
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 10:
“From Pipelined to Superscalar Processors”

John P. Shen & Zhiyi Yu
October 3, 2016

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 1

18-600 Foundations of Computer Systems

CS: AAP

CS: APP

18-600

 Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reading Assignment:
 Chapter 4 of Shen and Lipasti (SnL).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A. Motivations for Superscalar Processors
 Pipelined Processor Limitations

 Superscalar Processor Pipelines

 Instruction Level Parallelism (ILP)

B. Superscalar Pipeline Implementation
 Instruction Fetch and Decode
 Instruction Dispatch and Issue
 Instruction Execute
 Instruction Complete and Retire

C. Instruction Flow Techniques
 Control Flow Prediction
 Dynamic Branch Prediction

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 2

18-600 Foundations of Computer Systems

Lecture 10:
“From Pipelined to Superscalar Processors”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3 Major Penalty Loops of (Scalar) Pipelining

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(3 cycles)

ALU
PENALTY
(0 cycle)

Performance Objective: Reduce CPI as close to 1 as possible.

Best Possible for Real Programs is as Low as CPI = 1.15.
10/03/2016 (©J.P. Shen) 18-600 Lecture #10 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Limitations of Scalar Pipelined Processors

 Upper Bound on Scalar Pipeline Throughput
Limited by IPC = 1.0

 Parallel Pipelines

 Inefficient Unification Into Single Pipeline
Long latency for each instruction

Hazards and associated stalls

 Diversified Pipelines

 Performance Lost Due to In-order Pipeline
Unnecessary stalls

 Dynamic Pipelines

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Pipelines

(a) No Parallelism (b) Temporal Parallelism

(c) Spatial Parallelism

(d) Parallel Pipeline

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Pentium Parallel Pipeline

IF

D1

D2

EX

WB

IF IF

D1 D1

D2 D2

EX EX

WB WB

U - Pipe V - Pipe

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Diversified Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 7

• Separate execution pipelines
• Integer simple, memory, FP, …

• Advantages:
• Reduce instruction latency

• Each instruction goes to WB
asap

• Eliminate need for forwarding
paths

• Eliminate some unnecessary stalls

• E.g. slow FP instruction does not
block independent integer
instructions

• Disadvantages ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 8

Power4 Diversified Pipelines

PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder Buffer
BR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 9

Dynamic Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Dispatch
Buffer

Reorder
Buffer

(in order)

(out of order)

(out of order)

(in order)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 10

Designs of Inter-stage Buffers

• • •

Stage i

Buffer (> n)

Stage i + 1

• • •

(any order)

(any order)
_

Stage i

Buffer (1)

Stage i + 1

1

1

• • •

• • •

Stage i

Buffer (n)

Stage i +1

n

n

(in order)

• • •

(in order)

Scalar Pipeline Buffer In-order Parallel Buffers

Out-of-order Pipeline Stages

(simple register) (wide-register or FIFO)

(multiported SRAM and CAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 11

The Challenges of Out-of-Order Execution

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1 F2 x F3

.

Ib: F1 F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB

Ib: F1 “F4 + F5”

.

Ia: F1 “F2 x F3”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 12

Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
e
r

O
u

t
o

f

O
rd

e
r

In
 O

rd
e
r

Completion Buffer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law and Instruction Level Parallelism

 h = fraction of time in serial code

 f = fraction that is vectorizable or parallelizable

 N = max speedup for f

 Overall speedup

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup

)1(

1

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisit Amdahl’s Law

Sequential bottleneck

Even if N is infinite
• Performance limited by non-vectorizable portion (1-f)

f

N

f
f

N

 1

1

)1(

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Processor Performance Model

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled (stalled)

1-g g

Pipeline
Depth

N

1

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Processor Performance Model

“Tyranny of Amdahl’s Law”

• When g is even slightly below 100%, a big performance hit will result

• Stalled cycles in the pipeline are the key adversary and must be
minimized as much as possible

• Can we somehow fill the pipeline bubbles (stalled cycles)?

1-g g

Pipeline
Depth

N

1

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Motivation for Superscalar Design

Typical Range

Speedup jumps from 3 to
4.3 for N=6, f=0.8, but s =2

instead of s=1 (scalar)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 17

[Tilak Agerwala and John Cocke, 1987]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Superscalar Proposal

Moderate the tyranny of Amdahl’s Law

• Ease the sequential bottleneck

• More generally applicable

• Robust (less sensitive to f)

• Revised Amdahl’s Law:

N

f

S

f
Speedup

1

1

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Ideas Behind Modern Superscalar Processors

 Superscalar or wide instruction issue
Ideal IPC = n (CPI = 1/n)

Diversified pipelines
Different instructions go through different pipe stages
Instructions go through needed stages only

Out-of-order or data-flow execution
Stall only on RAW hazards and structural hazards

 Speculation
Overcome (some) RAW hazards through prediction

And it all relies on: Instruction Level Parallelism (ILP)
Independent instructions within sequential programs

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 20

Limits on Instruction Level Parallelism (ILP)
Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 21

Iron Law of Processor Performance

 In the 1980’s (decade of pipelining):

 CPI: 5.0 1.15

 In the 1990’s (decade of superscalar):

 CPI: 1.15 0.5 (best case)

 In the 2000’s (decade of multicore):

 Core CPI unchanged; chip CPI scales with #cores

1/Processor Performance = ---------------
Time

Program

Instructions Cycles

Program Instruction

Time

Cycle

(path length)

= X X

(CPI) (cycle time)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 22

Landscape of Microprocessor Families

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500

Frequency (MHz)

S
P

E
C

in
t2

0
0

0
/M

H
z

Intel-x86

AMD-x86

Power

Itanium

700
500

300

100

PIII

P4

Athlon

** Data source www.spec.org

Power4

NWD

900

1100
1900 SpecINT 2000 1300

1500

Opteron

800 MHz

Extreme

Power 3

Power5

PSC

DTN

1700

Itanium

Source: www.SPEC.org

Deeper pipelining

W
id

er

p
ip

el
in

e

Frequency vs. Parallelism

[John DeVale & Bryan Black, 2005]

CPIPathLength

Frequency
ePerformanc CPU

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 23

Frequency and Performance Boost
[Source: Intel Corporation]

• 13X due to process

technology

• Additional 4X due to

microarchitecture
10

100

1,000

10,000

1.0µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ

Frequency

(MHz)

Freq (uArch)

Freq (Process)

13X

4X

i486

Pentium
®
 proc

 Pentium
®
 4 proc

Pentium
®
 II and III proc

Frequency Increased 50X

1

10

100

1.0µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ

Relative

Performance

Relative
Performance

Relative
Frequency

13X

6X

i486

Pentium
®
 proc

 Pentium® 4 proc

Pentium
®
 II and III proc

• 13X due to process

technology

• Additional >6X due

to microarchitecture

Performance Increased >75X

*Note: Performance measured
using SpecINT and SpecFP

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 24

Putting it All Together: Limits to Deeper Pipelines
[Ed Grochowski, Intel, 1997]

Pentium4

Pentium3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 25

Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
e
r

O
u

t
o

f

O
rd

e
r

In
 O

rd
e
r

Completion Buffer

 Buffers provide
decoupling

 In OOO designs
they also facilitate
(re-)ordering

 More details on
specific buffers to
follow

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Superscalar Processor Implementation Issues

 Instruction fetching Issues
 How do we maintain high bandwidth and accurate instruction delivery

 Instruction decoding Issues

 Instruction dispatching Issues
 Register renaming

 Instruction execution Issues
 Centralized vs distributed reservation stations

 Instruction completion and Retiring Issues
 ROB, store queues, …

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Fetch and Decode

Goal: given a PC, fetch up to N instructions to execute
• Supply the pipeline with maximum number of useful instructions per cycle

• The fetch stage sets the maximum possible performance (IPCmax)

Impediments
• Instruction cache misses

• Instruction alignment

• Complex instruction sets
• CISC (x86, 390, etc)

• Branches and jumps
• Determining the instruction address (branch direction & targets)

• Will start in this lecture and finish in next one…

Instruction Memory

PC

3 instructions fetched

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wide Instruction Fetches

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 28

 For a N-way superscalar, need ≥ N-way fetching
 Otherwise, N-way ILP can never be achieved

 Sometimes, wider than n-way fetch helps – why?

 Implementation: wide port to I-cache
 Read many/all words from I-cache

 Select those from current PC to first taken branch

 Reducing cache misses (remember?)
 Separate I-cache

 Larger block size, larger cache size (any problems?)

 Higher associativity

 2nd-level cache, prefetching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Cache Organization

1 cache line = 1 physical row 1 cache line = 2 physical rows

 These are logical views: In practice, tags & data may be stored separately

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Fetch Alignment Problem

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solving the Alignment Problem

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 31

 Software solution: align taken branch targets to I-cache row starts

 Effect on code size?
 Effect on the I-cache miss rate?
 What happens when we go to the next chip?

 Hardware solution
 Detect (mis)alignment case
 Allow access of multiple rows (current and sequential next)

 True multi-ported cache, over-clocked cache, multi-banked cache, …
 Or keep around the cache line from previous access

 Assuming a large basic block

 Collapse the two fetched rows into one instruction group

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 32

IBM RS/6000 I-Cache and Fetch (auto alignment)

A0
A4
A8

A12

B0
B4
B8

B12

0
1
2

3

255

mux

T
logic

A1
A5
A9

A13

B1
B5
B9

B13

0
1
2

3

255

T
logic

A2
A6
A10

A14

B2
B6
B10

B14

0
1
2

3

255

A3
A7

A15

B3
B7
B11

B15

0
1
2

3

255

mux

TLB
hit

control

logic

and
buffer

Odd
Directory
Sets
A & B

Even
Directory
Sets
A & B

Instruction buffer network

Interlock,
dispatch,

execution,
logic

D

D

D

D

I n
s
tr

u
c
ti
o

n
n

+
2

I n
s
tr

u
c
ti
o

n
n

+
3

I n
s
tr

u
c
ti
o

n
n

+
1

I n
s
tr

u
c
ti
o

n
n

IFAR

mux mux

T
logic

 2-way set

associative

(A and B sets)

I-Cache; (8)

256-instruction

SRAM modules

 16 instruction

per cache line

(64 bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Line Underutilization

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 33

 What if we have <N instructions between two taken branches?

 Or predicted taken branches?

 Solution: read multiple cache lines

 Current and predicted next cache line

 Merge instructions from two cache lines using a collapsing buffer

 Question: how do we get the predicted next cache line address?

 Need two predictions (PCs) per cycle

 Easier cases to handle

 Intra-cache line forward & backward branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Decoding Issues

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 34

 Primary decoding tasks

 Identify individual instructions for CISC ISAs

 Determine instruction types (especially branches)

 Drop instructions after (predicted) taken branches

 Potentially restart the fetch pipeline from target address

 Determine dependences between instructions

 Two important factors

 Instruction set architecture (RISC vs. CISC)

 Determines decoding difficulty

 Pipeline width

 Sets the number of comparators for dependence detection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Pentium Pro (P6) Fetch/Decode

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 35

Up to 3 uops Issued to dispatch

x86 Macro-Instruction Bytes from IFU

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I-Cache Pre-decoding in the AMD K5

I-Cache

ROP1 ROP2 ROP3 ROP4

128 + 80

64

From Memory

Up to 4 ROP’s

Predecode
Logic

64 + 40

8 Instruction Bytes

8 Instr. Bytes +

16 Instr. Bytes +

Decode, Translate
and Dispatch

Byte1 Byte2 Byte8

5 Bits

Byte1 Byte2 Byte8• • •

• • •

5 Bits 5 Bits

Predecode Bits

Predecode Bits

• Predecoding is also useful for RISC

• Cost: cache size, refill time

• Overheads of pre-decoding?

• Any uses for RISC processors?

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 37

Instruction Dispatch and Issue .

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 38

Centralized Reservation Station

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 39

Distributed Reservation Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Fetch Buffer

Fetch

Unit

Out-of-order

Core

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 40

 Smooth out the rate mismatch between fetch and execution

 Neither the fetch bandwidth nor the execution bandwidth is consistent

 Fetch bandwidth should be higher than execution bandwidth

 We prefer to have a stockpile of instructions in the buffer to hide cache
miss latencies.

 This requires both raw cache bandwidth + control flow speculation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Execute

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 41

 Current trends
 More parallelism forwarding/bypass very challenging

 Deeper pipelines

 More diversity

 Functional unit types
 Integer

 Floating point

 Load/store most difficult to make parallel

 Branch

 Specialized units (media)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Forwarding/Bypass Networks

PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder Buffer
BR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

 O(n2) interconnect from/to FU inputs and outputs
 Associative tag-match to find operands
 Solutions (hurt IPC, help cycle time)

 Use RF only (IBM Power4) with

no bypass network

 Decompose into clusters

(Alpha 21264)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specialized Functional Units

 FP multiply-accumulate
R = (A x B) + C

 Doubles FLOP/instruction
 Lose RISC instruction

format symmetry:
– 3 source operands

 Widely used

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specialized Functional Units in Pentium 4

 Intel Pentium 4 staggered adders
– Fireball

 Run at 2x clock frequency
 Two 16-bit bitslices
 Dependent ops execute on half-

cycle boundaries
 Full result not available until full

cycle later

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 44

Carry

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Complete and Retire

 Out-of-order execution
 ALU instructions

 Load/store instructions

 In-order completion/retirement
 Precise exceptions

 Memory coherence and consistency

 Solutions
 Reorder buffer

 Store buffer

 Load queue snooping (later)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Limitations

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 46

 Precise exceptions: when exception occurs on instruction i
 Instruction i has not modified the processor state (regs, memory)

 All older instructions have fully completed

 No younger instruction has modified the processor state (regs, memory)

 How do we maintain precise exception in a simple pipelined
processor?

 What makes precise exceptions difficult on a

 In-order diversified pipeline?

 Out-of-order pipeline?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precise Exceptions and OOO Processors

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 47

 Solution: force instructions to update processor state in-order
 Register and memory updates done in order
 Usually called instruction retirement or graduation or commitment

 Implementation: Re-Order Buffer (ROB)
 A FIFO for instruction tracking
 1 entry per instruction

 PC, register/memory address, new value, ready, exception

 ROB algorithm
 Allocate ROB entries at dispatch time in-order (FIFO)
 Instructions update their ROB entry when they complete
 Examine head of ROB for in-order retirement

 If done retire, otherwise wait (this forces order)
 If exception, flush contents of ROB, restart from instruction PC after handler

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Re-Order Buffer Issues

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 48

 Problem
 Already computed results must wait in the reorder buffer when they may

be needed by other instructions which could otherwise execute.
 Data dependent instructions must wait until the result has been

committed to register

 Solution
 Forwarding from the re-order buffer

 Allows data in ROB to be used in place of data in registers

 Forwarding implementation 1: search ROB for values when registers read
 Only latest entry in ROB can be used
 Many comparators, but logic is conceptually simple

 Forwarding implementation 2: use score-board to track results in ROB
 Register scoreboard notes if latest value in ROB and # of ROB entry
 Don’t need to track FU any more; an instruction is fully identified by ROB entry

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROB Alternatives: History File

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 49

 A FIFO operated similarly to the ROB but logs old register values
 Entry format just like ROB

 Algorithm
 Entries allocated in-order at dispatch

 Entries updated out-of-order at completion time
 Destination register updated immediately

 Old value of register noted in re-order buffer

 Examine head of history file in-order
 If no exception just de-allocate

 If exception, reverse history file and undo all register updates before flushing

 Advantage: no need for separate forwarding from ROB
 Disadvantage: slower recovery from exceptions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROB Alternatives: Future File

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 50

 Use two separate register files:

 Architectural file Represents sequential execution.

 Future file Updated immediately upon instruction execution and used
as the working file.

 Algorithm

 When instruction reaches the head of ROB, it is committed to the
architectural file

 On an exception changes are brought over from the architectural file to
the future file based on which instructions are still represented in the ROB

 Advantage: no need for separate forwarding from ROB
 Disadvantage: slower recovery from exceptions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 51

Three Impediments to Superscalar Performance

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

LOAD
PENALTY

IF

ID

RD

ALU

MEM

WB

ALU
PENALTY

BRANCH
PENALTY

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Graph (CFG)

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 52

 Your program is actually
a control flow graph

 Shows possible paths of
control flow through
basic blocks

 Control Dependence

 Node X is control
dependent on Node Y if
the computation in Y
determines whether X
executes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 53

Mapping CFG to Linear Instruction Sequence
A A

B

B

A

B
C

D

D

C

C

D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Types and Implementation

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 54

 Types of Branches

 Conditional or Unconditional?

 Subroutine Call (aka Link), needs to save PC?

 How is the branch target computed?

 Static Target e.g. immediate, PC-relative

 Dynamic targets e.g. register indirect

 Conditional Branch Architectures

 Condition Code “N-Z-C-V” e.g. PowerPC

 General Purpose Register e.g. Alpha, MIPS

 Special Purposes register e.g. Power’s Loop Count

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s So Bad About Branches?

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 55

 Robs instruction fetch bandwidth and ILP

 Use up execution resources

 Fragmentation of I-cache lines

 Disruption of sequential control flow

 Need to determine branch direction (conditional branches)

 Need to determine branch target

 Example:

 We have a N-way superscalar processor (N is large)

 A branch every 5 instructions that takes 3 cycles to resolve

 What is the effective fetch bandwidth?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 56

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Riseman and Foster’s Study

 7 benchmark programs on CDC-3600

Assume infinite machine:

• Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

 If bounded to single basic block, i.e. no bypassing of branches maximum
speedup is 1.72

 Suppose one can bypass conditional branches and jumps (i.e. assume the
actual branch path is always known such that branches do not impede
instruction execution)

Br. Bypassed: 0 1 2 8 32 128

Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Introduction to Branch Prediction

Why do we need branch prediction?

What do we need to predict about branches?

Why are branches predictable?

What mechanisms do we need for branch prediction?

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 58

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static Branch Prediction

Option #1: based on type or use of instruction

• E.g., assume backwards branches are taken (predicting a loop)

• Can be used as a backup even if dynamic schemes are used

Option #2: compiler or profile branch prediction

• Collect information from instrumented run(s)

• Recompile program with branch annotations (hints) for prediction

• See heuristics list in next slide

• Can achieve 75% to 80% prediction accuracy

Why would dynamic branch prediction do better?

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 60

Heuristics for Static Prediction (Ball & Larus, PPoPP1993)

Heuristic Description

Loop
Branch

If the branch target is back to the head of a loop, predict taken.

Pointer
If a branch compares a pointer with NULL, or if two pointers are compared, predict in the direction
that corresponds to the pointer being not NULL, or the two pointers not being equal.

Opcode
If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a
constant, predict in the direction that corresponds to the test evaluating to false.

Guard
If the operand of the branch instruction is a register that gets used before being redefined in the
successor block, predict that the branch goes to the successor block.

Loop Exit
If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the
branch does not go to the successor that is the loop exit.

Loop
Header

Predict that the successor block of a branch that is a loop header or a loop pre-header is taken.

Call If a successor block contains a subroutine call, predict that the branch goes to that successor block.

Store
If a successor block contains a store instruction, predict that the branch does not go to that
successor block.

Return
If a successor block contains a return from subroutine instruction, predict that the branch does not
go to that successor block.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Branch Prediction Tasks

 Target Address Generation
• Access register

• PC, GP register, Link register

• Perform calculation

• +/- offset, auto incrementing/decrementing

 Target Speculation

Condition Resolution
• Access register

• Condition code register, data register, count register

• Perform calculation

• Comparison of data register(s)

 Condition Speculation

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 62

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Determining Branch Target

Problem: Cannot fetch subsequent instructions until branch target is determined

 Minimize delay

 Generate branch target early in the pipeline

 Make use of delay

 Bias for not taken

 Predict branch targes

 For both PC-relative vs register Indirect targets

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 64

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch direction is determined

 Minimize penalty

 Move the instruction that computes the branch condition away from branch
(ISA & compiler)

 3 branch components can be separated

 Specify end of BB, specify condition, specify target

 Make use of penalty

 Bias for not-taken

 Fill delay slots with useful/safe instructions (ISA &compiler)

 Follow both paths of execution (hardware)

 Predict branch direction (hardware)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 65

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 66

Dynamic Branch Target Prediction

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

nPC to Icache

nPC(seq.) = PC+4

PCBranch
Predictor
(using a BTB)

specu. target

BTB
update

prediction

(target addr.
and history)

specu. cond.

FA-mux

nPC=BP(PC)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 67

Target Prediction: Branch Target Buffer (BTB)

 A small “cache-like” memory in the instruction fetch stage
 Remembers previously executed branches, their addresses (PC), information to aid target

prediction, and most recent target addresses
 I-fetch stage compares current PC against those in BTB to “guess” nPC

 If matched then prediction is made else nPC=PC+4
 If predict taken then nPC=target address in BTB else nPC=PC+4

 When branch is actually resolved, BTB is updated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on BTB (aka BTAC)

 Typically a large associative structure

 Pentium3: 512 entries, 4-way; Opteron: 2K entries, 4-way

 Entry format

 Valid bit, address tag (PC), target address, fall-through BB address (length of BB),
branch type info, branch direction prediction

 BTB provides both target and direction prediction

 Multi-cycle BTB access?

 The case in many modern processors (2 cycle BTB)

 Start BTB access along with I-cache in cycle 0

 In cycle 1, fetch from BTB+N (predict not-taken)

 In cycle 2, use BTB output to verify

 1 cycle fetch bubble if branch was taken

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 68

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Target Prediction for Function Returns

 In most languages, function calls are fully nested
 If you call A() B() C() D()

 Your return targets are PCc PCb PCa PCmain

 Return address stack (RAS)
 A FILO structure for capturing function return addresses

 Operation

 On a function call retirement, push call PC into the stack

 On a function return, use the top value in the stack & pop

 A 16-entry RAS can predict returns almost perfectly

 Most programs do not have such a deep call tree

 Sources of RAS inaccuracies

 Deep call statements (circular buffer overflow – will lose older calls)

 Setjmp and longjmp C functions (irregular call semantics)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 69

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAS Operation

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 70

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAS Effectiveness & Size (SPEC CPU’95)

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 71

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Condition Prediction

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 72

 Biased For Not Taken
 Does not affect the instruction set architecture
 Not effective in loops

 Software Prediction
 Encode an extra bit in the branch instruction

 Predict not taken: set bit to 0
 Predict taken: set bit to 1

 Bit set by compiler or user; can use profiling
 Static prediction, same behavior every time

 Prediction Based on Branch Offsets
 Positive offset: predict not taken
 Negative offset: predict taken

 Prediction Based on History

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

History-Based Branch Direction Prediction

 Track history of previous directions of branches (T or NT)

 History can be local (per static branch) or global (all branches)

 Based on observed history bits (T or NT), a FSM makes a prediction of Taken or Not

Taken

 Assumes that future branching behavior is predictable based on historical branching

behavior

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 73

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

History-Based Branch Prediction

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 74

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Prediction accuracy approaches maximum with as few as 2 preceding branch
occurrences used as history

Results (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC

93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

last two branches

next prediction

 History avoids mispredictions
due to one time events

 Canonical example: loop exit

 2-bit FSM as good as n-bit FSM

 Saturating counter as good as
any FSM

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 75

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

N

T
N

N

T

TN
T

n?

T

t

T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

n
n

T
N

Other Prediction Algorithms

 Combining prediction accuracy with BTB hit rate (86.5% for 128 sets of 4
entries each), branch prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20% performance enhancement.

Saturation

Counter

Hysteresis

Counter

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 76

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Branch Prediction Based on History

 Use HW tables to
track history of
direction/targets

 nextPC =
function(PC,
history)

 Need to verify
prediction

 Branch still gets
to execute

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 77

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icacheP
C

Branch

History

Table

Branch

Target

Address

Cache

+16

feedback

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 78

PowerPC 604 Branch Predictor: BHT & BTAC

BTAC:
 64 entries
 Fully associative
 Hit predict taken

BHT:
 512 entries
 Direct mapped
 2-bit saturating counter
 History based prediction
 Overrides BTAC prediction

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icacheP
C

Branch

History

Table

Branch

Target

Address

Cache

+16

feedback

BHT prediction

BTAC prediction BHT
update

BTAC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #1010/03/2016 (©J.P. Shen) 79

PowerPC 604 Fetch Address Generation

instruction

cache
BHT BTAC +2 +4

F
A

R

Prediction Logic

(4 instructions)
Target Seq Addr

Prediction Logic

(4 instructions)
Target Seq Addr

Prediction Logic

(4 instructions)
Target Seq Addr

Exception Logic

PC

Target

+

fetch

decode

dispatch

branch

execute

complete

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Modern Superscalar Out-of-Order Processors”

John P. Shen & Zhiyi Yu
October 5, 2016

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 80

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

 Recommended Reading Assignment:
 Chapter 5 of Shen and Lipasti (SnL).

