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Precise Exceptions and OOO Processors
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 Solution: force instructions to update processor state in-order
 Register and memory updates done in order
 Usually called instruction retirement or graduation or commitment 

 Implementation: Re-Order Buffer (ROB)
 A FIFO for instruction tracking
 1 entry per instruction

 PC, register/memory address, new value, ready, exception

 ROB algorithm
 Allocate ROB entries at dispatch time in-order (FIFO)
 Instructions update their ROB entry when they complete
 Examine head of ROB for in-order retirement

 If done retire, otherwise wait (this forces order)
 If exception, flush contents of ROB, restart from instruction PC after handler
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Re-Order Buffer Issues
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 Problem
 Already computed results must wait in the reorder buffer when they may 

be needed by other instructions which could otherwise execute. 
 Data dependent instructions must wait until the result has been 

committed to register

 Solution
 Forwarding from the re-order buffer

 Allows data in ROB to be used in place of data in registers

 Forwarding implementation 1: search ROB for values when registers read
 Only latest entry in ROB can be used
 Many comparators, but logic is conceptually simple

 Forwarding implementation 2: use score-board to track results in ROB
 Register scoreboard notes if latest value in ROB and # of ROB entry
 Don’t need to track FU any more; an instruction is fully identified by ROB entry
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ROB Alternatives: History File
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 A FIFO operated similarly to the ROB but logs old register values
 Entry format just like ROB 

 Algorithm
 Entries allocated in-order at dispatch 

 Entries updated out-of-order at completion time
 Destination register updated immediately

 Old value of register noted in re-order buffer

 Examine head of history file in-order
 If no exception just de-allocate

 If exception, reverse history file and undo all register updates before flushing 

 Advantage: no need for separate forwarding from ROB
 Disadvantage: slower recovery from exceptions
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ROB Alternatives: Future File
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 Use two separate register files:

 Architectural file  Represents sequential execution.

 Future file   Updated immediately upon instruction execution and used 
as the working file.

 Algorithm

 When instruction reaches the head of ROB, it is committed to the 
architectural file

 On an exception changes are brought over from the architectural file to 
the future file based on which instructions are still represented in the ROB

 Advantage: no need for separate forwarding from ROB
 Disadvantage: slower recovery from exceptions
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Three Impediments to Superscalar Performance
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Control Flow Graph (CFG)

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 
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 Your program is actually 
a control flow graph

 Shows possible paths of 
control flow through 
basic blocks

 Control Dependence

 Node X is control 
dependent on Node Y if 
the computation in Y
determines whether X
executes
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Mapping  CFG  to Linear Instruction Sequence
A A

B

B

A

B
C

D

D

C

C

D



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Types and Implementation
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 Types of Branches

 Conditional or Unconditional?

 Subroutine Call (aka Link), needs to save PC?

 How is the branch target computed?

 Static Target      e.g. immediate, PC-relative

 Dynamic targets  e.g. register indirect

 Conditional Branch Architectures

 Condition Code “N-Z-C-V” e.g. PowerPC

 General Purpose Register e.g. Alpha, MIPS

 Special Purposes register e.g. Power’s Loop Count
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What’s So Bad About Branches?
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 Robs instruction fetch bandwidth and ILP

 Use up execution resources

 Fragmentation of I-cache lines

 Disruption of sequential control flow

 Need to determine branch direction (conditional branches)

 Need to determine branch target

 Example: 

 We have a N-way superscalar processor (N is large)

 A branch every 5 instructions that takes 3 cycles to resolve

 What is the effective fetch bandwidth?  
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Disruption of Sequential Control Flow
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Riseman and Foster’s Study

 7 benchmark programs on CDC-3600

Assume infinite machine:

• Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

 If bounded to single basic block, i.e. no bypassing of branches   maximum 
speedup is 1.72

 Suppose one can bypass conditional branches and jumps (i.e. assume the 
actual branch path is always known such that branches do not impede 
instruction execution)

Br. Bypassed: 0 1 2 8 32 128

Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2
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Introduction to Branch Prediction

Why do we need branch prediction?

What do we need to predict about branches?

Why are branches predictable? 

What mechanisms do we need for branch prediction? 
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Static Branch Prediction

Option #1: based on type or use of instruction

• E.g., assume backwards branches are taken (predicting a loop)

• Can be used as a backup even if dynamic schemes are used

Option #2: compiler or profile branch prediction

• Collect information from instrumented run(s)

• Recompile program with branch annotations (hints) for prediction

• See heuristics list in next slide

• Can achieve 75% to 80% prediction accuracy

Why would dynamic branch prediction do better?
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Heuristics for Static Prediction (Ball & Larus, PPoPP1993)

Heuristic  Description 

Loop 
Branch 

If the branch target is back to the head of a loop, predict taken. 

Pointer 
If a branch compares a pointer with NULL, or if two pointers are compared, predict in the direction 
that corresponds to the pointer being not NULL, or the two pointers not being equal. 

Opcode 
If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a 
constant, predict in the direction that corresponds to the test evaluating to false. 

Guard 
If the operand of the branch instruction is a register that gets used before being redefined in the 
successor block, predict that the branch goes to the successor block. 

Loop Exit 
If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the 
branch does not go to the successor that is the loop exit. 

Loop 
Header 

Predict that the successor block of a branch that is a loop header or a loop pre-header is taken. 

Call If a successor block contains a subroutine call, predict that the branch goes to that successor block. 

Store 
If a successor block contains a store instruction, predict that the branch does not go to that 
successor block. 

Return 
If a successor block contains a return from subroutine instruction, predict that the branch does not 
go to that successor block. 
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Dynamic Branch Prediction Tasks

 Target Address Generation
• Access register

• PC, GP register, Link register

• Perform calculation

• +/- offset, auto incrementing/decrementing

 Target Speculation

Condition Resolution
• Access register

• Condition code register, data register, count register

• Perform calculation

• Comparison of data register(s)

 Condition Speculation
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Target Address Generation
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Determining Branch Target

Problem: Cannot fetch subsequent instructions until branch target is determined

 Minimize delay

 Generate branch target early in the pipeline

 Make use of delay

 Bias for not taken

 Predict branch targes

 For both PC-relative vs register Indirect targets
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Condition Resolution
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Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch direction is determined

 Minimize penalty

 Move the instruction that computes the branch condition away from branch 
(ISA & compiler)

 3 branch components can be separated

 Specify end of BB, specify condition, specify target 

 Make use of penalty

 Bias for not-taken

 Fill delay slots with useful/safe instructions (ISA &compiler)

 Follow both paths of execution (hardware)

 Predict branch direction (hardware) 
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Dynamic Branch Target Prediction 
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Target Prediction: Branch Target Buffer (BTB)

 A small “cache-like” memory in the instruction fetch stage
 Remembers previously executed branches, their addresses (PC), information  to aid target 

prediction, and most recent target addresses
 I-fetch stage compares current PC against those in BTB to “guess” nPC

 If matched then prediction is made else nPC=PC+4
 If predict taken then nPC=target address in BTB else nPC=PC+4

 When branch is actually resolved, BTB is updated
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More on BTB  (aka BTAC)

 Typically a large associative structure 

 Pentium3: 512 entries, 4-way; Opteron: 2K entries, 4-way 

 Entry format

 Valid bit, address tag (PC), target address, fall-through BB address (length of BB), 
branch type info, branch direction prediction

 BTB provides both target and direction prediction

 Multi-cycle BTB access? 

 The case in many modern processors (2 cycle BTB)

 Start BTB access along with I-cache in cycle 0

 In cycle 1, fetch from BTB+N (predict not-taken)

 In cycle 2, use BTB output to verify 

 1 cycle fetch bubble if branch was taken
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Branch Target Prediction for Function Returns

 In most languages, function calls are fully nested
 If you call A()  B()  C()  D()

 Your return targets are PCc  PCb  PCa  PCmain

 Return address stack (RAS)
 A FILO structure for capturing function return addresses

 Operation

 On a function call retirement, push call PC into the stack

 On a function return, use the top value in the stack & pop

 A 16-entry RAS can predict returns almost perfectly

 Most programs do not have such a deep call tree

 Sources of RAS inaccuracies

 Deep call statements (circular buffer overflow – will lose older calls)

 Setjmp and longjmp C functions (irregular call semantics)
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RAS Operation
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RAS Effectiveness & Size (SPEC CPU’95)
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Branch Condition Prediction
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 Biased For Not Taken
 Does not affect the instruction set architecture
 Not effective in loops

 Software Prediction
 Encode an extra bit in the branch instruction

 Predict not taken: set bit to 0
 Predict taken: set bit to 1

 Bit set by compiler or user; can use profiling
 Static prediction, same behavior every time

 Prediction Based on Branch Offsets
 Positive offset: predict not taken
 Negative offset: predict taken

 Prediction Based on History 



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

History-Based Branch Direction Prediction

 Track history of previous directions of branches (T or NT)

 History can be local (per static branch) or global (all branches)

 Based on observed history bits (T or NT), a FSM makes a prediction of Taken or Not 

Taken

 Assumes that future branching behavior is predictable based on historical branching 

behavior
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History-Based Branch Prediction
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 Prediction accuracy approaches maximum with as few as 2 preceding branch 
occurrences used as history

Results (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC

93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

last two branches

next prediction

 History avoids mispredictions
due to one time events

 Canonical example: loop exit

 2-bit FSM as good as n-bit FSM

 Saturating counter as good as 
any FSM
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N
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Other Prediction Algorithms

 Combining prediction accuracy with BTB hit rate (86.5% for 128 sets of 4 
entries each), branch prediction can provide the net prediction accuracy of 
approximately 80%.  This implies a 5-20% performance enhancement.

Saturation

Counter

Hysteresis

Counter
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Dynamic Branch Prediction Based on History

 Use HW tables to 
track history of 
direction/targets

 nextPC = 
function(PC, 
history)

 Need to verify 
prediction

 Branch still gets  
to execute
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PowerPC 604 Branch Predictor: BHT & BTAC

BTAC:
 64 entries
 Fully associative
 Hit  predict taken

BHT:
 512 entries
 Direct mapped
 2-bit saturating counter
 History based prediction
 Overrides BTAC prediction
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PowerPC 604 Fetch Address Generation
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Lecture 11:
“Modern Superscalar Out-of-Order Processors”

John P. Shen & Zhiyi Yu
October 5, 2016
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18-600  Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reading Assignment:
 Chapter 5 of Shen and Lipasti (SnL).


