18-600 Foundations of Computer Systems

Lecture 10:
“From Pipelined to Superscalar Processors”

John P. Shen & Zhiyi Yu
October 3, 2016

» Required Reading Assignment:
* Chapter 4 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron.

» Recommended Reading Assignment: ) Electrical & Computer
¢ Chapter 4 of Shen and Lipasti (SnL). { E N G I N E E RI N G
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18-600 Foundations of Computer Systems

Lecture 10:
“From Pipelined to Superscalar Processors”

A. Motivations for Superscalar Processors
» Pipelined Processor Limitations
» Superscalar Processor Pipelines
» Instruction Level Parallelism (ILP)

B. Superscalar Pipeline Implementation
» Instruction Fetch and Decode
» Instruction Dispatch and Issue
» Instruction Execute
» Instruction Complete and Retire

C. Instruction FIowTthnlques (K) ElectrlcaI&Com uter

> Control Flow Prediction E N G I N E E RI N G

» Dynamic Branch Prediction
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3 Major Penalty Loops of (Scalar) Pipelining

! f‘"‘\
HF_I
D | BRANCH
PENALTY
s \‘ ' (3 cycles)

LOAD ALU-,
PENALTY| PENALTY
(1 cycle) (0 cycle)
—

a®

ikt

Performance Objective: Reduce CPI as close to 1 as possible.
Best Possible for Real Programs is as Low as CPIl = 1.15.
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Address Limitations of Scalar Pipelined Processors

» Upper Bound on Scalar Pipeline Throughput
Limited by IPC = 1.0
=» Parallel Pipelines

» Inefficient Unification Into Single Pipeline
Long latency for each instruction
Hazards and associated stalls

=» Diversified Pipe

» Performance Lost

Ines

Due to In-order Pipeline

Unnecessary stalls
=» Dynamic Pipelines
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Parallel Pipelines
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(c) Spatial Parallelism
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(d) Parallel Pipeline
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Intel Pentium Parallel Pipeline

V - Pipe
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Diversitied Pipelines

e Separate execution pipelines

IE | - U . | * Integer simple, memory, FP, ...
ID I | * Advantages:
| * Reduce instruction latency

RD Coe e e e Each instruction goes to WB
] ] asap

EX | ALU | MEMlI FP1 By * Eliminate need for forwarding

paths
"MEM2 I FP2 l * Eliminate some unnecessary stalls
J * E.g. slow FP instruction does not
"FP3 block independent integer
instructions

WB ;_U__l * Disadvantages ??
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power4 Diversified Pipelines

BR
Predict

FX/LD 1 FX/LD 2

Reorder Buffer

Issue Q Issue Q
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Dynamic Pipelines

IJ |
IF :
|
ID : |
b
RD — |
Dispatch | (In order)
Buffer Lﬂ_r(m‘_orlorder)
EX ALU | [MEMI | [ FPT ] BR )
l l
MEMZ | FP2 ]
l
FP3 |
1 (outof order )
Reorder |
pufter | (in order)
WB : |
|
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Designs of Inter-stage Buffers

Stage i

Stage i ETE—

n (inorder)

Buffer (1) Buffer (n)

f N (inorder)

Stagei+1 | Stage i +1| e |

Scalar Pipeline Buffer In-order Parallel Buffers
(simple register) | (wide-register or FIFO)
B .l .l
Stage | | | - - - |

Buifer (= n)( o . Lany orer)

(any order )
Stagei+1 | |- - - |
R o o
(multiported SRAM and CAM) Out-of-order Pipeline Stages
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The Challenges of Out-of-Order Execution

IF Program Order
l: F1 < F2 X F3
1 5 S S S (N P
l,: F1 < F4 +F5
RD
EX
__ Out-of-order WB
: o F1 < “F4 + F5”
WB Eﬂ. . .J : "I/ Ia F1l « “F2 X F3”

U What is the value of F1? WAW!!I
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Modern Superscalar Processor Organization

1 Fetch

Instruction/Decode Buffer

Dispatch Buffer

In Order

m Reservation
1 Stations

Out of

Finish
1 Reorder/
Completion Buffer

Store Buffer

In Order

Retire
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Amdahl’s Law and Instruction Level Parallelism

A

N

No. of
Processors

1-f

Time
| =

> h =fraction of time in serial code

> f = fraction that is vectorizable or parallelizable
» N = max speedup for f

Speedup = L :
» Overall speedup =2 = (1_f)+W
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Revisit Amdahl’s Law

»Sequential bottleneck
»Even if N is infinite

lIm

N —o0

1

1

Fo1-f
1-f)+—
( ) N

* Performance limited by non-vectorizable portion (1-f)

No. of
Processors

-h—

1 -

Time
| S
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Pipelined Processor Performance Model

A
N ——

Pipeline

Depth
1 I
-

ja— 1'9—>|< 9 -

» g = fraction of time pipeline is filled
»1-g = fraction of time pipeline is not filled (stalled)
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Pipelined Processor Performance Model

A
N ——

Pipeline
Depth

1

la— 1-g —>|< g >

» “Tyranny of Amdahl’s Law”
* When g is even slightly below 100%, a big performance hit will result

* Stalled cycles in the pipeline are the key adversary and must be
minimized as much as possible

e Can we somehow fill the pipeline bubbles (stalled cycles)?
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% Motivation for Superscalar Design

[Tilak Agerwala and John Cocke, 1987]

8 : ' ' :
' N=100
T . R
Speedup jumps from 3 to ; n=1lo
G- 4.3 for N=6, f=0.8, but s =2 |-----f---4----
. ' -
ael. instead of s=1 (scalar) | :/ [/ -/
5 5 5 : 7 =8
pArT A ) A 7
O ;  N=H,5=2_. ~ —
72| SRR e R T S St =
Dot R s sl A
T T Typicat Range™ &
() i I | I
0 02 0.4 0.6 0.4 1

Vectorizability 1
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% Superscalar Proposal

» Moderate the tyranny of Amdahl’s Law
* Ease the sequential bottleneck
* More generally applicable
* Robust (less sensitive to f)
* Revised Amdahl’s Law:

1

Speedup = A=71)

(S)

f
"N

N—
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The Ideas Behind Modern Superscalar Processors

» Superscalar or wide instruction issue
Ideal IPC=n (CPl =1/n)

» Diversified pipelines
Different instructions go through different pipe stages
Instructions go through needed stages only

» Out-of-order or data-flow execution
Stall only on RAW hazards and structural hazards

» Speculation
Overcome (some) RAW hazards through prediction

And it all relies on: Instruction Level Parallelism (ILP)
Independent instructions within sequential programs
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Limits on Instruction Level Parallelism (ILP)
Weiss and Smith [1984] 1.58
Sohi and Vajapeyam [1987] 1.81
Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96
Uht [1986] 2.00
Smith et al. [1989] 2.00
Jouppi and Wall [1988] 2.40
Johnson [1991] 2.50
Acosta et al. [1986] 2.79
Wedig [1982] 3.00
Butler et al. [1991] 5.8
Melvin and Patt [1991] 6
Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8
Riseman and Foster [1972] 51 (no control dependences)
Nicolau and Fisher [1984] 90 (Fisher’s optimism)
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1/Processor Performance = _me
Program
Instructions Cycles Time
) Program X Instruction Cycle
(path length) (CPI) (cycle time)

» In the 1980’s (decade of pipelining):
% CPI: 5.0 2> 1.15

» In the 1990’s (decade of superscalar):
** CPI: 1.15 = 0.5 (best case)

» In the 2000’s (decade of multicore):
¢ Core CPIl unchanged; chip CPI scales with #cores
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Frequency

Frequency vs. Parallelism [ iiiris: s s -
. PathLengthx CPI

\ \ \

R SO\
1300 1700 \_ 1900 SpeciNT 2000
1100 1500 == Intel-x86
900
700
0

50 \ ——= AMD-x86
Power5 , -m- Power

== |[tanium

SPECint2000/MHz
o
(63}

0 500 1000 1500 2000 2500 3000 3500
Source: www.SPEC.org Frequency (MHz) [John DeVale & Bryan Black, 2005]
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Frequency and Performance Boost

Frequency
(MHz)

100

Relative
Performance

1,000

= Freq (Process)

[Source: Intel Corporation]

Frequency Increased 50X
Pentium® 4 proc

I4X « 13X due to process
N technology

" Refatve_
Performance

« Additional 4X due to
microarchitecture

13X

A 4

074  05u  0.354 0.254 0.18u

Performance Increased >75X

Pentium® 4 proc

6X

B Relative « 13X due to process
g "= _ Y technology
- Additional >6X due

to microarchitecture

*Note: Performance m
0.7u 0.5 0.35u 0.25u 0.18u using SpecINT and SpecFP
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%Putting

[Ed Grochowski, Intel, 1997]

it All Together: Limits to Deeper Pipelines

Relative improvement

i-—t——quuancy
= 4 — CPl i
;— ~ie— - Parformance |

— 3 — Power |

Fipaline Depth
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Modern Superscalar Processor Organization

Fetch

_ Instruction/Decode Buffer

Dispatch Buffer

In Order

Reservation
Stations

7] Reorder/
Completion Buffer

Complete
v

T[T ITITIT] Store Buffer

Retire

In Order

= Buffers provide
decoupling

" |n OO0 designs
they also facilitate
(re-)ordering

= More details on
specific buffers to

follow
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Superscalar Processor Implementation Issues

" |nstruction fetching Issues
= How do we maintain high bandwidth and accurate instruction delivery

" |nstruction decoding Issues

" |nstruction dispatching Issues

= Register renaming

" |nstruction execution Issues
= (Centralized vs distributed reservation stations

" |nstruction completion and Retiring Issues

= ROB, store queues, ...
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Instruction Fetch and Decode

» Goal: given a PC, fetch up to N instructions to execute
* Supply the pipeline with maximum number of useful instructions per cycle
* The fetch stage sets the maximum possible performance (IPCmax)

PC

» Impediments
e Instruction cache misses
* Instruction alighnment Instruction Memory |

* Complex instruction sets —
« CISC (x86, 390, etc) |

3 instructions fetched

* Branches and jumps
* Determining the instruction address (branch direction & targets)
e Will start in this lecture and finish in next one...
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Wide Instruction Fetches

m For a N-way superscalar, need > N-way fetching
m Otherwise, N-way ILP can never be achieved
= Sometimes, wider than n-way fetch helps —why?
® Implementation: wide port to I-cache
= Read many/all words from I-cache
m Select those from current PC to first taken branch

m Reducing cache misses (remember?)
m Separate |-cache

m Larger block size, larger cache size (any problems?)
m Higher associativity

= 2nd-level cache, prefetching
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Instruction Cache Organization

Address Address
Cache ,

g line g (;ache
2 f ) line
Q Q
D 3
o) o)
3 3
Q Q
a7 a7

I I I I I I

(a) (b)

1 cache line = 1 physical row 1 cache line = 2 physical rows

m These are logical views: In practice, tags & data may be stored separately

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 Carnegie Mellon University 2




The Fetch Alignment Problem

r-———=-—-= 1

Row decoder

[ Fetch group >
| Row width >
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Solving the Alignment Problem

m Software solution: align taken branch targets to I-cache row starts

m Effect on code size?
m Effect on the I-cache miss rate?
= What happens when we go to the next chip?

m Hardware solution
m Detect (mis)alignment case
= Allow access of multiple rows (current and sequential next)
= True multi-ported cache, over-clocked cache, multi-banked cache, ...

= Or keep around the cache line from previous access
= Assuming a large basic block

m Collapse the two fetched rows into one instruction group
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IBM RS/6000 [-Cache and Fetch (auto alignment)

= 2-way set
associative
(A and B sets)
|-Cache; (8)
256-Instruction
SRAM modules

= 16 Instruction
per cache line
(64 bytes)

IFAR |

—

Odd
Directory
Sets

A&B

 —

L{Sets

Even
Directory

A&B

TLB
hit

ne
uffer
control

logic

Interlock,
dispatch,
branch,

Ingtruction n

nstruction n+1

execution,
logic

Instruction n+2
Instruction n+3 [

Y

v Y
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Cache Line Underutilization

m What if we have <N instructions between two taken branches?

= Or predicted taken branches?

m Solution: read multiple cache lines
m Current and predicted next cache line
s Merge instructions from two cache lines using a collapsing buffer
= Question: how do we get the predicted next cache line address?
= Need two predictions (PCs) per cycle
m Easier cases to handle

m Intra-cache line forward & backward branches
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Instruction Decoding Issues

®m Primary decoding tasks
= |dentify individual instructions for CISC ISAs

s Determine instruction types (especially branches)
= Drop instructions after (predicted) taken branches
= Potentially restart the fetch pipeline from target address

m Determine dependences between instructions

m Two important factors
= [nstruction set architecture (RISC vs. CISC)
= Determines decoding difficulty
= Pipeline width

= Sets the number of comparators for dependence detection
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Intel Pentium Pro (P6) Fetch/Decode

uROM |

x86 Macro-Instruction Bytes from IFU

¢

Instruction buffer 16 bytes I:i) drn::;
calculation
y ! !
' Decoder < Decoder < Decoder Y
0 1 2 |
| Branch
> address
4 uops 1 uop 1 uop calculation
Y Y
uop queue (6)

l

l

l

Up to 3 uops Issued to dispatch
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I-Cache Pre-decoding in the AMD K5

From Memory

8 Instruction Bytes T64 .................... R ‘ Bytel‘ Bytez‘ .. ‘ ByteSl

Predecode _ | _
Logic 5> Bits 5 Bits 5 Bits
8 Instr. Bytes + -
Predecode Bits | /‘f 64 + 40 oo >
|I-Cache
e Overheads of pre-decoding?
16 Instr. Bytes + 128 1 80 P 8

Predecode Bits

) ?
Decode, Translate Any uses for RISC processors:

and Dispatch

ROP1 ROP2 ROP3 ROP4 - Predecoding is also useful for RISC
Up to 4 ROP’s * Cost: cache size, refill time
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Instruction Dispatch and Issue .
!

Instruction fetching
Instruction decoding

Instruction dispatching

—_— — — —

—_—— —_—
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Centralized Reservation Station
J

Dispatch
/

Centralized reservation
station (dispatch buffer)

SEpEnEs
]

Execute <

T
Ll_l
—

=

Y Y Y Y Y

Lu_Lll_Lu_l

Completion buffer
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Distributed Reservation Stations

Dispatch Dispatch butfer
¢ l i ¢ i Distributed
reservation
TI TI TI TI TI stations
Issue
Execute < | I I
Finish + Y  / Y +

| ‘ ‘ ‘ ‘ ‘ ‘ I Completion buffer
Complete
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Instruction Fetch Buffer

Fetch -put-of-order
Unit Core
m Smooth out the rate mismatch between fetch and execution
m Neither the fetch bandwidth nor the execution bandwidth is consistent

m Fetch bandwidth should be higher than execution bandwidth

m We prefer to have a stockpile of instructions in the buffer to hide cache
miss latencies.

m This requires both raw cache bandwidth + control flow speculation
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INnstruction Execute

m Current trends
= More parallelism € forwarding/bypass very challenging
= Deeper pipelines
= More diversity

m Functional unit types
= Integer
= Floating point
= Load/store € most difficult to make parallel
= Branch
= Specialized units (media)
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Forwarding/Bypass Networks

® O(n?) interconnect from/to FU inputs and outputs

m Associative tag-match to find operands
m Solutions (hurt IPC, help cycle time)

= Use RF only (IBM Power4) with
no bypass network
= Decompose into clusters

FX/LD 1
Issue Q

(Alpha 21264)

FX/LD 2
Issue Q
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Specialized Functional Units

e FP multiply-accumulate —
R=(AxB)+C \ /
e Doubles FLOP/instruction Y
e Lose RISC instruction AXB
format symmetry: 111

— 3 source operands (A><B)+C
e Widely used

Round/Normalize
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Specialized Functional Units in Pentium 4

U vl 7 vl e Intel Pentium 4 staggered adders
~ — Fireball
hd e Run at 2x clock frequency
| ; yl : yl e Two 16-bit bitslices
(| 7 7 e Dependent ops execute on half-
LN Y cycle boundaries

e Full result not available until full

|:Y:| cycle later
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Instruction Complete and Retire

m Qut-of-order execution
m ALU instructions
= Load/store instructions

m |n-order completion/retirement
= Precise exceptions
= Memory coherence and consistency

m Solutions
= Reorder buffer
= Store buffer
= Load queue snooping (later)
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Exceptional Limitations

m Precise exceptions: when exception occurs on instruction |

= Instruction i has not modified the processor state (regs, memory)
= All older instructions have fully completed
= No younger instruction has modified the processor state (regs, memory)

m How do we maintain precise exception in a simple pipelined
processor?

m What makes precise exceptions difficult on a
= In-order diversified pipeline?
= Out-of-order pipeline?
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Precise Exceptions and OOQ Processors

m Solution: force instructions to update processor state in-order
m Register and memory updates done in order
= Usually called instruction retirement or graduation or commitment

® Implementation: Re-Order Buffer (ROB)
m A FIFO for instruction tracking

= 1 entry per instruction
= PC, register/memory address, new value, ready, exception

m ROB algorithm
= Allocate ROB entries at dispatch time in-order (FIFO)
= Instructions update their ROB entry when they complete

= Examine head of ROB for in-order retirement
= |f done retire, otherwise wait (this forces order)
= If exception, flush contents of ROB, restart from instruction PC after handler
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Re-Order Buffer Issues

m Problem
= Already computed results must wait in the reorder buffer when they may
be needed by other instructions which could otherwise execute.
= Data dependent instructions must wait until the result has been
committed to register

m Solution

= Forwarding from the re-order buffer
= Allows data in ROB to be used in place of data in registers

m Forwarding implementation 1: search ROB for values when registers read
= Only latest entry in ROB can be used
= Many comparators, but logic is conceptually simple

= Forwarding implementation 2: use score-board to track results in ROB

= Register scoreboard notes if latest value in ROB and # of ROB entry
= Don’t need to track FU any more; an instruction is fully identified by ROB entry
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ROB Alternatives: History File

m A FIFO operated similarly to the ROB but logs old register values
= Entry format just like ROB

m Algorithm
m Entries allocated in-order at dispatch

= Entries updated out-of-order at completion time
= Destination register updated immediately
= Old value of register noted in re-order buffer

m Examine head of history file in-order
= If no exception just de-allocate
= |f exception, reverse history file and undo all register updates before flushing

m Advantage: no need for separate forwarding from ROB
m Disadvantage: slower recovery from exceptions
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ROB Alternatives: Future File

m Use two separate register files:
m Architectural file = Represents sequential execution.

= Future file = Updated immediately upon instruction execution and used
as the working file.

m Algorithm

= When instruction reaches the head of ROB, it is committed to the
architectural file

= On an exception changes are brought over from the architectural file to
the future file based on which instructions are still represented in the ROB

m Advantage: no need for separate forwarding from ROB
m Disadvantage: slower recovery from exceptions
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IF
ID
RD
N
ALU
ALU *uuus” |
PENALTY
MEM
_
LOAD
PENALTY | WB

BR
PENALTY

NCH

Y

I-cache

Floating-point *

Media

v
Branch |q—— FETCH
PredICtor LI TP rrTIrtqd InStrUCtIO
T y Buffer .
DECODE

| Instruction
' Flow

-
- = o
A4 A4 | % |—| Y v
i Y Y * *
__________ " L EcuTe " " "
Reorder *
BufferIIIIIIIIIIIIIIIIIIIIIIIII
Register (ROB) | Y v
Data COMMIT
Flow Storell [T1 |v|| [TTT] D-cache
Queue y 7
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Control Flow Graph (CFG)

®m Your program is actually
a control flow graph

main:
addi r2, roO,
addi r3, zr0,
addi r4, «r0,
addi r5, ro0,
add r10,r0, rO

bge rl1l0,r5, end

loop:
1w r20, 0(r2)
1w r21, 0(r3) BB 2
bge r20,r21,T1

SW r21, 0(r4) BB 3

b T2

T1 :
SW r20, 0(r4) BB 4

T2 :

addi r10,r10,1
BB 5 addi r2, r2, 4 |

BB 1

Z QW

= Shows possible paths of
control flow through
basic blocks

m Control Dependence

= Node X is control
dependent on Node Y if
the computationin Y
determines whether X end:
executes

addi r3, r3, 4 BB 5
addi r4, r4, 4

blt r10,r5, loop
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Mapping CFG to Linear Instruction Sequence
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Branch Types and Implementation

m Types of Branches
= Conditional or Unconditional?
= Subroutine Call (aka Link), needs to save PC?
= How is the branch target computed?
= Static Target e.g. immediate, PC-relative
= Dynamic targets e.g. register indirect

m Conditional Branch Architectures

= Condition Code “N-Z-C-V” e.g. PowerPC
= General Purpose Register e.g. Aloha, MIPS
m Special Purposes register e.g. Power’s Loop Count
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What's So Bad About Branches?

m Robs instruction fetch bandwidth and ILP

= Use up execution resources
m Fragmentation of I-cache lines

m Disruption of sequential control flow
= Need to determine branch direction (conditional branches)

= Need to determine branch target

m Example:
= We have a N-way superscalar processor (N is large)
m A branch every 5 instructions that takes 3 cycles to resolve
s What is the effective fetch bandwidth?
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Disruption of Sequential Control Flow

- Fetch

Instruction/Decode Buffer

Dispatch Buffer

Dispatch |

|

Reservation
Stations

Issue

Branc
- o ol

Execute

F-'-T'-----'---'l

___ _Finish_____ | Reorder/
| Completion Buffer

Complete |
I

Retire I

Store Buffer
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Riseman and Foster’s Study

» 7 benchmark programs on CDC-3600

» Assume infinite machine:
* Infinite memory and instruction stack, register file, fxn units
Consider only true dependency at data-flow limit

> If bounded to single basic block, i.e. no bypassing of branches = maximum
speedup is 1.72

» Suppose one can bypass conditional branches and jumps (i.e. assume the
actual branch path is always known such that branches do not impede
instruction execution)

Br. Bypassed.: 0 1 2 8 32 128
Max Speedup 1.72 2.72 3.62 7.21 24.4 51.2
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Introduction to Branch Prediction

» Why do we need branch prediction?
» What do we need to predict about branches?
» Why are branches predictable?

» What mechanisms do we need for branch prediction?
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Static Branch Prediction

» Option #1: based on type or use of instruction
e E.g., assume backwards branches are taken (predicting a loop)
* Can be used as a backup even if dynamic schemes are used

» Option #2: compiler or profile branch prediction
* Collect information from instrumented run(s)
* Recompile program with branch annotations (hints) for prediction
* See heuristics list in next slide
* Can achieve 75% to 80% prediction accuracy

» Why would dynamic branch prediction do better?
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Heuristics for Static Prediction @ai & Larus, PPopp1993)

Heuristic |[Description

Loop . .

Branch If the branch target is back to the head of a loop, predict taken.

Pointer If a branch compares a pointer with NULL, or if two pointers are compared, predict in the direction
that corresponds to the pointer being not NULL, or the two pointers not being equal.

Obcode If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a

P constant, predict in the direction that corresponds to the test evaluating to false.

Guard If the operand of the branch instruction is a register that gets used before being redefined in the
successor block, predict that the branch goes to the successor block.

Loob Exit If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the

P branch does not go to the successor that is the loop exit.

Loop . . .

Header Predict that the successor block of a branch that is a loop header or a loop pre-header is taken.

Call If a successor block contains a subroutine call, predict that the branch goes to that successor block.

Store If a successor block contains a store instruction, predict that the branch does not go to that
successor block.

Return If a successor block contains a return from subroutine instruction, predict that the branch does not

go to that successor block.
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Dynamic Branch Prediction Tasks

» Target Address Generation
* Access register
* PC, GP register, Link register
e Perform calculation
* +/- offset, auto incrementing/decrementing

— Target Speculation

» Condition Resolution
* Access register
* Condition code register, data register, count register
e Perform calculation
 Comparison of data register(s)

— Condition Speculation

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 Carnegie Mellon University 61




Target Address Generation
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Determining Branch Target

Problem: Cannot fetch subsequent instructions until branch target is determined

® Minimize delay

m Generate branch target early in the pipeline

m Make use of delay
= Bias for not taken

m Predict branch targes
m For both PC-relative vs register Indirect targets
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Condition Resolution

s < Fetch
I |
! : Decode Buffer
|
, CC 1
" reg. , _
GP | I Dispatch Buffer
reg. ! _
value L Dispatch
comp.!
|
|

l | l Reser\_/ation
[T [T [T Stations

Execute

___Finish___

A Completion Buffer

Complete

/
Ll L1 | ] | Store Buffer

Retire

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 Carnegie Mellon University 64




Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch direction is determined
B Minimize penalty

m Move the instruction that computes the branch condition away from branch
(ISA & compiler)

= 3 branch components can be separated
= Specify end of BB, specify condition, specify target
m Make use of penalty
= Bias for not-taken
= Fill delay slots with useful/safe instructions (ISA &compiler)
= Follow both paths of execution (hardware)
m Predict branch direction (hardware)
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Dynamic Branch Target Prediction

nPC to Icache

prediction EA-mMUX
specu. target * Tnpc(seq.) = PC+4
Branch PC Fetch

—— Predictor ¢

specu. cond. (using a BTB)
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Branch

Execute

. _Finish ¢
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Target Prediction: Branch Target Buffer (BTB)

Branch target buffer (BTB)
Access

Branch instruction Branch target
L-cache address {(BLA) field address {(BTA) field
Access
BTB
BIA BTA
PC
{instruction
fetch address)
* Speculative
e o o o target address

{Used as thf_': new PC if branch is predicted taken)

cache-like” memory in the instruction fetch stage

B Remembers previously executed branches, their addresses (PC), information to aid target
prediction, and most recent target addresses
m |-fetch stage compares current PC against those in BTB to “guess” nPC
= If matched then prediction is made else nPC=PC+4
m If predict taken then nPC=target address in BTB else nPC=PC+4
m When branch is actually resolved, BTB is updated

|ll

m Asmal
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More on BTB (aka BTAC)

m Typically a large associative structure
m Pentium3: 512 entries, 4-way; Opteron: 2K entries, 4-way

m Entry format

= Valid bit, address tag (PC), target address, fall-through BB address (length of BB),
branch type info, branch direction prediction

m BTB provides both target and direction prediction

m Multi-cycle BTB access?
m The case in many modern processors (2 cycle BTB)
m Start BTB access along with I-cache in cycle O
= In cycle 1, fetch from BTB+N (predict not-taken)
= In cycle 2, use BTB output to verify
= 1 cycle fetch bubble if branch was taken
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Branch Target Prediction for Function Returns

®m [n most languages, function calls are fully nested
m Ifyou call A() = B() = C() = D()
= Your return targets are PCc = PCb = PCa = PCmain

m Return address stack (RAS)

m A FILO structure for capturing function return addresses

m Operation
= On a function call retirement, push call PC into the stack
= On a function return, use the top value in the stack & pop

= A 16-entry RAS can predict returns almost perfectly
= Most programs do not have such a deep call tree

m Sources of RAS inaccuracies
= Deep call statements (circular buffer overflow — will lose older calls)
= Setjmp and longjmp C functions (irregular call semantics)
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAS Operation
| Branch address I | Branch address I

Size of
instruction

Y
Return
address BTB BTB
v H

Target prediction Y

\;J

[s this a return? Target prediction

(a) (b)
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAS Effectiveness & Size (SPEC CPU'95)

Misprediction frequency

70%
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0%

<~ go
-0+ m88ksim
- cc1

-O- compress
-9 xlisp
& ijpeg
—-A- perl
-@- vortex

.......

Return address buffer entries

© 2007 Elsavier, Inc. All rights resarved.
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Branch Condition Prediction

m Biased For Not Taken
m Does not affect the instruction set architecture
= Not effective in loops

m Software Prediction

m Encode an extra bit in the branch instruction
= Predict not taken: set bitto 0
= Predict taken: set bitto 1

= Bit set by compiler or user; can use profiling

m Static prediction, same behavior every time
m Prediction Based on Branch Offsets

m Positive offset: predict not taken

= Negative offset: predict taken

m Prediction Based on History
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History-Based Branch Direction Prediction

Actual direction

il e N of resolved branch

Qutput logic:
produces prediction
based on current state

Predicted direction
of fetched branch

¢ Track history of previous directions of branches (T or NT)
¢ History can be local (per static branch) or global (all branches)

¢ Based on observed history bits (T or NT), a FSM makes a prediction of Taken or Not
Taken

¢ Assumes that future branching behavior is predictable based on historical branching
behavior

10/03/2016 (©J.P. Shen) 18-600 Lecture #10 Carnegie Mellon University 73




History-Based Branch Prediction

Branch mnstruction  Branch target Branch

I-cache address field address field history
BTB
BlA BTA
PC
Initial
state .
Bianch Speculative
history target address ESM
P]:‘Cd lcltad \ Predict taken :
direction  Actyal direction or not taken
(a) (h)
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Example Prediction Algorithm

" Prediction accuracy approaches maximum with as few as 2 preceding branch
occurrences used as history

TN« T~ - last two branches
.................. next prediction
o
= History avoids mispredictions
due to one time events
N N = Canonical example: loop exit
Results (%) = 2-bit FSM as good as n-bit FSM
IBM1 1BM2 1BM3 1BM4 DEC  CDC = Saturating counter as good as
93.3 96.5 90.8 834 97.5 90.6 any FSM
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Other Prediction Algorithms

%f\

Saturation - N Hysteresis
Counter N" Counter

= Combining prediction accuracy with BTB hit rate (86.5% for 128 sets of 4
entries each), branch prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20% performance enhancement.
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Dynamic Branch Prediction Based on History

m Use HW tables to
track history of
direction/targets

= nextPC =
function(PC,
history)

m Need to verify
prediction

= Branch still gets
to execute

I

+16

>
/

p PC

Branch
History
Table

Branch
Target
Address
C“:ache

icache

feedback

Decode

Dispatch

I

_| Dispatch Buffer

Reservation
tations

IBRN

ISFX {SFX (CFX +FPU ng

Execute

Finish_

tBranch
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PowerPC 604

Branch Predictor: BHT & BTAC

+16
N N
BTAC: . J O
= 64 entries — |~ ~ icache
= Fully associative - Branch
: : Branch
= Hit 2 predict taken History Target
Table Address | Decode Buffer
Cache
BHT: BHT prediction f Decode
- 512 entries BTAC prediction BHT BTAC | Dispatch Buffer
= Direct mapped update update Dispatch
. ki : _
2 'blt saturating cou.nt.er taedback , Regervation
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10/03/2016 (©J.P. Shen) 18-600 Lecture #10 Carnegie Mellon University 7s




PowerPC 604 Fetch Address Generation
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18-600 Foundations of Computer Systems

Lecture 11:
“Modern Superscalar Out-of-Order Processors”

John P. Shen & Zhiyi Yu

Next Time ...

» Required Reading Assignment:
* Chapter 4 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron.

» Recommended Reading Assignment: ) Electrical & Computer
¢ Chapter 5 of Shen and Lipasti (SnL). { E N G I N E E RI N G
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